MATHEMATICS OF COMPUTATION
VOLUME 00, NUMBER 00
Xxxx 19xx, PAGES 000-000

A LANCZOS-TYPE METHOD
FOR MULTIPLE STARTING VECTORS

J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

ABSTRACT. Given a square matrix and single right and left starting vectors,
the classical nonsymmetric Lanczos process generates two sequences of bior-
thogonal basis vectors for the right and left Krylov subspaces induced by the
given matrix and vectors. In this paper, we propose a Lanczos-type algorithm
that extends the classical Lanczos process for single starting vectors to mul-
tiple starting vectors. Given a square matrix and two blocks of right and left
starting vectors, our algorithm generates two sequences of biorthogonal basis
vectors for the right and left block Krylov subspaces induced by the given
data. The algorithm can handle the most general case of right and left block
Krylov subspaces with arbitrary sizes of the starting blocks, while all previ-
ously proposed extensions of the Lanczos process are restricted to right and
left starting blocks of identical sizes. Other features of our algorithm include a
built-in deflation procedure to detect and delete linearly dependent or almost
linearly dependent vectors in the block Krylov sequences, and the option to
employ look-ahead in order to avoid the potential breakdowns that are typical
for nonsymmetric Lanczos-type methods.

1. INTRODUCTION

1.1. The Lanczos process for single starting vectors. Given a square matrix
A € CV*N and two nonzero starting vectors r, 1 € CV, the classical nonsymmetric
Lanczos process [28] is an algorithm that uses three-term recurrences to generate
two sequences of biorthogonal basis vectors for the right, respectively left, Krylov
subspaces induced by A and r, respectively AT and 1. Furthermore, the coefficients
of the three-term recurrences define a sequence of n x n matrices T,,, n =1,2,...,
that constitute approximations to the given matrix A. More precisely, the n-th
Lanczos matrix T,, represents the oblique projection of A onto the n-th right Krylov
subspace and orthogonally to the n-the left Krylov subspace.

In the Lanczos process in its original form [28], breakdowns or near-breakdowns
triggered by division by zero or a number close to zero cannot be excluded. Fortu-
nately, the problem of potential breakdowns and near-breakdowns can be remedied
by incorporating so-called look-ahead techniques into the Lanczos process. The
possibility of such a remedy was first observed by Taylor [39] and Parlett, Taylor,

Received by the editor October 14, 1996.

1991 Mathematics Subject Classification. Primary 65F10, 65F15; Secondary 65F25, 65F30.

Key words and phrases. Lanczos algorithm, nonsymmetric matrix, block Krylov subspaces,
biorthogonalization, oblique projection, deflation, breakdown, look-ahead.

The first and the last author were supported in part by the European ESPRIT IIT Basic
Research Project GEPPCOM #9072. The second author was supported in part by the U.S. NSF
Grant #CCR-9405380.

@©0000 American Mathematical Society
0025-5718/00 $1.00 + $.25 per page

2 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

and Liu [34], who also coined the term “look-ahead”. Since then, there has been
extensive research activities in this area, and as a result, the look-ahead Lanczos
process is now well understood; see, e.g., [5, 6, 14, 17, 24, 25, 33] and the refer-
ences given therein. The basic principle of the look-ahead Lanczos process is to
continue the algorithm in the event of a breakdown or near-breakdown by relaxing
the vector-wise biorthogonality of the Lanczos basis vectors to a cluster-wise bior-
thogonality and by resorting, for the next few iteration steps, to recurrences that
are slightly longer than the three-term recurrences in the classical algorithm.

When applied to large NV x N matrices A, the n xn Lanczos matrices T,, are often
very good approximations to A already for n <« N, and this makes the Lanczos
process a powerful tool for various computational tasks for large matrices A. We
now briefly mention three such applications of the Lanczos process in large-scale
matrix computations.

The first application is the computation of approximate eigenvalues of a ma-
trix A € CV*N_ Starting with arbitrary (for example, random) nonzero vectors
r,1€ CV, one runs the Lanczos process for n steps to obtain T,,. The eigenvalues
of T,, are then used as approximate eigenvalues of the matrix A; see, e.g., [11].

The second application is the solution of large systems of linear equations,

(1.1) Ax =b.

The biconjugate gradient (BCG) algorithm [29] and the quasi-minimal residual
(QMR) algorithm [19, 20] are iterative methods that generate approximations x,,
for the solution of (1.1), starting from an arbitrary initial guess xqg and an arbitrary
nonzero left vector 1 € CV. Both algorithms are intimately connected to the Lanc-
zos process applied to the matrix A and the starting vectors r = b — A xy and 1.
Indeed, for BCG, the n-th iterate x,, is defined by a Galerkin-type condition that is
mathematically equivalent to solving a small n x n linear system with T,, as coef-
ficient matrix, instead of the large N x N system (1.1). For QMR, the n-th iterate
x, is defined by a quasi-minimization of the residual norm that is mathematically
equivalent to solving a small (n + 1) x n least-squares problem whose matrix is
T,,, extended by one more row. This additional row avoids possible singularity or
near-singularity of T,,, and results in a much smoother convergence behavior of
QMR, compared to BCG.

A third application is Padé approximation of transfer functions describing large
single-input single-output time-invariant linear dynamical systems. Such transfer
functions are rational functions H: C — C U {oc} of the form

(1.2) H(s) =1"(Ix — sA) 'r,

where A € CN*N r 1 € CV is given data, and Iy denotes the N x N identity
matrix. An n-th Padé approximant, H,, to a given transfer function H of the
type (1.2) is defined as a rational function with numerator and denominator degree
at most n — 1 and n, respectively, such that the Taylor expansions of H, and H
about s = 0 match in as many leading Taylor coefficients as possible. It is well
known (see, e.g.,[22, 23, 24]) that H,, can be directly obtained from the Lanczos
process applied to A, r, and 1. Indeed, assuming for simplicity that no look-ahead
steps occur in the Lanczos algorithm, the n-th Padé approximant is simply given by

(1.3) H,(s) = 1"y elT(In —sT,) ‘e,

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 3

where T,, is the n-th Lanczos matrix and e; denotes the first unit vector (in R").
A formula similar to (1.3) holds for the case that look-ahead steps do occur. We re-
mark that the numerical computation of H,, via the Lanczos-Padé connection (1.3)
is significantly more stable than the standard approach of obtaining H,, via explicit
calculations of the leading Taylor coefficients of H; see, e.g., [12].

1.2. Handling multiple starting vectors. All three applications described in
Section 1.1 have extensions that involve multiple starting vectors.

For eigenvalue computations of a matrix A with multiple or clusters of eigen-
values, it is usually preferable to employ a Lanczos-type method that iterates on
blocks of, say m, vectors, rather than on single vectors; see, e.g., [10, 21, 36]. Such
a procedure then involves m right and m left starting vectors.

There are important applications where linear systems (1.1) need to be solved re-
peatedly with the same matrix A, but different right-hand sides, say by, bs, ..., by,.
If all right-hand sides are available simultaneously, then these m systems can be
summarized in block form as follows:

(1.4) AX =B, where B=[b, by --- b,].

Applying a suitable block version of an iterative method directly to (1.4) is often
significantly more efficient than solving the m linear systems summarized in (1.4)
individually; see, e.g., [18, 30, 31, 32]. Block versions of BCG and QMR now involve
a block of m right starting vectors, namely R = B — A X, where X, € CN*"™ ig
an arbitrary initial guess for (1.4).

Finally, multi-input multi-output time-invariant linear dynamical systems are
characterized by matrix-valued transfer functions H: C — (C U {00})?”™ of the
form

(1.5) H(s) = LT(Iy — sA)"'R.

Here, A € CN*N R € CV*™, L € CV*P, and m and p denote the number
of inputs and outputs, respectively. Transfer functions (1.5) arise in different ar-
eas, such as control theory [4, 37, 38] and circuit simulation [13]. For further
background on transfer functions (1.5) and the need to approximate them by
reduced-order models, we refer the reader to [4, 13, 37, 38] and the references
given therein. For matrix-valued transfer functions H, one can again define n-th
Padé approximants, H,,, which, however, are now also matrix-valued functions,
ie, H,: C— (CU{oc})’*™. Extending the Lanczos-Padé connection (1.3) for
the single-input single-output case, m = p = 1, to the general m-input p-output
case, m, p > 1, requires a Lanczos-type process that can handle m right and p left
starting vectors, namely the columns of R and L, respectively. We note that, in
general, m and p are different.

These three applications clearly show that there is a need for a Lanczos-type al-
gorithm for multiple starting vectors. Furthermore, the algorithm should be an ex-
tension of the classical Lanczos process for single starting vectors, and thus generate
two sequences of basis vectors for the right and left block Krylov subspaces induced
by the given matrix and the block of right and left starting vectors. However, in
order to obtain a robust Lanczos-type algorithm for multiple starting vectors, the
following three key difficulties need to be resolved.

(i) The algorithm needs to include a deflation procedure in order to detect and
delete linearly dependent or almost linearly dependent vectors in the right,

4 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

respectively left, block Krylov subspaces. Moreover, in general, deflations in
the right and left block Krylov subspaces occur independently of each other,
and consequently, the block sizes of both subspaces may become different in
the course of the algorithm, even if they were identical at the beginning.
Note that for the Lanczos process for single starting vectors, deflation
is not an issue. Encountering a linearly dependent right, respectively left,
vector simply means that the right, respectively left, Krylov subspace is fully
exhausted, and thus the algorithm terminates naturally in this situation.

(ii) The algorithm needs to be able to handle different block sizes in the right
and left block Krylov subspaces. These different block sizes may be due to
different numbers of right and left starting vectors, i.e., m # p, or due to
deflation as mentioned in (i).

(iii) Just as in the classical Lanczos algorithm for single starting vectors, it cannot
be excluded that breakdowns or near-breakdowns occur in a Lanczos-type
process for multiple starting vectors. As a result, in the general case, look-
ahead techniques need to be incorporated.

In this paper, we propose a Lanczos-type algorithm that extends the classical
Lanczos process for single starting vectors to multiple starting vectors, and that can
handle all three difficulties (i)—(iii) listed above. Given a matrix A € CN*N a block
of right starting vectors R € CN*™ and a block of left starting vectors L € CN*P|
our algorithm generates two sequences of biorthogonal basis vectors for the right,
respectively left, block Krylov subspaces induced by A and R, respectively A”
and L. The algorithm includes a simple built-in deflation procedure, and it can
handle the most general case of right and left block Krylov subspaces with arbitrary
sizes m and p of the starting blocks. We will actually describe two versions of the
algorithm. First, we present the generic algorithm without look-ahead, and then
we state the general algorithm with look-ahead.

The key property of our algorithm, which allows us to resolve the issues (i)—(iii),
is the vector-wise construction of the basis vectors for the block Krylov subspaces.
The idea of using a vector-wise approach appears to originate from Ruhe [36] who
used it to derive a Lanczos algorithm for Hermitian A and multiple starting vectors.
However, we stress that, for Hermitian matrices, the problem of handling multiple
starting vectors is a lot easier for the following two reasons. First, in the Hermitian
case, the right and left block Krylov subspaces are (up to complex conjugation if A
is complex) identical, and thus the complication due to different right and left block
sizes does not arise. Second, for Hermitian matrices, the possibility of breakdowns
can be excluded, and hence no look-ahead is needed. We note that, to the best of
our knowledge, we seem to be the first to extend Ruhe’s vector-wise construction of
basis vectors for the Hermitian case to the general case of non-Hermitian matrices.

We remark that early versions of the Lanczos-type algorithm described in this
paper had been developed independently by Aliaga, Boley, and Herndndez, and by
Freund, and were presented by Boley [2] and Freund [16] at the same Oberwolfach
meeting in 1994. It was then that we decided to write this joint paper. However,
we would like to stress that the algorithm presented in this paper has evolved quite
a bit from the earlier versions we had in 1994. Finally, we note that, in his doctoral
thesis [1], Aliaga investigated variants of the algorithm that are tailored to parallel
computers.

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 5

1.3. Related work on block Lanczos methods. The problem of extending the
Lanczos process for single starting vectors to multiple starting vector is, of course,
not new, and a number of algorithms have been developed over the years. However,
with the exception of Ruhe’s algorithm [36] for the Hermitian case, all previously
proposed Lanczos-type methods for multiple starting vectors use a block-wise con-
struction of block-biorthogonal basis vectors for the underlying block Krylov sub-
spaces. It is easy to see that any such block-wise approach requires all right and left
blocks to have the same size. In particular, block Lanczos algorithms are restricted
to the special case that p = m and that possible deflation occurs simultaneously in
the right and left block Krylov subspaces.

Block Lanczos algorithms for Hermitian matrices were first proposed by Cullum
and Donath [9], and Golub and Underwood [21, 40]. Further and more recent work
for the Hermitian case is described in [10, 31, 36] and the references given therein.
We remark that only the algorithms in [9, 31] and Ruhe’s algorithm [36] include a
proper deflation procedure.

For non-Hermitian matrices, O’Leary with her block BCG algorithm [32] was
the first to develop a block Lanczos-type method. A block version of the original
three-term Lanczos algorithm [28] was first presented in [26, 27], and a more recent
variant was proposed in [3]. As already pointed out above, all these algorithms are
restricted to the case p = m. Furthermore, none of the existing block Lanczos-
type methods for non-Hermitian matrices has a built-in deflation procedure, nor
are there any look-ahead variants to remedy possible breakdowns.

1.4. Outline. The remainder of this article is organized as follows. In §2, we
introduce our notion of block Krylov subspaces associated with multiple starting
vectors. In §3, we state same basic properties of the Lanczos basis vectors generated
by our Lanczos-type algorithm and describe the concept of history indices. In §4,
we state the generic Lanczos-type algorithm without look-ahead for the case that
no breakdowns occur. In §5, we present the general Lanczos-type algorithm with
look-ahead included to avoid possible breakdowns. In §6, we establish the various
properties of the Lanczos basis vectors. In §7, we discuss a few computational
aspects of the proposed Lanczos-type algorithm. In §8, we make some concluding
remarks. Finally, in an Appendix, we present a specific example to familiarize the
reader with the notation used in the statement of the Lanczos-type algorithm.

1.5. Notation. Throughout this article, all vectors and matrices are allowed to
have real or complex entries. We use boldface letters to denote vectors and ma-

trices. As usual, M = [mjx|, MT = [my;], and M¥ = M = [my;] denote

3

the complex conjugate, transpose, and the conjugate transpose, respectively, of the

matrix M = [mj]. The vector norm [|x|| := vx"x is always the Euclidean norm,
and [[M]] := max|x|—1 |[Mx|| is the corresponding induced matrix norm.

2. BLoCcK KRYLOV SUBSPACES

From now on, it is always assumed that A € CN*N

(21) R = [I‘l ro - I‘m] € (CNXm

is a given N x N matrix,

is a given matrix of m right starting vectors, ri,ra, ... Ty, and

(2.2) L=[L L, - 1]ecV

6 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

is a given matrix of p left starting vectors, 11,15, ... ,1,,,. We stress that m > 1 and
p > 1 are arbitrary integers, and in particular, m and p need not be identical.

In this section, we introduce our notion of block Krylov subspaces induced by
the data A, R, and L. We start by defining the right block Krylov matriz

(2.3) K(A,R) := [R AR A2R --- AN-1 R]
and the left block Krylov matriz
(2.4) K(AT7L) = [L AT (AT)ZL (AT)N71 L] .

Our goal is to construct two sequences of Lanczos basis vectors for the ascending
n-dimensional subspaces, n = 1,2, ..., spanned by the first n linearly independent
columns of the matrices K(A,R) and K(A” L), respectively. To properly define
these subspaces, we need to delete the linearly dependent (and possibly nearly lin-
early dependent) columns in (2.3) and (2.4). This is done by scanning the columns
of each of the matrices K(A,R) and K(AT L), from left to right and deleting each
column that is either linearly dependent or in some sense “almost” linearly depen-
dent on earlier columns within the same matrix. This process of deleting linearly
dependent and almost linearly dependent columns is referred to as deflation in the
sequel. Moreover, we say that the deflation is ezact if only the linearly dependent
vectors are deleted, and we call it inezact if also nearly linearly dependent vectors
are deleted. Applying deflation to (2.3) and (2.4), we obtain the deflated right and
left block Krylov matrices K49(A,R) and K4 (AT L), respectively.

By the structure (2.3) of K(A,R), a column A’~'r; being linearly (or nearly
linearly dependent) on earlier columns implies that all columns Afr;, j <k < N—1,
are also linearly (or nearly linearly dependent) on earlier columns. An analogous
statement holds for (2.4). Consequently, the deflated block Krylov matrices are of
the form

(25) KYA,R)=[R;, AR, ARy --- Ai= IR,]eCN*""
and
(26) KYA",L)=[L;, A"L, (A")2Lg --- (A7)kwnlL,] eV

Here, for each j = 1,2,..., jmax, R; is a submatrix of R;_;, with R; # R;_; if,
and only if, deflation occurs within the j-th right Krylov block A7"'R in (2.3).
(For j = 1, we set Rg = R.) Similar, for each k = 1,2, ..., knax, L is a submatrix
of Ly_1, with Ly # L4 if, and only if, deflation occurs within the k-th left Krylov
block (AT)F='L in (2.4). (For k = 1, we set Ly = L.)

Note that, by construction, the columns of each deflated block Krylov matrix
KY(A,R) and KY(A” L) are linearly independent. For n = 1,2,...,n("), we
denote by KI'(A,R) the subspace of CV spanned by the first n columns of the
matrix KY(A,R) in (2.5). We call Kd'(A,R) the n-th right block Krylov subspace
(induced by A and R). Similarly, for n = 1,2,...,n("), the n-th left block Krylov
subspace (induced by AT and L), denoted by KI'(AT, L), is defined as the subspace
of CN spanned by the first n columns of the matrix KY¥(A” L) in (2.6). By
construction, both K3'(A,R) and K{'(AT, L) are subspaces of dimension n.

The goal of our Lanczos-type algorithm is to generate two sequences of basis
vectors for the block Krylov subspaces K4(A,R) and K& (AT L), n > 1. Asin the
classical nonsymmetric Lanczos process, the basis vectors are computed in pairs.
At pass n of the algorithm, the n-th pair of vectors v,, and w,, is built, where

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 7

v,, is the basis vector that advances Kd' | (A, R) to KI'(A,R), and w,, advances
K (AT L) to KI(AT,L). Clearly, the process of constructing basis vectors in
pairs has to be terminated as soon as the one of the two block Krylov subspaces is
exhausted. This termination happens at pass n = nmyax, where

Nmax = min{ n”, ('} = min{ rank K*(A, R), rank K"'(A” L) }.

For the case that n(™ # n®), it would be possible to continue the construction
of single basis vectors for the non-exhausted block Krylov subspace K3'(A, R) if
n") > Npay, respectively KI(AT, L) if n(® > n,,... However, this is not done in
our algorithm, and we simply stop the process at n = nmax-

3. LANCZOS BASIS VECTORS

In this section, we state some basic properties of the vectors generated by our
Lanczos-type algorithm.

3.1. Biorthogonal bases. The algorithm generates two sequences of right and
left Lanczos basis vectors

(3.1) Vi,Vo,...,vy and Wi, Wo, ..., Wy, n =12 ... Dya,

for the n-th right and left block Krylov subspaces, i.e.,

(3.2) span{ vy, va,...,v, } = KI(A R)
and
(3.3) span{ wi, wa, ..., w, } = KI(AT L),

respectively. Furthermore, in the generic case, the vectors (3.1) are constructed to
be biorthogonal, i.e.,

0, ifi=mn,
(3.4) w?vn = forall i,n=1,2,...,Nmax-
0 ifi#n,

For the statement of various properties of the vectors (3.1), it turns out to be
convenient to introduce the notation

(3.5) Voi=1[vi vy -+ vy and W, :=[wi wy -+ wy]

for the N x n matrices whose columns are just the first n right and left Lanczos
vectors, respectively. For example, using (3.5) and setting

A, = diag(d1,09,...,0,), where § = WkTVk for all &,
the biorthogonality relations (3.4) can be stated in compact matrix form as follows:
(3.6) Wiv,=A, forall n=1,2... nmax.

Enforcing the biorthogonality conditions (3.4) is only possible in the so-called
generic case when

0n, 70 forall n=1,2,... ngpax — 1.

Indeed, as the generic Lanczos-type Algorithm 4.1 below shows, constructing Lanc-
zos vectors (3.1) that satisfy (3.2) (3.4) involves division by ¢,,. However, in general,
it cannot be excluded that

(3.7) 5, =wh

nVn =0

8 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

might occur, and thus any algorithm that tries to enforce (3.4) may break down
due to division by zero. The event (3.7) will be referred to as an exact breakdown
of the Lanczos type-algorithm. In finite-precision arithmetic, one also needs to deal
with so-called near-breakdowns due to division by nonzero numbers

(3.8) O =Wiv, =0, 0, #0,

that are in some sense close to zero.

The key to devise an algorithm for the general case, where exact breakdowns and
near-breakdowns are not excluded, is to relax the biorthogonality conditions (3.4)
for the individual Lanczos vectors to a biorthogonality condition between suitably
chosen clusters of Lanczos vectors. More precisely, these clusters are submatrices

(3.9) v ve o vOmae) and W WO W me)

that form a partition

Vi = [V VO Y Omas)]
(3.10)
and anax = [W(l) W(2) e W(’Ymax)]
of the matrices V,,___and W,,__ respectively, of all Lanczos basis vectors (3.1).

By (3.10), each submatrix in (3.9) contains consecutive Lanczos vectors. Further-
more, the clusters (3.9) are chosen such that each pair V(?) and W(") with identical
index 7 contains right and left Lanczos vectors with identical indices. Clusters V(7)
and W(?) containing more than one vector each are built every time (3.7) or (3.8)
occurs.

Instead of the vector-wise biorthogonality (3.4), in the general case only a cluster-
wise biorthogonality is enforced:

A if k=,
(3.11) (W(k))TV(’y) — forall k,v=1,2,..., Vmax-
0 if k#7,

The general Lanczos-type Algorithm 5.2 below is a computational procedure for
constructing Lanczos vectors (3.1) that are defined by (3.2), (3.3), and (3.11).
Algorithm 5.2 now involves the solution of small linear systems with coefficient
matrices A(”), ¥ < Ymax- Therefore, the clusters (3.9) need to be chosen such that

T

(3.12) AL = (W(V)) V) is nonsingular for all v =1,2,... , Ymax — 1.

Note that the cluster-biorthogonality conditions (3.11) can again be stated in the
compact form (3.6), where A,, is now defined as the n x n leading principal sub-
matrix of the block-diagonal matrix

(3.13) A

Mmax s

::&%(Am;ﬂﬁnwAmwv.

The purpose of forming clusters (3.9) is to avoid possible exact and near-breakdowns.
More precisely, a pair of clusters V(7) and W(?) containing more than one vector is
built every time an exact or near-breakdown would occur in the generic algorithm.

In particular, in the absence of exact or near-breakdowns, each cluster consists of
exactly one vector, the vector-wise and cluster-wise biorthogonality conditions (3.4)
and (3.11) coincide, and the generic and general algorithms are identical.

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 9

3.2. History indices. Recall from (3.2) that the right Lanczos vectors build a ba-
sis for the subspaces K4'(A, R). Reflecting the block Krylov structure of Kd'(A, R),
in our algorithm, each right Lanczos vector v,, is generated from a suitable A-mul-
tiple of a previously constructed right Lanczos vector, except for the initial stages
of the process when v,, is generated from one of the right starting vectors (2.1).
Similarly, each left Lanczos vector w,, in (3.1) is generated either from a suitable
AT-multiple of a previous vector or from one of the left starting vectors (2.2).
Furthermore, the form of the actual recurrences for generating the Lanczos vec-
tors (3.1) depends on the block structure of the deflated block Krylov matrices
in (2.5) and (2.6). This structure could be recorded by keeping track of the sizes
of the blocks A7~'R; and (AT)*¥~'L; in (2.5) and (2.6), together with pointers
for the positions of v,, and w,, relative to the current blocks in (2.5) and (2.6),
respectively. However, for the exposition of our algorithm, we find it simpler to
use a different encoding of the block structure of (2.5) and (2.6), based on history
indices for the individual Lanczos vectors. Next, we describe these indices.

We use n =1,2,..., as the counter for the main loop of the algorithm. During
the n-th pass through the main loop, the n-th pair of Lanczos vectors v,, and wy,
is being computed, together with their associated history indices, u,, and ¢,.

For each n, the index pu, records the index of the vector from which the n-th
right Lanczos vector, v,,, was generated, in the following sense. If v,, was generated
from one of the right starting vectors, say r;, we set p, := j — m; otherwise, v, is
generated from an A-multiple, say A - v,, of a previously constructed vector v,
and we set u, = p. Note that u, < 0 if, and only if, v,, was generated from a
starting vector. The sequence {y,},>1 is strictly increasing:

(3.14) 1 < 2 < < i < 1 < < i) -

Here, for each 1 < n < n{"), a gap bigger than one, i.e., fin41 — pn > 1, occurs if,
and only if, u,+1— uy—1 consecutive deflation steps in the right Krylov blocks (2.3)
were performed in between the construction of v,, and v, 1. Furthermore, we note
that p, < n for all n < n(™, while p, = n for n = n(") + 1. The latter case
means that the right Krylov blocks (2.3) are exhausted, and thus the algorithm
terminates.

The following example illustrates the concept of the history indices {ftn }n>1-

Example 3.1. Suppose the indices (3.14) are given as
{H17H2:H3:H4:H5;H6 } = {717071737476}'

This means vy and vy came from the starting vectors (of which there were two), v,
vy, and vs came from the A-multiples Avy, Avs, and Avy, respectively, and the
remaining A-multiples Avs and Avs; were never used to generate any subsequent
Lanczos vector because they were deflated out. Since ug = 6 in this example, the
right Krylov sequence is exhausted at pass n = 6, thus terminating the algorithm.

The sequence of history indices,

(3.15) $1 <o < < hu < bupt < < b,

associated with the left Lanczos vectors w,,, n = 1,2, ..., is defined analogously. An
index ¢, < 0 means that w,, was generated from the left starting vector 1y ,, while
¢, > 0 means that w,, was generated from ATw, . In (3.15), a gap dni1 —dn > 1,
occurs if, and only if, ¢,+1 — ¢, — 1 consecutive deflation steps in the left Krylov

10 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

blocks (2.4) were performed in between the construction of w,, and w;,, ;1. Again,
we have ¢, < n for all n < n" and ¢,, = n for n = n + 1. In the latter case, the
left Krylov blocks (2.4) are exhausted, and the algorithm terminates.

We remark that, in the general algorithm with look-ahead, there is a third se-
quence of history indices, y(n), n = 1,2, ..., %max, to record the sizes of the look-
ahead clusters (3.9). Specifically, v(n) is defined to be the sequence number of the
clusters V(") and W (") containing the individual vectors v,, and w,,, respec-
tively. However, in the generic case, we have y(n) = n for all n, and thus there is
no need to record y(n) in the generic algorithm without look-ahead. The indices
v(n) will be discussed further in §5 below.

We conclude this subsection with two remarks.

Remark 3.2. For the special case of the classical Lanczos algorithm with single
starting vectors, the history indices (3.14) and (3.15) reduce to pp, = ¢, =n —1
for all n, except at termination when p, =n =n{") +1or ¢, =n =nl + 1.

Remark 3.3. The history indices (3.14) and (3.15) can be used to determine the
sizes of the blocks R; and Ly, in the deflated block Krylov matrices (2.5) and (2.6).
We now briefly show how to do this for the right blocks R;; the case of the left
blocks is analogous. For any v,,, there is an index j,, depending on n such that v,,
lies in the span of the columns of the matrix [Rl AR, --- Aj"’le"], but
not in the span of the columns of [Rl AR, --- Aj"’QRj",l]. It is easy to see
that the sequence {j,}n>1 can be computed from the sequence (3.14) as follows:

1 if pup, <0,
Jn = forall n=1,2,...,n".
Jpn +1 i pp >0,

For a given j, the rank (which is equal to the number of columns) of the matrix
[Ri AR, --- A/ 'R;] is equal to the largest value of n such that j, = j, or
equivalently, the value of n such that j, = j but j,+1 > j. (For n = n("), we set
Jn,+1 = 00.) If we denote this value of n as n;, making explicit its dependence on
J, then the number of columns of R; is just n; —n;_;.

3.3. Structure of the algorithm. After having introduced the history indices,
we can now show the basic structure of our Lanczos-type algorithm. The structures
of the generic Algorithm 4.1 and the general Algorithm 5.2 are identical, and in
Figure 1, we show a flow chart that is valid for both versions of the algorithm. In
Figure 1, the step numbers 0)—5) are the same as the ones used in Algorithms 4.1
and 5.2. Note that n is the counter for the main loop. Within each n-th pass
through the main loop, it is possible that there are multiple passes through the
sub-loop 1) 1f); in fact, this happeuns if, and only if, v vectors are deflated while
building v,,. The integer p is used as a counter for these multiple passes through
the sub-loop 1)-1f). Similarly, multiple passes through the sub-loop 2)-2f) occur
if, and only if, w vectors are deflated while building w,,, and the counter ¢ records
these multiple passes.

3.4. Recurrence relations. Next, we state the recurrence relations that are em-
ployed in our Lanczos-type algorithm to generate the Lanczos vectors (3.1). Using
the matrix notation V,, and W, introduced in (3.5), we will write these recurrences
in compact matrix form for all Lanczos vectors computed during the first n passes
through the main loop of the algorithm.

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS

| 0) Initialize indices p, ¢ (and v, C,)

Y

| For n =1,2,... (build n-th vectors)

A

Y

1) If u = n then STOP; otherwise expand
right block Krylov subspace: v = Av,

Y

1le) Biorthogonalize right vector v
against old left vectors w;

Y

1f) Is resulting vector v small
enough to deflate?

Discard vector v and

> increment u

NO

Y

2) If ¢ = n then STOP; otherwise expand
left block Krylov subspace: w = ATW¢

Y

2e) Biorthogonalize left vector w
against old right vectors v;

Y

2f)Ts resulting vector w small
enough to deflate?

YES

Discard vector w and

Y

increment ¢

NO
y

3) Normalize vectors v, w
to obtain new vectors v,,w,

Y

4) Record indices: pn = p, ¢n = ¢

Y

5) Check for breakdown (if this occurs
then stop or look-ahead)

F1GURE 1. Flow chart of the Lanczos-type algorithm.

11

To motivate this compact matrix form of the recurrences, we first briefly review
the case of the Lanczos process for single starting vectors r and 1. In this case, for
alln =1,2,..., nmax, the recurrences for the first n right and left Lanczos vectors

can be summarized as

r

(3.16)

Aanl

ifn=1,
ifn>1,

12 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

and

~ 1 ifn=1,
(3.17) w,T! | =
ATW, | ifn>1,

respectively. Here, forn =1, T(()e) and ’f‘(()e) are scalars that record the normalization
of the starting vectors r and 1, respectively. Forn > 1, T and T'°) | arenx (n—1)

n—1 n—1
matrices that contain the recurrence coefficients; both matrices are tridiagonal if no
look-ahead steps occurs, and they are simultaneously upper Hessenberg and block
tridiagonal if look-ahead steps are performed; see, e.g., [17].

We now present the corresponding extensions of (3.16) and (3.17) for our Lanczos-
type algorithm for multiple starting vectors. Recall from Figure 1 that for each n,
there can be multiple values of u, respectively ¢. Thus, we now need two indices n
and u, respectively n and ¢, to state the recurrences for the right, respectively left,
Lanczos vectors.

For allm = 1,2,... ,npmax and gt = pin, i + 1,..., ttn+1 — 1, the right Lanczos
vectors satisty the recurrences

[ty ro -+ rup] fp <0,
AV, it u>0.

Forallm =1,2,... nypax and ¢ = ¢y, ¢ +1,..., dn+1 — 1, the left Lanczos vectors
satisfy the recurrences

e dl
(3.18) VT + Vi = {

L 1 - lyy,] if¢<0,

(3.19) W, T() + Wil =
ATW¢ if ¢ > 0.

The matrices TLE) and ’i‘fbe) in (3.18) and (3.19) are given by

[tijhi<i<n1-m<j<u i p <0,

(3.20) Tff) =
tijhi<i<noa<j<e >0,
and
[ti] < _if¢<o,
~(e) J11<i<n, 1-p<j<¢ =
(3.21) T, =4 .
[ti’j]lgign,lgquﬁ 1f¢ > 0.

The nonzero entries #; ; and #; ; in (3.20) and (3.21) are defined in equations (4.1),
(4.3), and (4.4) below in the case of the generic Algorithm 4.1 without look-ahead,
and in equations (5.5), (5.7), and (5.8) below in the case of the general Algorithm 5.2
with look-ahead. Furthermore, the elements ¢; ; and L:z}j that are not explicitly
defined in Algorithms 4.1 and 5.2 are set to be zero.

We remark that the nature of TEf) is different for 4 < 0 and g > 0. For u <0,

the columns of TEf) contain the recurrence coefficients used to process the right

starting vectors; for example, if R has full column rank, then VmT((]e) = R. For
@ > 0, the columns of Tff) contain the recurrences used to advance the right block
Krylov subspaces by multiplications with A, after the right starting vectors have
been processed. Similarly, the columns of ’f‘((;)
used to process the left starting vectors L if ¢ < 0, and the ones used to advance

the left block Krylov subspaces by multiplications with A7 if ¢ > 0.

contain the recurrence coefficients

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 13

In (3.18), the term V' is an N x p matrix that is built up as follows:

[VSL1 v} if v # 0 and v is deflated,
dl

VvV, =
[VSL1 0] otherwise,

where Vy is the empty matrix. In other words, Vgl contains the vectors v that are
discarded due to inexact deflation, together with lots of zero vectors. In particular,
if no deflation occurs or only exact deflation is performed, then Vﬂl is the N x u
zero matrix. Similarly, in (3.19), the term W' is an N x ¢ matrix that contains
the vectors w that are discarded due to inexact deflation, together with lots of zero
vectors. It is defined by

[ngil w] if w # 0 and w is deflated,
dl __

W, =
[ngil O] otherwise,

where Wy is the empty matrix. If no deflation occurs or only exact deflation is
performed, then W§' is the N' x ¢ zero matrix.

In the case of inexact deflation, the matrices Vﬂl and Wﬂl are no longer zero,
but they are still small in norm. First, we note that, at any stage of our algorithm,
the number of deflations of v vectors during the first n passes is given by m —n + u;
similarly, the number of deflations of w vectors during the first n passes is given by
p—n+¢. Now, suppose we deflate whenever ||v|| < dtol, respectively ||w]|| < dtol,
where dtol is some small deflation tolerance. Thus Vﬂl has at most m —n + pu
nonzero columns and each of these columns has Euclidean norm at most dtol.
Similarly, ng has at most p — n 4+ ¢ nonzero columns and each of these columns
has Euclidean norm at most dtol. It follows that

||V21|| < dtoly/m —n+pu and ||ng|| < dtol+/p—n+ ¢.

We conclude this section with some remarks on the zero structure of the ma-
trices T and T((;) in (3.20) and (3.21), respectively. In the simplest case of no

deflation and no look-ahead, the matrix TLE) is banded with a lower bandwidth

m + 1 and an upper bandwidth p + 1, and ’T‘E;) is banded with a lower bandwidth
p+1 and an upper bandwidth m+1. Look-ahead steps result in additional “bulges”
in TLE) and TE;) above their upper bands. Finally, each deflation of a v vector re-

duces both the lower bandwidth of T and the upper bandwidth of T'; by one.

Similarly, each deflation of a w vector reduces both the lower bandwidth of 'i‘((;)

and the upper bandwidth of TLE) by one. Furthermore, each inexact deflation of
a v vector requires that all successive left Lanczos vectors need to be explicitly
biorthogonalized against a certain vector v;, respectively all vectors of the cluster
containing v; in the look-ahead case. Similarly, inexact deflation of a w vector
requires explicit biorthogonalization of all successive right Lanczos vectors against
a certain vector w;, respectively all vectors of the cluster containing w; in the
look-ahead case. The indices of the vectors, respectively of the look-ahead clusters,
against which we need to explicit biorthogonalize due to inexact deflation of v and
w vectors are stored in the index sets Z, and Z, in Algorithm 4.1, respectively Al-
gorithm 5.2, below. These additional biorthogonalizations are reflected in nonzeros

14 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

in rows of Tff) of T') whose row indices correspond to Z, and Z,,, respectively.
However, these nonzeros only appear to the right of the bands. In particular, even
in the most general case of deflation and look-ahead, TE,E) and 'i‘((;) always have
lower bandwidth m + 1 and p + 1, respectively. Finally, we refer the reader to the
Appendix where the zero structures of Tif) and ’f‘((;) are illustrated for a specific
example.

4. THE GENERIC LANCZOS-TYPE ALGORITHM

In this section, we present the generic Lanczos-type algorithm in a form that will
lead naturally to the look-ahead algorithm in §5 below.

Algorithm 4.1. (Lanczos-type method with deflation, but without look-ahead.)
INPUT: Matrix A € CN*N;

m right starting vectors ry,ry, ..., r, € CV;

p left starting vectors 14,15, ..., 1, e CV.

0) Set u=—m and ¢ = —p.

(u is the index of the currently expanded vector in the v sequence; ¢ is the
index of the currently expanded vector in the w sequence. A non-positive u
or ¢ means we are still fetching starting vectors.)
Set T, = 0 and Z,, = 0.
(Zy and Z,, record indices of vectors that must be preserved due to inexact
deflation. If i € Z,, respectively i € Z, then the currently constructed
Lanczos vector v, respectively w, needs to be biorthogonalized against w;,
respectively v;.)

For n=1,2,..., do (Build n-th pair of Lanczos vectors v,, and w,,.) :

1) (Build the unnormalized right Lanczos vector v.)
la) Set p=pu+ 1.
1b) (Check if the right Krylov blocks are exhausted.)
If u = n, then stop. (There are no more right Krylov vectors.)
1c) (Advance the right block Krylov subspace.)

Set
Tu+m Zf < 07
vV =
Av, ifp>0.
1d) (Determine against which vectors v needs to be biorthogonalized.)
Set

, 1 if p <0,
Z _{max{l,m} if 11> 0,
and define the temporary index set
T={iyiv+1,....n—=1}u | J{i}.

i€l
i<iy

le) (Biorthogonalize v against these vectors.)
Compute the coefficients

(4.1) tiy = — forall i€T.

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 15

Set
(4.2) vV=v— Zvitiyu-

i€l
1f) Decide if v should be deflated, e.g., by checking if ||v] < dtol.
If yes, do the following :
(i) If > 0 and the deflated vector v is nonzero, then set L, = T,,U{u}
and save the vectors v, and w,,.
(The vector v is the p-th column of the matrix V' in (3.18).)
(ii) Repeat all of Step 1.
2) (Build the unnormalized right Lanczos vector w.)
2a) Set ¢ = ¢+ 1.
2b) (Check if the left Krylov blocks are exhausted.)
If ¢ =n, then stop. (There are no more left Krylov vectors.)
2¢) (Advance the left block Krylov subspace.)
Set

1¢+I7 Zf ¢ S 07
ATW¢ if ¢ > 0.
2d) (Determine against which vectors w needs to be biorthogonalized.)
Set
, 1 if ¢ <0,
iw =
max{1,ue} ifp >0,
and define the temporary index set

I ={iwiw+1,...,n-1}u [J{i}.
i€Tw
i<iw

2e) (Biorthogonalize w against these vectors.)
Compute the coefficients

T

(4.3) fip = ng for all i€ T.
i
Set
W =W — ZWﬂ%’@.
i€l

2f) Decide if w should be deflated, e.g., by checking if ||w]|| < dtol.
If yes, do the following :
(i) If ¢ > 0 and the deflated vector w is nonzero, then set I, = T, U{¢}
and save the vectors vy and wg.
(The vector w is the ¢-th column of the matrix W' in (3.19).)
(ii) Repeat all of Step 2.
3) (Normalize v and w to obtain the n-th pair of Lanczos vectors v, and w,,.)
Set

A4
44 n=

1 n,¢

where t, , and fn7¢ are suitable scaling factors, e.g.,

tn =Vl and o4 = [lw].

16 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

4) (Update the history indices.)
Set p, = 1 and ¢, = ¢.
(This records that v,, was obtained from r,, 1 if g, < 0 or from Av, if
in > 0, and that w, was obtained from 1y, if ¢, < 0 or from ATW¢" if
¢n >0.)

5) (Compute d, and check for breakdown.)
Set

T
Op = W, Vy.

If 6, =0, then stop.

5. THE GENERAL LANCZOS-TYPE ALGORITHM WITH LOOK-AHEAD

In this section, we present a statement of the general Lanczos-type algorithm
with deflation and look-ahead.

5.1. Keeping track of the look-ahead clusters. Recall from (3.9)—(3.10) that,
in the general algorithm, the Lanczos vectors are grouped into look-ahead clusters
V) and Wy =1,2, ... ymax. To keep track of the sizes of these clusters, we
use a sequence of cluster indices

(5.1) {(Y() h<n<nmas:

Here, for each n, we define y(n) = v as the (unique) index of the clusters V(7)
and W) that contain the n-th pair of Lanczos vectors v,, and w,,. Note that the
sequence of cluster indices is non-strictly increasing;:

(1) <9(2) <-y(n) <y +1) < - < Y(Pmax)-

For the sequence (5.1), one can easily deduce any other required information on the
clusters. For example, for each v =1,2,..., Ymax, the set

(5.2) Cy={ilv() =~}
consists of all the indices of the Lanczos vectors v; and w; that are contained in the
~4-th pair of clusters V(*) and W (). Furthermore, we define the auxiliary sequence
(5.3) &n):= min i forall n=1,2 ... nmax,

P€C5(n)
which records the indices of the first vector in each cluster. Clearly, the sequence
{&(n) }1<n<np.. is non-strictly increasing, and is component-wise less than or equal

to {1,2,..., nmax }. Note that, in view of (5.3), the vy(n)-th pair of clusters is given
by

VO = [veiy Vet oo Vemin 1]
and WO = [we) Wemr - Wegnen]

where, for n = Nmax, we set €(Mmax + 1) = Nmax + 1.

The sequences (5.2) and (5.3) clearly encode the same information as the cluster
indices (5.1), and thus they are redundant. However, it turned out to be convenient
to use all three quantities (5.1) (5.3) in the statement of the general algorithm with
look-ahead and in the proofs of its properties.

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 17

Example 5.1. Suppose that the look-ahead clusters start with
V(l) = [Vl]) V(z) - [V2 VS] 9 V(g) == [V4] 3 e 9

W(l) - [wl] 9 W(Z) = [WQ w3] 3 W(3) = [W4] 9
The sequence of cluster indices then starts with

{y(n)}n>1 ={1,2,2,3,...}.

Moreover, we have C; = {1}, Co = {2,3}, C3 = {4}, etc., and the sequence
{&(n)}n>1 would start off as {1,2,2,4,5,...}. The situation in this example would
arise when 6, = wi vy ~ 0 triggers a look-ahead step, resulting in a pair of clusters
starting with v4 and wy, and when A®) = [WQ Wg] r [v2 V3] is well conditioned,
allowing to terminate the clusters after adding only v3 and ws.

5.2. Statement of the algorithm. We now present a formal statement of the
general algorithm with deflation and look-ahead. In particular, this statement
shows exactly against which vectors one needs to biorthogonalize, and it gives
explicit formulas for the recurrence coefficients.

Algorithm 5.2. (Lanczos-type method with deflation and look-ahead.)
INPUT: Matrix A € CN*N;
m right starting vectors ry,rs,...,r, € CV;
p left starting vectors 1y, 1,...,1, € CV.
0) Set u=—m and ¢ = —p.
(u is the index of the currently expanded vector in the v sequence; ¢ is the
index of the currently expanded vector in the w sequence. A non-positive u
or ¢ means we are still fetching starting vectors.)
Set T, = 0 and Z,, = 0.
(Zy and Z record indices of clusters that must be preserved due to inexact
deflation. If k € Z,, respectively k € Zy, then the currently constructed
Lanczos vector v, respectively w, needs to be biorthogonalized against all
vectors w;, respectively v;, with i € Cy.)
Set y(1)=1,7=1,C, =0, and VO = W) =,
(v(n) is the index of the cluster containing the n-th Lanczos vectors v,, and
Wy, 7 is the number of the currently constructed look-ahead cluster, and C,
is the set of indices of the already constructed Lanczos vectors in the 7-th
clusters V() and W)

For n=1,2,..., do (Build n-th pair of Lanczos vectors v,, and w,,.):
1) (Build the unnormalized right Lanczos vector v.)
la) Set p=pu+ 1.
1b) (Check if the right Krylov blocks are exhausted.)
If u=n, then stop. (There are no more right Krylov vectors.)
1c) (Advance the right block Krylov subspace.)
Set
{rﬂ+m Zf < 0,
vV =
Av, ifu>0.
If the current ~y-th cluster contains at least one vector, i.e., C, # 0, we
may add arbitrary combinations of the vectors in the vy-th cluster to v :

18 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

Set

v=v+VD [tzm] with arbitrary t;, € C.

i€Cy
1d) (Determine against which clusters v needs to be biorthogonalized.)
Set
1 if p <0,
(5.4) Vv = { '
max{ 177((256([1)) } Zfl"‘ > 07
where, in the latter case, &(u) = .Hclin i, and define the temporary index
1E€Cy ()
set
IT={ww+1...,7}u [{k}
keT,
k<vv

le) (Biorthogonalize v against these clusters.)
Compute the coefficient vectors

(5.5) [tin) i, = (AW) (WD) 'y foral keT.
Set
V=V — ZV(’“) [ti’“]ieck .
keZ

1f) Decide if v should be deflated; for example, this can be done by first
orthogonalizing (in the ordinary one-sided sense) v against the vectors v;,
t € C,, in the current ~y-th cluster and then checking if the resulting
vector v satisfies ||v|| < dtol.
If yes, do the following :

(i) If > 0 and the deflated vector v is not an exact linear combination
of the vectors v;, i € C, then set Tw, = Ly U { (1) }, and save the
vectors v; and w;, i € C, ().

(The vector v is the p-th column of the matrix V' in (3.18).)

(ii) Repeat all of Step 1.

2) (Build the unnormalized right Lanczos vector w.)
2a) Set ¢ = ¢+ 1.
2b) (Check if the left Krylov blocks are exhausted.)
If ¢ =n, then stop. (There are no more left Krylov vectors.)
2¢) (Advance the left block Krylov subspace.)
Set
{1¢+p if $ <0,
W —=
ATw, if ¢ > 0.
If the current v-th cluster contains at least one vector, i.e., C, # 0, we

may add arbitrary combinations of the vectors in the vy-th cluster to v:
Set

w=w+ WO [t~z~7¢] with arbitrary fi7¢ e C.

i€Cy
2d) (Determine against which clusters w needs to be biorthogonalized.)
Set

1 if $ <0,
(5.6) Yw = { _
max{ 1,7(uep)) } if ¢ >0,

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 19

where, in the latter case, {(¢) = ‘IICliIl i, and define the temporary index
1€Cy(9)
set
T={vw.w+1....v}u | J {k}.
kETw
E<yw

2e) (Biorthogonalize w against these clusters.)
Compute the coefficient vectors

(5.7) [fi6)ice, = (A9 T (VI ' forall kel

Set
W=wW — ZW(k) [tivfﬁ]ieck .
2f) Decide if w should be deflated; for example, this can be done by first or-
thogonalizing (in the ordinary one-sided sense) w against the vectors w;,
i € Cy, in the current y-th cluster and then checking if the resulting vec-
tor w satisfies ||w|| < dtol.
If yes, do the following :
(i) If ¢ > 0 and the deflated vector w is not an exact linear combination
of wi, i € Cy, then set I, = I, U {v(¢) } and save the vectors v;
and w;, i € Cy (o).
(The vector w is the ¢-th column of the matrix ng in (3.19).)
(ii) Repeat all of Step 2.
3) (Normalize v and w to obtain the n-th pair of Lanczos vectors v,, and w,,

and add them to current cluster.)
Set

(5.8) vy = Y and W, = ,

s
e

where t, , and fn7¢ are suitable scaling factors, e.g.,
tu = VIl and o= |w].

Set VO = VI U {v,} and W) = WO U {w,}.
4) (Update the history indices.)
Set pn = p and ¢, = ¢.
(This records that v,, was obtained from r,, 4, if g, < 0 or from Av, if
pn > 0, and that w,, was obtained from 1y, 1, if ¢, < 0 or from ATw,, if
¢n > 0.)
Set Cy =C, U {n}.
(This records that v,, and w,, are in the cluster with index v = y(n).)
5) (Compute A and check for end of look-ahead cluster.)

Form

T

A = (W(v)) v

If the matriz A g “sufficiently” nonsingular, then :
Increment the cluster counter v = v+ 1;
Set y(n+1)=7,C, =0, and VOV = W) =).
(The current cluster is complete, and so the n 4+ 1-th vectors constructed
in the next iteration will start a new cluster.)
Otherwise :

20 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

Set y(n+1) = 1.

(The current cluster is still incomplete, and so the n + 1-th vectors con-
structed in the next iteration will still be added to the current cluster
with index set C.(,).)

Remark 5.3. If no look-ahead steps occur, then
y(n)=n, Co={n}, &m)=n, VW =v, and W"=w,

foralln = 1,2, ..., nymax. Thus, in this case, the general Algorithm 5.2 just reduces
to the generic Algorithm 4.1.

Remark 5.4. The optional orthogonalization in Steps 1f) and 2f) of Algorithm 5.2
only needs to be performed if the current cluster, C,, is nonempty.

Remark 5.5. For the optional orthogonalization in Steps 1f) and 2f) of Algorithm 5.2,
modified Gram-Schmidt should be used. Furthermore, the coefficients #; ,, i € C,,
respectively t~i7¢, need to be updated to include the orthogonalization coefficients.
Thus the orthogonalization in Step 1f) should be performed as follows:

For all i € Cy, set:

H
Tip = W V=v—-vVv;T,, and t;, =1, +T,.
Similarly, the orthogonalization in Step 2f) is implemented as follows:
For all i € Cy, set:

7~'i,¢ ST WEWwW o Wi‘f'i@, and ii’¢ = ii’¢ + 7~'i,¢-
[l w]

Remark 5.6. The “cluster indices” -y, and ~, defined in (5.4) and (5.6) correspond
to the “vector indices”

. {1 if u <0,
iv =
max{ 1, &(pe(n)) b if >0,
(5.9
1 if ¢ <0,
and iy =)
max{ 1,&(pe(p)) } if ¢ > 0.

Indeed, using (5.3), the indices 7y and 7w directly translate into (5.9).

6. PROPERTIES OF THE LANCZOS VECTORS

In Algorithm 5.2, true biorthogonality can always be achieved by explicitly bior-
thogonalizing against all previous vectors, i.e., by setting 7y = 7% = 1 in Steps 1d)
and 2d). In this section, we prove two propositions to show that true biorthogo-
nality can be achieved by explicitly biorthogonalizing only against the more recent
clusters of vectors. We also discuss the case of inexact deflation for which the in-
dices of the vectors involved must also be saved. We also show that in Steps 1f)
and 2f), linear dependence against all previous vectors can be checked by examining
only the vectors in the current cluster.

For the statements and the proofs of these results, we will use the vector in-
dices (5.9) instead of vy and .

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 21

Proposition 6.1. In Step 1e) of Algorithm 5.2 at pass n, the vector v is already
biorthogonal to w; for all i < iy (where iy is given by (5.9) with u = uy), as long
as deflation occurs only when v and w are ezxact linear combinations of previous
right and left vectors, respectively. Likewise in Step 2e), the vector w is already
biorthogonal to v; for all i < iw (where iy is given by (5.9) with ¢ = ¢y,), under the
same provision about deflation. Hence, in Steps 1e) and 2e), it is sufficient to bior-
thogonalize against just those more recent vectors starting with indices iy and i .
With this limited biorthogonalization, the vectors v, and w, will be biorthogonal
to all vectors {vi,va,...Vemy—1 } and { Wi, Wa, ..., We(yy_1 }, Tespectively.

Proof. The proof is by induction on the pass n through the main loop of the algo-
rithm. At Step le) for a given pass n, we want to enforce the condition w!v = 0
for i < £(n). We would like to determine for which i is w/v = w! Av,, guaran-
teed to be already zero, relieving us of the necessity to biorthogonalize v against
w; explicitly. By induction, we know that w;fr’vun = 0 for all j < &(un), i-e. for
all vectors in previous clusters W) ... WO =1 Therefore, w! Av, = 0 if
ATw; is a linear combination of the vectors wr, .. -y We(un)—1- We consider two
cases: L. there exists a j such that ¢; = 4, and II. there is no such j.

Case I. In this case, w; was computed at the pass j through the main loop of the
algorithm from AT w; plus a linear combination of w1, ... ,Wj_1, hence ATw; is a
linear combination of w1, ..., w;. The strict monotonicity of the sequence {¢;};>1
guarantees that for any i, i = ¢; < ¢¢(,,) implies j < {(uy), which implies that
wl'ATv, =0.

Case II. In this case, for any given ¢, choose j such that ¢; < i, but ¢;41 > i.
This situation arises when at pass j + 1 through the main loop, we were attempting
to compute wjy; by forming ATw;, but ATw; was deflated out because it was
already a linear combination of all the vectors computed to date: wy,..., w;. Then
wlATv, = 0is guaranteed as long as j < &(un) as before, which in turn is
guaranteed if i < ¢¢(,,.)-

Returning to pass n in the main loop, Step le), we are computing coefficients to
enforce the condition

(6.1) w/v=wAv, - w?Vg(n),lAg(;)flng(n)flv =0.

For i < &(¢¢(u,)) < Pe(u,), the preceding argument ensures that wz-TAvH" =0, and
thus the first term of the right-hand side of (6.1) is zero. Next we show that the
second term,

(6.2) W Ve 1 AT TW{) v,

of the right-hand side of (6.1) is also zero. Because of the clustering, wz-TVg(n),l isa
vector with nonzeros in positions corresponding to the cluster containing vector w;,
and Wg(n)flv is a vector with nonzeros in positions ¢¢(,,), 1+ @¢(u,), - - -, E(M) — 1,
by the preceding argument. Since, by (3.13), A¢(,)—1 is block diagonal with blocks
corresponding to clusters defined by the sequence {{(n)}, the expression above is
zero if w; lies in a cluster earlier than the one containing vector number ¢¢(,,),
hence, to guarantee that (6.2) is zero, i must be less than &(¢¢(,,,))-

By swapping the roles of the left and right vectors and using the same arguments,
we conclude that we do not need to biorthogonalize against all previous vectors,
but only against the more recent ones. Specifically, we can amend Step 1d) and 1e)
in the look-ahead algorithm to set iy and iw as given in (5.9). O

22 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

Remark 6.2. In the generic case, we have £(i) = i for all i, and so the expressions
(5.9) reduce to the integers i, and iy used in Steps 1d) and 2d) of the generic
Algorithm 4.1.

Proposition 6.3. In Step 2f), if the temporary vector v is a linear combination

of vi,Va, ..., Vn_1, then it must be a linear combination of Ve(n), Ve(n)415-- > Vn-1-
Thus in Step 2f), linear independence of the vector v with respect to vi,va, ..., Vy_1
can be checked by just looking at the vectors Ve(n), Ve(n)+1s- -+ Vn—1, i-€., those in
the current cluster. A corresponding statement holds for the left Lanczos vectors.
Proof. Decompose v = V¢(,,)_a+ [vg(n) e vn,l] 3, in terms of the vectors in
the current cluster, ve(,,),...,vo—1 and in all the previous clusters, V¢(,)_;. Then
the biorthogonality condition (3.11) (just enforced in the preceding Step 1le)) yields
T
0=Wem1v
T T
= Wg(n)—lvé(n)*la + Wg(n)—l [Vg(n) s anl] ,3
= B¢m)-10
Since Ag(,)—1 is nonsingular by construction, this implies that a = 0. [l

The above discussion leads to the following theorem stating that Algorithm 5.2
actually generates the two cluster-wise biorthogonal bases for the appropriate block
Krylov subspaces.

Theorem 6.4. The general Lanczos Algorithm 5.2 generates a sequence of vec-
tors (3.1) satisfying the conditions (3.2), (3.3), and the cluster-biorthogonality con-
ditions (3.11), where the vectors are grouped into clusters (3.9). Algorithm 5.2 also

generates two matrices of coefficients Tff) and ’i‘ff) such that the recurrences (3.18)
and (3.19) are satisfied.

Proof. Conditions (3.2) and (3.3) follow directly from the formulas in Steps 1)
and 2) of the algorithm by induction, since each new vector generated is equal to
A or AT times a previous vector, plus a linear combination of previous vectors.
Condition (3.11) also follows by a rearrangement of the same formulas, just as in
the generic algorithm. If deflation is carried out only when the vector to be deflated
is an exact linear combination of previous vectors, then Proposition 6.1 applies to
show that the biorthogonality condition (3.11) is satisfied.

What if we choose to deflate a vector that is not an exact linear combination of
preceding vectors? Such a circumstance could occur if a vector were “numerically
almost” a linear combination, for instance if the residue left after all biorthogonal-
ization has been applied is very small. We consider the same situation as in the
proof of Proposition 6.1. We are computing v = Av, , and given a w;, we would
like to know if w; is already orthogonal to v. As in the proof of Proposition 6.1,
we define j as the smallest index such that ¢ < ¢;41, but ¢ > ¢;; j + 1 is the index
of the pass through the main loop when A”w; was computed. But in this case, we
assume that at the j 4+ 1-th pass, A”w; had been thrown away even though it was
not an exact linear combination of the vectors existing to date: wy,...,w;. Then
ATw; is not in the space of vectors against which v, has ever been biorthogonal-
ized, and hence w! Av,,, # 0. The expression (6.2) is also not zero, since #; ,, # 0.
All the entries in the entire cluster containing the i-th entry are also nonzero due
to the block-diagonal structure (3.13) of A. Therefore, in order to maintain the

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 23

conditions (3.11), it is necessary and sufficient to orthogonalize v explicitly against
the entire cluster containing w;. This is encoded in the algorithm 5.2 by accumu-
lating the index sets Z, and Z,, containing the indices of each entire cluster to be
so saved. O

7. COMPUTATIONAL ASPECTS

In this section, we discuss some implementation details for Algorithms 4.1 and 5.2.
These details are necessary to produce a complete or efficient implementation, but
have been left out of the descriptions of Algorithms 4.1 and 5.2 to keep the expo-
sition as simple as possible.

Steps le) and 2e) implement a classical two-sided Gram-Schmidt biorthogonal-
ization, but in practice a “modified” two-sided Gram-Schmidt process would be
preferred [33]. For example, for the “modified” version of Step le) in Algorithm 4.1,
one simply replaces (4.1) and (4.2) by the following update:

For all 1 € Z, set:

tiy = and v =v —vit;,.

In Step 2f), we must decide whether or not to deflate. Deflation must occur if
the newly generated vector w is an exact linear combination of previous vectors
Wi,...,Wp_1. We call this situation ezact deflation. Proposition 6.3 shows that
the biorthogonalization in Step 2e) has removed any component in the directions
Wi,...,Wg(n)—1, leaving only the component in the span of vectors in the current
cluster: we(y,,...,w, 1. If not already zero, w must be orthogonalized against
the vectors we(y,),...,Wp—1 in order to determine whether it is linearly indepen-
dent. If it is exactly linearly dependent, then it must be deflated. If it is linearly
independent, then it is the user’s choice whether to save the w before or after this
last orthogonalization. In any case, the coefficients [tNild’]E(n)giSnfl of ’i‘g) must
be filled in, unless w is not deflated and the unorthogonalized version is saved. In
exact deflation, Proposition 6.1 applies, and there is no need to accumulate any
indices in Z,. Corresponding statements hold for exact deflation of a right Lanczos
vector in Step 1f).

If the w in Step 2f) is not an exact linear combination of previous vectors, the
user may decide to deflate anyway. This situation is called inezact deflation. This
may happen if, for example, w is “almost” a linear combination, according to some
criteria set in advance. Whenever inexact deflation occurs, Theorem 6.4 states
that it is necessary to save the indices of vectors in Z, in order to accomplish true
biorthogonalization against older Lanczos vectors in later passes. It may happen
that throwing away these indices will have only a small effect on the resulting
Lanczos vectors, but we will reserve discussion of these numerical issues for a later
paper. In any case, in Step 1d), we need only consider those indices less than
&(n), since we cannot biorthogonalize against vectors in the same cluster as w,.
Corresponding statements apply to the right vectors in Step 2f).

We emphasize that the index sets 7,, and Z, do not contain indices of vectors
that have been deflated out—these vectors have no index since they do not appear
among the Lanczos vectors at all. Rather, in the case of the generic Algorithm 4.1
without look-ahead, Z, respectively Z,, contain the indices of the vectors already
among the right, respectively left, Lanczos vectors from previous passes such that
when these vectors are expanded in Step 1c), respectively Step 2c), the expanded

24 J. 1. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNANDEZ

result almost lies within the space of existing vectors. Similarly, in the case of the
general Algorithm 5.2 with look-ahead, Zy,, respectively Z, contain the indices of
those look-ahead clusters that contain at least one vector that lead to an almost
linearly dependent vector when expanded in Step 1c), respectively Step 2c).

In Step 5) of the general Algorithm 5.2, one needs to decide if the current look-
ahead cluster can be closed. In view of (3.12), a necessary condition for closing the
look-ahead cluster is that the matrix A is nonsingular. It is thus tempting to
base the look-ahead strategy solely on a measure of singularity of A(ﬁ')7 such as the
smallest singular value. However, as was illustrated in [17] for the Lanczos algorithm
with single starting vectors, such a look-ahead strategy is not appropriate and does
not lead to a robust algorithm. Instead, a reliable look-ahead strategy needs to
check the singularity of A(”), as well as the sizes of the recurrence coefficients #; ,,
and t; 4 in (5.5) and (5.7) relative to some estimate, n(A), for ||A]|. More precisely,
the second check states that the current look-ahead cluster should only be closed if

(7.1) [tiul |t~z-7¢‘ < fac xn(A) forall .

Here, fac is an appropriate constant, typically fac = 10, and if not available a
priori, the norm estimate n(A) can be obtained easily during the first few iterations.
This check guarante