
LQ-Shur Projetion on Large Sparse Matrix EquationsDaniel Boley� and Todd GoehringComputer Siene and EngineeringUniversity of MinnesotaMinneapolis, MN 55455, USAAbstratA new paradigm for the solution of nonsymmetri large sparse systems of linearequations is proposed. The paradigm is based on an LQ fatorization of the matrix ofoeÆients, i.e. fatoring the matrix of oeÆients into the produt of a lower triangularmatrix and an orthogonal matrix. We show how the system of linear equations an bedeomposed into a olletion of smaller independent problems whih an then be usedto onstrut an iterative method for a system of smaller dimensionality. We show thatthe onditioning of the redued problem annot be worse than that of the original,unlike Shur omplement methods in the nonsymmetri ase. The paradigm dependson the existene of an ordering of the rows representing the equations into bloks ofrows whih are mutually struturely orthogonal, exept for a last blok row whih isoupled to all other rows in a limited way.1 IntrodutionThe solution of large sparse systems of linear equations is a diÆult and often time-onsumingtask. The fous of this paper is on a new paradigm for onstruting a redued order systemfrom the original system, as a generalization to the methods based on the Shur omplement[1℄. The Shur omplement method starts by partitioning a matrix A and applying a blokGaussian elimination proess to this matrix:�A11 A12A21 A22 � = � I 0L21 I � ;�A11 A210 U22 � :Then the Shur omplement of A22 is S = L22U22, where L21 = A21A�111 and U22 =A22 � L21A12 [6℄. Typially, this method is useful when the equations are ordered so thatsystems of equations involving A11 are relatively easy to solve, so that S an be used inan iterative method without being formed expliitly. However the ordering within A11 anhave a dramati e�et on the numerial quality of the resulting representation of the Shur�e-mail: boley�s.umn.edu 1



omplement. This an lead to diÆult trade o�s between the numerial auray on the onehand and the sparsity or omplexity of solution on the other.In this paper, we desribe a generalization of this method in whih the Gaussian elim-ination is replaed with a triangular orthogonalization proess, i.e. a QR fatorization [5℄.Sine we are using a row based sheme instead of a olumn based sheme, we will use insteadan LQ fatorization, in whih a matrix is fatored into A = LQ with L lower triangular andQ orthogonal. In this ase, the numerial auray is independent of the ordering of therows, so we are free to hoose an order to enhane the sparsity of the LQ fators as muhas possible.It is well known that the LQ proess results in muh more �ll than the Gaussian elimina-tion proess. However we make ertain assumptions on the struture of the original matrixwhih will limit the �ll and hene make a pratial algorithm. The main assumption is thatwe have ordered the rows of the matrix A into a number of bloks whih are mutually stru-turally orthogonal, exept for a last blok of rows whih are oupled to all the other bloks.The motivation for this struture omes from the disretization of di�erential operators overphysial domains.Domain Deomposition addresses the topi of solving partial di�erential equations by par-titioning the domain into smaller semi-independent subdomains. There are many variations:overlapping vs non-overlapping subdomains, iterative Shwarz methods vs Shur omple-ment methods (where interior nodes are solved diretly and the boundary nodes are solvediteratively) [1, 7℄, as well as preonditioners of many types (ILU, ILUT, multilevel, et.),some of whih are motivated by the underlying di�erential equations [6, 1℄. The presentpaper is limited in sope to the linear algebra aspets of using an LQ deomposition onmatries with a sparsity struture ommonly found among matries derived from disretedi�erential operators. The relation with any underlying di�erential equations, inluding adisussion of onvergene or appliation-spei� preonditioners is beyond the sope of thisshort paper.In this paper, in Se. 2 we motivate the assumptions made regarding the struture of thematrix operator, in Se. 3 we introdue the overall setup and notation. In Se. 4 we presentthe details of the solution proess, in Se. 5 we relate the iteration operator to the Shuromplement, and in Se. 6 we sketh some preonditioners peuliar to this formulation forthe redued order system. We end with a short example in Se. 7 and a summary in Se. 8.2 Motivation of StrutureThe methods disussed in this paper have been developed for systems with strutures sim-ilar to those derived from the �nite-element or �nite-di�erene disretization of a partialdi�erential equation over some domain. In order to arry out the proess, we make ertainassumptions about the way the domain is partitioned into subdomains. These assumptionsare desribed below.1. The physial domain has been overed with a �nite olletion of nodes or verties,eah representing the unknowns at a single loation or element in the domain. To eahnode orresponds an equation whih ouples the unknown values at that node with2



those of its immediate neighbors. This is the typial situation that results from any�nite-di�erene method with a usual 5 or 9 point stenil in 2D or 7 point stenil in 3D,or a �nite-element method in whih the values within eah element are oupled onlythose of the immediately adjaent elements. This struture is represented by a graphwith verties orresponding to the nodes and edges orresponding to oupling betweennodes in a single equation (see e.g. [6, 7℄). In the following, we disuss the ordering ofthe matrix based on a partitioning of the graph, whih is a disrete representation ofthe original domain. The partitioning of the graph would orrespond to a partitioningof the original domain into disjoint subdomains. To emphasize that we are fousing onthe disrete problem, we refer to subgraphs instead of subdomains.2. The entire graph has been partitioned by some algorithm into a olletion of subgraphs,eah separated from the neighboring subgraphs by a double-layered boundary. To seewhy a double layered boundary is useful in this situation, onsider 4 nodes in theneighborhood of a boundary: ... ... ... ...� � �A B C D � � �... ... ... ...where A is in the interior of one subgraph, B is on the boundary of the same subgraph,C is on the boundary of a di�erent subgraph, and D is in the interior of this lattersubgraph. We say that B is part of the same subgraph as A, and C is part of thesame subgraph as D, but B, C lie on the boundary of their respetive subgraphs. In aparallel proessing environment where eah subgraph would be alloated to a di�erentproessor, A, B would be put on together on one proessor, while C, D would be puttogether on another.The equation entered at node A ouples A with node B and with other nodes fromits own subgraph (both in the interior and possibly on the boundary). But A is notoupled with nodes from any other subgraph, whether in the interior (suh as D) oron the boundary (suh as C). Analogously, the equation entered at B ouples B withother nodes on the boundary of its own subgraph and neighboring subgraphs (suhas C), and with nodes in the interior of its own subgraph (suh as A). But B is notoupled with any node in the interior of any other subgraph (suh as D). In otherwords, there are edges within eah subgraph, between the interior and the boundaryof the same subgraph, and among the boundary nodes, but there are no edges betweenthe interiors of two di�erent subgraphs, nor between the boundary of one subgraphand the interior of a di�erent subgraph.When the equations are assembled into a matrix operator, the result is that the rowsentered at interior nodes (suh as A) are automatially struturely orthogonal to rowsentered on interior nodes of other subgraphs (suh as D), as well as boundary nodesof other subgraphs (suh as C). The rows entered on boundary nodes (suh as B) arestruturally orthogonal to rows entered on interior nodes of other subgraphs (suh asD). 3



3. The equations are ordered in the typial way in Domain Deomposition with the bound-ary nodes (suh as B and C above) ordered last. All the interior nodes of eah subgraphare ordered together, after whih ome all the boundary nodes, again grouped by sub-graph. The resulting matrix A will have the following formA = �A1A2 � = �A11 A12A21 A22 � ;where� A11 is n1 � n1 blok diagonal, and eah diagonal blok represents the ouplingamong the interior nodes of a single subgraph;� A12 is n1�n2 with a retangular blok \diagonal" struture, and eah retangularblok represents the oupling between the interior of a single subgraph and theboundary of the same subgraph, as viewed from the interior;� A21 is n2�n1 with a retangular blok \diagonal" struture, and eah retangularblok represents the oupling between the interior of a single subgraph and theboundary of the same subgraph, as viewed from the boundary;� A22 is n2 � n2 and represents the oupling among all the boundary nodes.Fig. 1 shows a typial struture for A derived from a standard 5 point stenil in 2D.We note that with this ordering, A11;A12;A21 all tend to be sparse, and within the toppart, (A11 A12 ), the rows orresponding the eah subgraph are struturally orthog-onal to the rows orresponding to any other subgraph. The strutural orthogonalityallows one to orthogonalize the rows for eah subgraph independently.3 Problem Setup and ProjetorsLet A be a n� n matrix and b be an n-vetor, partitioned asA = �A1A2 � = �A11 A12A21 A22 � ; b = �b1b2 � ; (1)where A11 is n1�n1 blok diagonal and hene relatively easy to \invert," and A22 is n2�n2.The matrix A would typially be onstruted from a Domain Deomposition-like proess,in whih the blok A1 = (A11 A12 ) represents the equations in the interior of a olletionof disjoint subgraphs and A2 = (A21 A22 ) represents the equations on the boundariesbetween the subgraphs. We assume that the boundaries are \double layered" so that therows orresponding to eah subgraph's interior are struturally orthogonal to those for othersubgraphs' interiors, as desribed in the previous setion.The goal is to solve the system of equations Ax = b. To this end, we deompose thesolution x into two parts x = x1 + x2 with x1 lying in the spae spanned by the rows of A1and x2 lying in the spae orthogonal to this row spae:x1 2 ROW-SPACEA1x2 ? ROW-SPACEA1 () x2 2 NULLSPACEA1: (2)4



We denote the orthogonal projetor for ROW-SPACEA1 as P1 and the orthogonal projetor forthe omplementary spae NULLSPACEA1 as P2 � I�P1. Then the seond omponent of thesolution an be written as x2 = P2w for some vetor w to be determined.The overall proedure we will develop an be summarized as follows.1. Solve for x1 diretly, where x1 satis�esA1x1 = b1(an underdetermined system)suh thatx1 2 ROW-SPACEA1: (3)For this step, we use the LQ fatorization of A1, beause parts of these fators willthen be saved for later use. The onstraint makes the solution unique.2. Form the equations for the seond omponent of the solution:A2x2 = r 4= b2 �A2x1suh thatx2 = P2w for some vetor w to be determined: (4)3. Solve equation (4) for w and then for x2. This is typially done by an iterative method,though in some ases one ould even think of using a diret method. In atual fat,we solve the equations A2P2w = r 4= b2 �A2x1; (5)where w lies in a restrited spae to make the solution unique, so that in e�et we aresolving a system of redued dimensionality.The key to the suess of the overall method is that we an represent the operator A2P2in (5) in terms of A2 and sparse items onstruted from A1. We never have to form P2expliitly.LQ FatorizationIn order to arry out the intended solution proedure, we use a partial LQ fatorization ofA. The entire LQ fatorization of A is de�ned asA = LQ � �L11 0L21 L22 ��Q1Q2 � � �L11 0L21 L22 ��Q11 Q12Q21 Q22 � ; (6)where L;Q is partitioned in onformity to the partitionings shown in (1). Here L is a lowertriangular matrix and Q is an orthogonal matrix. Even though we de�ne the entire LQfatorization, we ompute only the top n1 rows:A1 = L11Q1: (7)The rest of the LQ fatorization will be represented impliitly. Furthermore, we use L11only during the omputation of x1, after whih it may be dropped, keeping only Q1 in laterstages.In terms of the LQ fatorization, the orthogonal projetors an be written asP1 = QT1Q1 and P2 = QT2Q2 = I�QT1Q1: (8)5



4 Solution ProessWe now go through the steps of the solution proess in some more detail.4.1 Solve for x1We ompute the LQ fatorization of A1 (7). Given the struture we have assumed for thematrix A, the rows in A1 orresponding to di�erent subgraphs are struturally orthogonal.Hene the LQ fatorization of eah blok an be omputed independently and in parallel.If one thinks of using a Gram-Shmidt orthogonalization proedure on the rows for eahsubgraph, the result is that both L11 and Q11 will have the same blok diagonal strutureas A11, but eah diagonal blok will be more full. One is free to order the rows within eahsubgraph to redue the �ll, and we usually hoose to order them by graph distane to theboundary, whih the nodes losest to the boundary last. The blok Q12 will have also havea retangular diagonal-like blok struture inherited from that of A12. We do not omputeL21 or Q12 sine the latter is often very full.Writing (3) in terms of the LQ fatorization yields L11Q1x1 = b1; so that the solutionsatisfying (3) is x1 = QT1L�111 b1: (9)Thus the vetor x1 an be found by solving the triangular system L11y1 = b1; and thensetting x1 = QT1 y1.4.2 Forming Seond Set of EquationsTo �nd x2, we must solve (5) for w, and then set x2 = P2w. However, we will �nd a reduedrepresentation for (5) in terms of the partial LQ fatorization. The right hand side of (5)an be expanded as follows:b�Ax1 = �b1b2 �� �A1A2 �x1= � 0b2 �A2QT1L�111 b1 �4= � 0r2 � : (10)We an expand the left hand side of (5) as follows:Ax2 = AP2w = �A1A2 �QT2Q2w= � 0A2QT2Q2 �w (beause A1QT2 = 0)= � 0L22Q2 �w (beause A2QT2 = L22): (11)Thus, it is seen that set of equations (5) atually redues to a n2�n2 linear system involvingthe matrix L22. The ath is that we never ompute L22 or Q2. Instead, we represent them6



using only A2 and the projetor derived from A1:AP2 = � 0A2P2 � = � 0A2(I�P1)� : (12)Combining the above, equation (5) redues toA2(I�P1)w = r2; (13)after whih we ompute x2 = (I�P1)w. The advantages of (13) are� all the matrix operators on the left hand side are sparse or have a sparse representation;� by using the relation A2(I�P1) = L22Q2 we an preondition the matrix operator byfousing on Q2 or L22 separately, as desribed below;� we have some freedom in the representation of w, in the sense that (13) is an under-determined system suh that any solution w leads to the same �nal solution x2.We disuss this last point a little further. Consider applying a Krylov spae method tothe square but singular systemA(I�P1)w = � 0A2(I�P1)�w = � 0r2 � (14)in whih (13) is embedded. If we use Krylov spae methods suh as GMRES with an initialguess equal to zero, then all the solutions will be taken from the Krylov spae(� 0r2 � ; � 0A2(I�P1)�� 0r2 � ; � 0A2(I�P1)�2 � 0r2 � ; � � �) (15)whih has the form � 0 0 � � �? ? � � �� : (16)This naturally leads to restriting the solutions w to the formw 4= � 0w2 � ; (17)leading to the square set of equations L22Q22w2 = r2 (18)This ompletely spei�es the solution w, but the numerial auray of the solution ouldsu�er if the ondition number ofQ22 is too high. We will show below how one an ompletelyeliminate the e�et of Q22, but if Q22 is very badly onditioned, then some modi�ation tothe problem should be applied, suh as a simple reordering of the olumns in the originalproblem, without a�eting the strutural orthogonality among the rows. For the purposesof this paper, we will assume that Q22 is not singular or almost singular.7



Of ourse, we remark that we do not form (18) expliitly, but we apply the operator of(18) in an iterative method by atually iterating with (14), restriting the iteration vetorsto lie in a spae of the form (16). When so restrited, (14) redues to the iteration:v2 7! A2P2 � 0v2 � = A2(I�QT1Q1)� 0v2 �= A2 � 0v2 ��A2QT1Q1 � 0v2 �= A22v2 �A2QT1Q12v2= (A22 �A2QT1Q12)v2: (19)The last expression involves only the original data A2 and the sparse orthogonal fator Q1derived from A1. If (19) is used in an iterative method, then it an be left in separate partsv2 7! A22v2 �A2QT1Q12v2, but one ould also expliitly form the matrixAP 4= A22 �A2QT1Q12 (20)if one intends to use it in a diret method or apply an ILU-type of preonditioner. By asimple manipulation, one an verify that AP = L22Q22, so that we have indeed found arepresentation for (18) without omputing L22;Q22 expliitly.5 Relation to Shur ComplementThe reader will notie the obvious similarity of the above development with the Shur om-plement. We write the inverse of A in terms of the LQ fatorization (6):�A11 A12A21 A22 ��1 = �QT11 QT21QT12 QT22 ��L�111 0� L�122 � ; (21)where the \�" blok is irrelevant to this disussion. Letting S denote the Shur omplementof A22, S�1 is the 2-2 blok of A�1, and thusS = L22Q�T22 (22)This is in ontrast to the operator L22Q22 in (18). For nonsymmetri operators, it is possiblefor S to have a higher ondition number ompared to the original matrix A, and the sameis true of the operator L22Q22. However, we will show below how to �nd a sparse rightpreonditioner to ompletely eliminate the e�et of Q22. The remaining triangular part,L22, must have a ondition number no larger than that of the original matrix A, as an beseen by applying the eigenvalue interlaing theorem [5℄ to the symmetri matrixQATAQT = �L11 0L21 L22 �T �L11 0L21 L22 � = �� �� LT22L22 � : (23)A sparse left preonditioner an be used to help redue the onditioning due to L22.8



6 PreonditioningWe an ompletely eliminate the e�et of Q22 from (18) (and hene from the iterationmatrix AP2). We form a triangular neutralizing matrix N whih is applied to the right ofthe operator AP = L22Q22; hene it is alled a right preonditioner. The preonditioneris the Cholesky fator of a symmetri positive de�nite matrix derived from the partial LQfatorization: NTN = QT22Q22 = I�QT12Q12: (24)Then a simple omputation:(Q22N�1)T �Q22N�1 = N�TQT22Q22N�1 = Ishows that Q22N�1 is an orthogonal matrix. Hene the ondition number of L22Q22N�1 isexatly the same as the ondition number of L22. Furthermore, N is an upper triangularmatrix whih also inherits the blok diagonal struture present in QT12Q12.The operator used in atual omputation is AP (20). The preonditioned operator istherefore: v2 7! ApN�1v2 = (A22 �A2QT1Q12)N�1v2 4= APNv2: (25)where it is impliit that the vetor N�1v2 is omputed by solving the triangular systeminvolving N. Sine CONDAPN = CONDL22, (23) leads to the following simple result:Theorem. Given the LQ fatorization (6) of an arbitrary square matrix A and the oper-ator APN de�ned in (25) with N de�ned in (24), the 2-norm ondition number of APN isguaranteed to be less than or equal to the 2-norm ondition number of the original matrixA. One may apply a left preonditioner of the user's hoie to APN . The rows in thisoperator represent the boundary nodes in the subgraphs on the original grid. One wayto onstrut a left preonditioner is to extrat the rows (equations) orresponding to theboundary nodes in eah subgraph separately, and to ompute an LQ fatorization of theserows alone, repeating this proess for eah subgraph. The resulting \L" fators for eahsubgraph are then assembled into a blok diagonal left preonditioner, whih we label M1.This preonditioner orresponds to a blok Jaobi-type preonditioner, and is a naturalhoie if the equations for eah subgraph were distributed to di�erent proessors, as eahsubgraph an be handled independently.One an re�ne this preonditioner by �rst orthogonalizing the boundary equations withineah subgraph against the interior equations for the same subgraph and then arrying out theabove loal LQ fatorization. This preonditioner, whih we label M2, an be motivated asfollows. Let ~Ag1 represent the rows from the interior of a given subgraph g, and ~Ag2 representthe rows from the boundary of the same subgraph, and onsider the loal LQ fatorizationorresponding to this subgraph:~Ag � � ~Ag1~Ag2 � = ~Lg ~Qg � � ~Lg11 0~Lg21 ~Lg22 �� ~Qg1~Qg2 � :The blok ~Lg22 is used as a preonditioner for the rows ~Ag2. All the ~Lg22 bloks are thenassembled into a blok diagonal preonditionerM2 = DIAGf~Lg22gg=1;:::;p:9



Note that the bloks ~Lg11 and ~Qg1 orresponding to the interior nodes have already beenomputed as part of (7), so here it is neessary only to extend that LQ fatorization. Thispreonditioner will also be blok diagonal, but will have more �ll thanM1. Further study ofthe theoretial behavior of these preonditioners is needed and will be reported in a futurepaper, but we do give an indiation of how they a�eted the onditioning on some spei�numerial examples given in Se. 7.An alternate hoie of left preonditioner ould be obtained by assembling the operatorAPN , whih is often itself sparse, and then applying an o�-the-shelf preonditioner suh asInomplete LU [6℄. The pros and ons of di�erent left preonditioners, whih an have adramati e�et on the onvergene of the overall algorithm, is beyond the sope of this shortpaper, and is the subjet of further study.7 ExampleWe illustrate how the sparse struture in A arries over the the omputed L11 and Q1. Asa �rst example, we take a matrix arising from a simple 5 point �nite-di�erene stenil ona 2D grid in Fig. 1, after reordering aording to Se. 2, using 4 subgraphs. Fig. 2 showsthe struture of the resulting LQ fators, whih preserve the blok diagonal struture. Weremark that the entire Q1 is needed for the LQ fatorization, for the omputation of x1 andfor the omputation of N. After that, Q1 appears only in the operator AP buried within thematrix produt A2QT1Q12. Beause of the sparsity struture ofA2 and ofQ12, many nonzeroentries in Q1 are multiplied by only zero entries in A2;Q12 and hene an be dropped. Theelements of L11 are needed to ompute the LQ fatorization, to solve for x1, and to formthe preonditioner M2, but an be dropped after that. All these entries that are droppedafter x1;N;M2 have been omputed are olored gray in Fig. 2b. So during the iterativesolution of preonditioned system (28), only the blak elements of Fig. 2b must be retained.A detailed analysis of the exat memory requirements depends ritially on the underlyingstruture of the equations being solved as well as on the spei� ordering used.In Table 1, we summarize the e�et of the LQ fatorization approah on the onditionnumber for two typial examples. The FIDAP004 matrix is a symmetri inde�nite matrixtaken from the Harwell-Boeing matrix olletion [3℄ and the RAEFSKY1 matrix is a nonsym-metri matrix taken from [2℄. Using a partitioner based on the multi-node level-set expansionalgorithm [4, 6℄, the results of Table 1 are enough to show ertain properties enjoyed by theLQ-Shur method.� The memory requirements during the LQ fatorization stage an be onsiderable, butone one reahes the iteration stage, one an drop many of the elements substantiallyreduing the memory requirements. But the memory requirements during the LQfatorization stage an be mitigated by using the fat that the LQ fatorization foreah subgraph an be omputed separately.� The onditioning of the redued order operatorAPN an be notieably less than that ofthe entire matrix operator, and in some ases less than that of the Shur omplement.One an also note that the left preonditioners an be e�etive in further reduing the10



matrix name FIDAP004 RAEFSKY1size 1601 3242number of partitions 4 2size of L22 blok 416 954nonzeros in A 1:2% 2:8%nonzeros in L11 9:2% 20:7%nonzeros in Q1 13:4% 31:0%in last stage 2:9% 8:7%nonzeros in N 4:8% 24:3%nonzeros in M1 4:7% 15:1%nonzeros in M2 12:8% 25:0%CONDA 2:39�103 1:29�104CONDS 6:75�103 4:27�103CONDAP 9:58�104 2:04�104CONDAPN 1:05�103 6:47�103CONDM�11 APN 3:14�102 1:47�103CONDM�12 APN 2:23�102 1:08�103Table 1: Summary of method results on two examples, showing how the ondition number anbe redued in some ases, while maintaining the sparse representation of the operators.ondition number. On the other hand, it is lear that AP an have a higher onditionnumber than even the original matrix, so it is essential to use the right preonditionerN to eliminate the e�et of Q22 in (18).Both of these properties are ritially dependent on the spei� hoie of partitioner andon the suess of �nding a good ordering that exposes a sequene of mutually struturallyorthogonal rows in the matrix operator. In fat, the partitioner we used was not hosen withthese spei� examples in mind, as this was not the fous of this paper. The partitioningshown here, however, is suÆient to show some of the properties of the LQ-Shur basedprojetion.8 SummaryWe summarize the proess one would use to solve a given system Ax = b.1. Compute a partitioning and an assoiated ordering of the matrix A using any methodso that the result satis�es the assumptions of Se. 2. The result for a matrix derivedfrom a 2D 5-point �nite-di�erene stenil is illustrated in Fig. 1.2. Compute a partial LQ fatorization of A. The result is illustrated in Fig. 2. Solve forpartial solution x1 via (9) and residual r2 4= b2 �A2x1 (10).11



3. Collet the quantities A2, Q1 needed to form or apply the operator APN and rightpreonditioner N.Then the unpreonditioned system to be solved isAPw2 = r2; (26)where the solution to Ax = b is thenx = x1 + x2 = x1 + (I�QT1Q1)� 0w2 � (27)4. Compute the right preonditioner N via (24). Form the operator APN (25) eitherimpliitly or expliitly, and optionally ompute a suitable left preonditioner M,5. Solve the preonditioned systemM�1APNy2 =M�1r2 (28)using an iterative method, where the solution to Ax = b is thenx = x1 + x2 = x1 + (I�QT1Q1)� 0N�1y2 � (29)From this summary, it is lear that there is a high degree of overlap with Shur omplementmethods. But Shur omplement depends on a partial Gaussian elimination of the originaloperator in whih one must trade o� pivoting for numerial stability against ordering formaximum sparsity. For nonsymmetri operators, it an also happen that the ondition num-ber of the redued order operator will exeed that of the original. On the other hand, usingan LQ fatorization ombined with the right preonditioner, we an bound the onditionof the resulting operator to be at most that of the original matrix, and often it is muhless. Though it has not been disussed here, one is also free to order the olumns of theoriginal matrix to lower the ondition number of the intermediate operators N, et. In thissense, the method based on the LQ fatorization enjoys many of the advantages of solvinga nonsymmetri system via the normal equations, but without su�ering the squaring of theondition number.The main limitations of the LQ fatorization approah are the inreased memory require-ments in order to ompute even the partial fators. In a pratial implementation, one anmitigate this problem to some extent by omputing the LQ fatorization and partial solutionx1 for eah subgraph separately, saving only the items needed for the later iterative proess.But the neessary bookkeeping an beome rather ompliated. We have not investigatedthe possibility of keeping Q1 in some sort of fatored form.Referenes[1℄ T. F. Chan and T. P. Mathew. Domain deomposition algorithms. In Ata Numeria,pages 61{143. Cambridge Univ. Press, 1994.12
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Figure 1: Matrix example based on a 2D 5-point �nite-di�erene stenil after reordering into 4subgraphs.
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