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2 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZand Liu [34], who also coined the term \look-ahead". Since then, there has beenextensive research activities in this area, and as a result, the look-ahead Lanczosprocess is now well understood; see, e.g., [5, 6, 14, 17, 24, 25, 33] and the refer-ences given therein. The basic principle of the look-ahead Lanczos process is tocontinue the algorithm in the event of a breakdown or near-breakdown by relaxingthe vector-wise biorthogonality of the Lanczos basis vectors to a cluster-wise bior-thogonality and by resorting, for the next few iteration steps, to recurrences thatare slightly longer than the three-term recurrences in the classical algorithm.When applied to largeN�N matricesA, the n�n Lanczos matricesTn are oftenvery good approximations to A already for n � N , and this makes the Lanczosprocess a powerful tool for various computational tasks for large matrices A. Wenow brie
y mention three such applications of the Lanczos process in large-scalematrix computations.The �rst application is the computation of approximate eigenvalues of a ma-trix A 2 CN�N . Starting with arbitrary (for example, random) nonzero vectorsr; l 2 CN , one runs the Lanczos process for n steps to obtain Tn. The eigenvaluesof Tn are then used as approximate eigenvalues of the matrix A; see, e.g., [11].The second application is the solution of large systems of linear equations,Ax = b:(1.1)The biconjugate gradient (BCG) algorithm [29] and the quasi-minimal residual(QMR) algorithm [19, 20] are iterative methods that generate approximations xnfor the solution of (1:1), starting from an arbitrary initial guess x0 and an arbitrarynonzero left vector l 2 CN . Both algorithms are intimately connected to the Lanc-zos process applied to the matrix A and the starting vectors r = b �Ax0 and l.Indeed, for BCG, the n-th iterate xn is de�ned by a Galerkin-type condition that ismathematically equivalent to solving a small n� n linear system with Tn as coef-�cient matrix, instead of the large N �N system (1:1). For QMR, the n-th iteratexn is de�ned by a quasi-minimization of the residual norm that is mathematicallyequivalent to solving a small (n + 1) � n least-squares problem whose matrix isTn, extended by one more row. This additional row avoids possible singularity ornear-singularity of Tn, and results in a much smoother convergence behavior ofQMR, compared to BCG.A third application is Pad�e approximation of transfer functions describing largesingle-input single-output time-invariant linear dynamical systems. Such transferfunctions are rational functions H : C 7! C [ f1g of the formH(s) = lT (IN � sA)�1r;(1.2)where A 2 CN�N , r; l 2 CN is given data, and IN denotes the N � N identitymatrix. An n-th Pad�e approximant, Hn, to a given transfer function H of thetype (1:2) is de�ned as a rational function with numerator and denominator degreeat most n � 1 and n, respectively, such that the Taylor expansions of Hn and Habout s = 0 match in as many leading Taylor coe�cients as possible. It is wellknown (see, e.g.,[22, 23, 24]) that Hn can be directly obtained from the Lanczosprocess applied to A, r, and l. Indeed, assuming for simplicity that no look-aheadsteps occur in the Lanczos algorithm, the n-th Pad�e approximant is simply given byHn(s) = lT r eT1 (In � sTn)�1e1;(1.3)



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 3where Tn is the n-th Lanczos matrix and e1 denotes the �rst unit vector (in Rn ).A formula similar to (1:3) holds for the case that look-ahead steps do occur. We re-mark that the numerical computation of Hn via the Lanczos-Pad�e connection (1:3)is signi�cantly more stable than the standard approach of obtaining Hn via explicitcalculations of the leading Taylor coe�cients of H ; see, e.g., [12].1.2. Handling multiple starting vectors. All three applications described inSection 1.1 have extensions that involve multiple starting vectors.For eigenvalue computations of a matrix A with multiple or clusters of eigen-values, it is usually preferable to employ a Lanczos-type method that iterates onblocks of, say m, vectors, rather than on single vectors; see, e.g., [10, 21, 36]. Sucha procedure then involves m right and m left starting vectors.There are important applications where linear systems (1:1) need to be solved re-peatedly with the same matrixA, but di�erent right-hand sides, say b1;b2; : : : ;bm.If all right-hand sides are available simultaneously, then these m systems can besummarized in block form as follows:AX = B; where B = �b1 b2 � � � bm� :(1.4)Applying a suitable block version of an iterative method directly to (1:4) is oftensigni�cantly more e�cient than solving the m linear systems summarized in (1:4)individually; see, e.g., [18, 30, 31, 32]. Block versions of BCG and QMR now involvea block of m right starting vectors, namely R = B �AX0, where X0 2 CN�m isan arbitrary initial guess for (1:4).Finally, multi-input multi-output time-invariant linear dynamical systems arecharacterized by matrix-valued transfer functions H : C 7! (C [ f1g)p�m of theform H(s) = LT (IN � sA)�1R:(1.5)Here, A 2 CN�N , R 2 CN�m , L 2 CN�p , and m and p denote the numberof inputs and outputs, respectively. Transfer functions (1:5) arise in di�erent ar-eas, such as control theory [4, 37, 38] and circuit simulation [13]. For furtherbackground on transfer functions (1:5) and the need to approximate them byreduced-order models, we refer the reader to [4, 13, 37, 38] and the referencesgiven therein. For matrix-valued transfer functions H, one can again de�ne n-thPad�e approximants, Hn, which, however, are now also matrix-valued functions,i.e., Hn : C 7! (C [ f1g)p�m. Extending the Lanczos-Pad�e connection (1:3) forthe single-input single-output case, m = p = 1, to the general m-input p-outputcase, m; p � 1, requires a Lanczos-type process that can handle m right and p leftstarting vectors, namely the columns of R and L, respectively. We note that, ingeneral, m and p are di�erent.These three applications clearly show that there is a need for a Lanczos-type al-gorithm for multiple starting vectors. Furthermore, the algorithm should be an ex-tension of the classical Lanczos process for single starting vectors, and thus generatetwo sequences of basis vectors for the right and left block Krylov subspaces inducedby the given matrix and the block of right and left starting vectors. However, inorder to obtain a robust Lanczos-type algorithm for multiple starting vectors, thefollowing three key di�culties need to be resolved.(i) The algorithm needs to include a de
ation procedure in order to detect anddelete linearly dependent or almost linearly dependent vectors in the right,



4 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZrespectively left, block Krylov subspaces. Moreover, in general, de
ations inthe right and left block Krylov subspaces occur independently of each other,and consequently, the block sizes of both subspaces may become di�erent inthe course of the algorithm, even if they were identical at the beginning.Note that for the Lanczos process for single starting vectors, de
ationis not an issue. Encountering a linearly dependent right, respectively left,vector simply means that the right, respectively left, Krylov subspace is fullyexhausted, and thus the algorithm terminates naturally in this situation.(ii) The algorithm needs to be able to handle di�erent block sizes in the rightand left block Krylov subspaces. These di�erent block sizes may be due todi�erent numbers of right and left starting vectors, i.e., m 6= p, or due tode
ation as mentioned in (i).(iii) Just as in the classical Lanczos algorithm for single starting vectors, it cannotbe excluded that breakdowns or near-breakdowns occur in a Lanczos-typeprocess for multiple starting vectors. As a result, in the general case, look-ahead techniques need to be incorporated.In this paper, we propose a Lanczos-type algorithm that extends the classicalLanczos process for single starting vectors to multiple starting vectors, and that canhandle all three di�culties (i){(iii) listed above. Given a matrixA 2 CN�N , a blockof right starting vectors R 2 CN�m , and a block of left starting vectors L 2 CN�p ,our algorithm generates two sequences of biorthogonal basis vectors for the right,respectively left, block Krylov subspaces induced by A and R, respectively ATand L. The algorithm includes a simple built-in de
ation procedure, and it canhandle the most general case of right and left block Krylov subspaces with arbitrarysizes m and p of the starting blocks. We will actually describe two versions of thealgorithm. First, we present the generic algorithm without look-ahead, and thenwe state the general algorithm with look-ahead.The key property of our algorithm, which allows us to resolve the issues (i){(iii),is the vector-wise construction of the basis vectors for the block Krylov subspaces.The idea of using a vector-wise approach appears to originate from Ruhe [36] whoused it to derive a Lanczos algorithm for HermitianA and multiple starting vectors.However, we stress that, for Hermitian matrices, the problem of handling multiplestarting vectors is a lot easier for the following two reasons. First, in the Hermitiancase, the right and left block Krylov subspaces are (up to complex conjugation if Ais complex) identical, and thus the complication due to di�erent right and left blocksizes does not arise. Second, for Hermitian matrices, the possibility of breakdownscan be excluded, and hence no look-ahead is needed. We note that, to the best ofour knowledge, we seem to be the �rst to extend Ruhe's vector-wise construction ofbasis vectors for the Hermitian case to the general case of non-Hermitian matrices.We remark that early versions of the Lanczos-type algorithm described in thispaper had been developed independently by Aliaga, Boley, and Hern�andez, and byFreund, and were presented by Boley [2] and Freund [16] at the same Oberwolfachmeeting in 1994. It was then that we decided to write this joint paper. However,we would like to stress that the algorithm presented in this paper has evolved quitea bit from the earlier versions we had in 1994. Finally, we note that, in his doctoralthesis [1], Aliaga investigated variants of the algorithm that are tailored to parallelcomputers.



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 51.3. Related work on block Lanczos methods. The problem of extending theLanczos process for single starting vectors to multiple starting vector is, of course,not new, and a number of algorithms have been developed over the years. However,with the exception of Ruhe's algorithm [36] for the Hermitian case, all previouslyproposed Lanczos-type methods for multiple starting vectors use a block-wise con-struction of block-biorthogonal basis vectors for the underlying block Krylov sub-spaces. It is easy to see that any such block-wise approach requires all right and leftblocks to have the same size. In particular, block Lanczos algorithms are restrictedto the special case that p = m and that possible de
ation occurs simultaneously inthe right and left block Krylov subspaces.Block Lanczos algorithms for Hermitian matrices were �rst proposed by Cullumand Donath [9], and Golub and Underwood [21, 40]. Further and more recent workfor the Hermitian case is described in [10, 31, 36] and the references given therein.We remark that only the algorithms in [9, 31] and Ruhe's algorithm [36] include aproper de
ation procedure.For non-Hermitian matrices, O'Leary|with her block BCG algorithm [32]|wasthe �rst to develop a block Lanczos-type method. A block version of the originalthree-term Lanczos algorithm [28] was �rst presented in [26, 27], and a more recentvariant was proposed in [3]. As already pointed out above, all these algorithms arerestricted to the case p = m. Furthermore, none of the existing block Lanczos-type methods for non-Hermitian matrices has a built-in de
ation procedure, norare there any look-ahead variants to remedy possible breakdowns.1.4. Outline. The remainder of this article is organized as follows. In x2, weintroduce our notion of block Krylov subspaces associated with multiple startingvectors. In x3, we state same basic properties of the Lanczos basis vectors generatedby our Lanczos-type algorithm and describe the concept of history indices. In x4,we state the generic Lanczos-type algorithm without look-ahead for the case thatno breakdowns occur. In x5, we present the general Lanczos-type algorithm withlook-ahead included to avoid possible breakdowns. In x6, we establish the variousproperties of the Lanczos basis vectors. In x7, we discuss a few computationalaspects of the proposed Lanczos-type algorithm. In x8, we make some concludingremarks. Finally, in an Appendix, we present a speci�c example to familiarize thereader with the notation used in the statement of the Lanczos-type algorithm.1.5. Notation. Throughout this article, all vectors and matrices are allowed tohave real or complex entries. We use boldface letters to denote vectors and ma-trices. As usual, M = �mjk�, MT = �mkj�, and MH = MT = �mkj� denotethe complex conjugate, transpose, and the conjugate transpose, respectively, of thematrix M = �mjk�. The vector norm kxk := pxHx is always the Euclidean norm,and kMk := maxkxk=1 kMxk is the corresponding induced matrix norm.2. Block Krylov subspacesFrom now on, it is always assumed that A 2 CN�N is a given N �N matrix,R = �r1 r2 � � � rm� 2 CN�m(2.1)is a given matrix of m right starting vectors, r1; r2; : : : ; rm, andL = �l1 l2 � � � lp� 2 CN�p(2.2)



6 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZis a given matrix of p left starting vectors, l1; l2; : : : ; lm. We stress that m � 1 andp � 1 are arbitrary integers, and in particular, m and p need not be identical.In this section, we introduce our notion of block Krylov subspaces induced bythe data A, R, and L. We start by de�ning the right block Krylov matrixK(A;R) := �R AR A2R � � � AN�1R�(2.3)and the left block Krylov matrixK(AT ;L) := �L AT L (AT )2 L � � � (AT )N�1 L� :(2.4)Our goal is to construct two sequences of Lanczos basis vectors for the ascendingn-dimensional subspaces, n = 1; 2; : : : , spanned by the �rst n linearly independentcolumns of the matrices K(A;R) and K(AT ;L), respectively. To properly de�nethese subspaces, we need to delete the linearly dependent (and possibly nearly lin-early dependent) columns in (2:3) and (2:4). This is done by scanning the columnsof each of the matrices K(A;R) and K(AT ;L), from left to right and deleting eachcolumn that is either linearly dependent or in some sense \almost" linearly depen-dent on earlier columns within the same matrix. This process of deleting linearlydependent and almost linearly dependent columns is referred to as de
ation in thesequel. Moreover, we say that the de
ation is exact if only the linearly dependentvectors are deleted, and we call it inexact if also nearly linearly dependent vectorsare deleted. Applying de
ation to (2:3) and (2:4), we obtain the de
ated right andleft block Krylov matrices Kdl(A;R) and Kdl(AT ;L), respectively.By the structure (2:3) of K(A;R), a column Aj�1ri being linearly (or nearlylinearly dependent) on earlier columns implies that all columnsAkri, j � k � N�1,are also linearly (or nearly linearly dependent) on earlier columns. An analogousstatement holds for (2:4). Consequently, the de
ated block Krylov matrices are ofthe formKdl(A;R) = �R1 AR2 A2R3 � � � Ajmax�1Rjmax� 2 CN�n(r)(2.5)and Kdl(AT ;L) = �L1 ATL2 (AT )2L3 � � � (AT )kmax�1Lkmax� 2 CN�n(l) :(2.6)Here, for each j = 1; 2; : : : ; jmax, Rj is a submatrix of Rj�1, with Rj 6= Rj�1 if,and only if, de
ation occurs within the j-th right Krylov block Aj�1R in (2:3).(For j = 1, we set R0 = R.) Similar, for each k = 1; 2; : : : ; kmax, Lk is a submatrixof Lk�1, with Lk 6= Lk�1 if, and only if, de
ation occurs within the k-th left Krylovblock (AT )k�1L in (2:4). (For k = 1, we set L0 = L.)Note that, by construction, the columns of each de
ated block Krylov matrixKdl(A;R) and Kdl(AT ;L) are linearly independent. For n = 1; 2; : : : ; n(r), wedenote by Kdln (A;R) the subspace of CN spanned by the �rst n columns of thematrix Kdl(A;R) in (2:5). We call Kdln (A;R) the n-th right block Krylov subspace(induced by A and R). Similarly, for n = 1; 2; : : : ; n(l), the n-th left block Krylovsubspace (induced byAT and L), denoted by Kdln (AT ;L), is de�ned as the subspaceof CN spanned by the �rst n columns of the matrix Kdl(AT ;L) in (2:6). Byconstruction, both Kdln (A;R) and Kdln (AT ;L) are subspaces of dimension n.The goal of our Lanczos-type algorithm is to generate two sequences of basisvectors for the block Krylov subspaces Kdln (A;R) and Kdln (AT ;L), n � 1. As in theclassical nonsymmetric Lanczos process, the basis vectors are computed in pairs.At pass n of the algorithm, the n-th pair of vectors vn and wn is built, where



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 7vn is the basis vector that advances Kdln�1(A;R) to Kdln (A;R), and wn advancesKdln�1(AT ;L) to Kdln (AT ;L). Clearly, the process of constructing basis vectors inpairs has to be terminated as soon as the one of the two block Krylov subspaces isexhausted. This termination happens at pass n = nmax, wherenmax := minfn(r); n(l) g = minf rankKdl(A;R); rankKdl(AT ;L) g:For the case that n(r) 6= n(l), it would be possible to continue the constructionof single basis vectors for the non-exhausted block Krylov subspace Kdln (A;R) ifn(r) > nmax, respectively Kdln (AT ;L) if n(l) > nmax. However, this is not done inour algorithm, and we simply stop the process at n = nmax.3. Lanczos basis vectorsIn this section, we state some basic properties of the vectors generated by ourLanczos-type algorithm.3.1. Biorthogonal bases. The algorithm generates two sequences of right andleft Lanczos basis vectorsv1;v2; : : : ;vn and w1;w2; : : : ;wn; n = 1; 2; : : : ; nmax;(3.1)for the n-th right and left block Krylov subspaces, i.e.,spanfv1;v2; : : : ;vn g = Kdln (A;R)(3.2)and spanfw1;w2; : : : ;wn g = Kdln (AT ;L);(3.3)respectively. Furthermore, in the generic case, the vectors (3:1) are constructed tobe biorthogonal, i.e.,wTi vn = (�n if i = n;0 if i 6= n; for all i; n = 1; 2; : : : ; nmax:(3.4)For the statement of various properties of the vectors (3:1), it turns out to beconvenient to introduce the notationVn := �v1 v2 � � � vn� and Wn := �w1 w2 � � � wn�(3.5)for the N � n matrices whose columns are just the �rst n right and left Lanczosvectors, respectively. For example, using (3:5) and setting�n := diag(�1; �2; : : : ; �n); where �k = wTk vk for all k;the biorthogonality relations (3:4) can be stated in compact matrix form as follows:WTnVn =�n for all n = 1; 2; : : : ; nmax:(3.6)Enforcing the biorthogonality conditions (3:4) is only possible in the so-calledgeneric case when �n 6= 0 for all n = 1; 2; : : : ; nmax � 1:Indeed, as the generic Lanczos-type Algorithm 4.1 below shows, constructing Lanc-zos vectors (3:1) that satisfy (3:2){(3:4) involves division by �n. However, in general,it cannot be excluded that �n = wTnvn = 0(3.7)



8 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZmight occur, and thus any algorithm that tries to enforce (3:4) may break downdue to division by zero. The event (3:7) will be referred to as an exact breakdownof the Lanczos type-algorithm. In �nite-precision arithmetic, one also needs to dealwith so-called near-breakdowns due to division by nonzero numbers�n = wTnvn � 0; �n 6= 0;(3.8)that are in some sense close to zero.The key to devise an algorithm for the general case, where exact breakdowns andnear-breakdowns are not excluded, is to relax the biorthogonality conditions (3:4)for the individual Lanczos vectors to a biorthogonality condition between suitablychosen clusters of Lanczos vectors. More precisely, these clusters are submatricesV(1);V(2); : : : ;V(
max) and W(1);W(2); : : : ;W(
max)(3.9)that form a partition Vnmax = �V(1) V(2) � � � V(
max)�and Wnmax = �W(1) W(2) � � � W(
max)�(3.10)of the matrices Vnmax and Wnmax , respectively, of all Lanczos basis vectors (3:1).By (3:10), each submatrix in (3:9) contains consecutive Lanczos vectors. Further-more, the clusters (3:9) are chosen such that each pairV(
) andW(
) with identicalindex 
 contains right and left Lanczos vectors with identical indices. ClustersV(
)and W(
) containing more than one vector each are built every time (3:7) or (3:8)occurs.Instead of the vector-wise biorthogonality (3:4), in the general case only a cluster-wise biorthogonality is enforced:�W(k)�TV(
) = (�(
) if k = 
;0 if k 6= 
; for all k; 
 = 1; 2; : : : ; 
max:(3.11)The general Lanczos-type Algorithm 5.2 below is a computational procedure forconstructing Lanczos vectors (3:1) that are de�ned by (3:2), (3:3), and (3:11).Algorithm 5.2 now involves the solution of small linear systems with coe�cientmatrices �(
), 
 < 
max. Therefore, the clusters (3:9) need to be chosen such that�(
) = �W(
)�TV(
) is nonsingular for all 
 = 1; 2; : : : ; 
max � 1:(3.12)Note that the cluster-biorthogonality conditions (3:11) can again be stated in thecompact form (3:6), where �n is now de�ned as the n � n leading principal sub-matrix of the block-diagonal matrix�nmax := diag��(1);�(2); : : : ;�(
max)� :(3.13)The purpose of forming clusters (3:9) is to avoid possible exact and near-breakdowns.More precisely, a pair of clusters V(
) andW(
) containing more than one vector isbuilt every time an exact or near-breakdown would occur in the generic algorithm.In particular, in the absence of exact or near-breakdowns, each cluster consists ofexactly one vector, the vector-wise and cluster-wise biorthogonality conditions (3:4)and (3:11) coincide, and the generic and general algorithms are identical.



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 93.2. History indices. Recall from (3:2) that the right Lanczos vectors build a ba-sis for the subspaces Kdln (A;R). Re
ecting the block Krylov structure of Kdln (A;R),in our algorithm, each right Lanczos vector vn is generated from a suitable A-mul-tiple of a previously constructed right Lanczos vector, except for the initial stagesof the process when vn is generated from one of the right starting vectors (2:1).Similarly, each left Lanczos vector wn in (3:1) is generated either from a suitableAT -multiple of a previous vector or from one of the left starting vectors (2:2).Furthermore, the form of the actual recurrences for generating the Lanczos vec-tors (3:1) depends on the block structure of the de
ated block Krylov matricesin (2:5) and (2:6). This structure could be recorded by keeping track of the sizesof the blocks Aj�1Rj and (AT )k�1Lk in (2:5) and (2:6), together with pointersfor the positions of vn and wn relative to the current blocks in (2:5) and (2:6),respectively. However, for the exposition of our algorithm, we �nd it simpler touse a di�erent encoding of the block structure of (2:5) and (2:6), based on historyindices for the individual Lanczos vectors. Next, we describe these indices.We use n = 1; 2; : : : , as the counter for the main loop of the algorithm. Duringthe n-th pass through the main loop, the n-th pair of Lanczos vectors vn and wnis being computed, together with their associated history indices, �n and �n.For each n, the index �n records the index of the vector from which the n-thright Lanczos vector, vn, was generated, in the following sense. If vn was generatedfrom one of the right starting vectors, say rj , we set �n := j �m; otherwise, vn isgenerated from an A-multiple, say A � v�, of a previously constructed vector v�,and we set �n = �. Note that �n � 0 if, and only if, vn was generated from astarting vector. The sequence f�ngn�1 is strictly increasing:�1 < �2 < � � � < �n < �n+1 < � � � < �n(r)+1:(3.14)Here, for each 1 � n � n(r), a gap bigger than one, i.e., �n+1 � �n > 1, occurs if,and only if, �n+1��n�1 consecutive de
ation steps in the right Krylov blocks (2:3)were performed in between the construction of vn and vn+1. Furthermore, we notethat �n < n for all n � n(r), while �n = n for n = n(r) + 1. The latter casemeans that the right Krylov blocks (2:3) are exhausted, and thus the algorithmterminates.The following example illustrates the concept of the history indices f�ngn�1.Example 3.1. Suppose the indices (3:14) are given asf�1; �2; �3; �4; �5; �6 g = f�1; 0; 1; 3; 4; 6 g:This means v1 and v2 came from the starting vectors (of which there were two), v3,v4, and v5 came from the A-multiples Av1, Av3, and Av4, respectively, and theremaining A-multiples Av2 and Av5 were never used to generate any subsequentLanczos vector because they were de
ated out. Since �6 = 6 in this example, theright Krylov sequence is exhausted at pass n = 6, thus terminating the algorithm.The sequence of history indices,�1 < �2 < � � � < �n < �n+1 < � � � < �n(l)+1;(3.15)associated with the left Lanczos vectorswn, n = 1; 2; : : : , is de�ned analogously. Anindex �n � 0 means thatwn was generated from the left starting vector l�n+p, while�n > 0 means that wn was generated from ATw�n . In (3:15), a gap �n+1��n > 1,occurs if, and only if, �n+1 � �n � 1 consecutive de
ation steps in the left Krylov



10 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZblocks (2:4) were performed in between the construction of wn and wn+1. Again,we have �n < n for all n � n(l) and �n = n for n = n(l) +1. In the latter case, theleft Krylov blocks (2:4) are exhausted, and the algorithm terminates.We remark that, in the general algorithm with look-ahead, there is a third se-quence of history indices, 
(n), n = 1; 2; : : : ; nmax, to record the sizes of the look-ahead clusters (3:9). Speci�cally, 
(n) is de�ned to be the sequence number of theclusters V(
(n)) and W(
(n)) containing the individual vectors vn and wn, respec-tively. However, in the generic case, we have 
(n) = n for all n, and thus there isno need to record 
(n) in the generic algorithm without look-ahead. The indices
(n) will be discussed further in x5 below.We conclude this subsection with two remarks.Remark 3.2. For the special case of the classical Lanczos algorithm with singlestarting vectors, the history indices (3:14) and (3:15) reduce to �n = �n = n � 1for all n, except at termination when �n = n = n(r) + 1 or �n = n = n(l) + 1.Remark 3.3. The history indices (3:14) and (3:15) can be used to determine thesizes of the blocks Rj and Lk in the de
ated block Krylov matrices (2:5) and (2:6).We now brie
y show how to do this for the right blocks Rj ; the case of the leftblocks is analogous. For any vn, there is an index jn depending on n such that vnlies in the span of the columns of the matrix �R1 AR2 � � � Ajn�1Rjn�, butnot in the span of the columns of �R1 AR2 � � � Ajn�2Rjn�1�. It is easy to seethat the sequence fjngn�1 can be computed from the sequence (3:14) as follows:jn = (1 if �n � 0;j�n + 1 if �n > 0; for all n = 1; 2; : : : ; n(r):For a given j, the rank (which is equal to the number of columns) of the matrix�R1 AR2 � � � Aj�1Rj� is equal to the largest value of n such that jn = j, orequivalently, the value of n such that jn = j but jn+1 > j. (For n = n(r), we setjnr+1 =1.) If we denote this value of n as nj , making explicit its dependence onj, then the number of columns of Rj is just nj � nj�1.3.3. Structure of the algorithm. After having introduced the history indices,we can now show the basic structure of our Lanczos-type algorithm. The structuresof the generic Algorithm 4.1 and the general Algorithm 5.2 are identical, and inFigure 1, we show a 
ow chart that is valid for both versions of the algorithm. InFigure 1, the step numbers 0){5) are the same as the ones used in Algorithms 4.1and 5.2. Note that n is the counter for the main loop. Within each n-th passthrough the main loop, it is possible that there are multiple passes through thesub-loop 1){1f); in fact, this happens if, and only if, v vectors are de
ated whilebuilding vn. The integer � is used as a counter for these multiple passes throughthe sub-loop 1){1f). Similarly, multiple passes through the sub-loop 2){2f) occurif, and only if, w vectors are de
ated while building wn, and the counter � recordsthese multiple passes.3.4. Recurrence relations. Next, we state the recurrence relations that are em-ployed in our Lanczos-type algorithm to generate the Lanczos vectors (3:1). Usingthe matrix notationVn andWn introduced in (3:5), we will write these recurrencesin compact matrix form for all Lanczos vectors computed during the �rst n passesthrough the main loop of the algorithm.
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then stop or look-ahead)

0) Initialize indices �; � (and 
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If � = n then STOP; otherwise expand1) Biorthogonalize right vector v1e)Is resulting vector v small1f) If � = n then STOP; otherwise expand2e)2) Biorthogonalize left vector wIs resulting vector w small2f)Normalize vectors v;w3) Record indices: �n = �, �n = �4) Check for breakdown (if this occurs5) Figure 1. Flow chart of the Lanczos-type algorithm.To motivate this compact matrix form of the recurrences, we �rst brie
y reviewthe case of the Lanczos process for single starting vectors r and l. In this case, forall n = 1; 2; : : : ; nmax, the recurrences for the �rst n right and left Lanczos vectorscan be summarized as VnT(e)n�1 = (r if n = 1;AVn�1 if n > 1;(3.16)



12 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZand Wn eT(e)n�1 = (l if n = 1;ATWn�1 if n > 1;(3.17)respectively. Here, for n = 1, T(e)0 and eT(e)0 are scalars that record the normalizationof the starting vectors r and l, respectively. For n > 1, T(e)n�1 and eT(e)n�1 are n�(n�1)matrices that contain the recurrence coe�cients; both matrices are tridiagonal if nolook-ahead steps occurs, and they are simultaneously upper Hessenberg and blocktridiagonal if look-ahead steps are performed; see, e.g., [17].We now present the corresponding extensions of (3:16) and (3:17) for our Lanczos-type algorithm for multiple starting vectors. Recall from Figure 1 that for each n,there can be multiple values of �, respectively �. Thus, we now need two indices nand �, respectively n and �, to state the recurrences for the right, respectively left,Lanczos vectors.For all n = 1; 2; : : : ; nmax and � = �n; �n + 1; : : : ; �n+1 � 1, the right Lanczosvectors satisfy the recurrencesVnT(e)� +Vdl� = ([r1 r2 � � � r�+m] if � � 0;AV� if � > 0:(3.18)For all n = 1; 2; : : : ; nmax and � = �n; �n+1; : : : ; �n+1�1, the left Lanczos vectorssatisfy the recurrencesWn eT(e)� +Wdl� = ([l1 l2 � � � l�+p] if � � 0;ATW� if � > 0:(3.19)The matrices T(e)� and eT(e)� in (3:18) and (3:19) are given byT(e)� =8<:[ti;j ]1�i�n; 1�m�j�� if � � 0;[ti;j ]1�i�n; 1�j�� if � > 0;(3.20)and eT(e)� = 8<:�~ti;j�1�i�n; 1�p�j�� if � � 0;�~ti;j�1�i�n; 1�j�� if � > 0:(3.21)The nonzero entries ti;j and ~ti;j in (3:20) and (3:21) are de�ned in equations (4:1),(4:3), and (4:4) below in the case of the generic Algorithm 4.1 without look-ahead,and in equations (5:5), (5:7), and (5:8) below in the case of the general Algorithm 5.2with look-ahead. Furthermore, the elements ti;j and ~ti;j that are not explicitlyde�ned in Algorithms 4.1 and 5.2 are set to be zero.We remark that the nature of T(e)� is di�erent for � � 0 and � > 0. For � � 0,the columns of T(e)� contain the recurrence coe�cients used to process the rightstarting vectors; for example, if R has full column rank, then VmT(e)0 = R. For� > 0, the columns of T(e)� contain the recurrences used to advance the right blockKrylov subspaces by multiplications with A, after the right starting vectors havebeen processed. Similarly, the columns of eT(e)� contain the recurrence coe�cientsused to process the left starting vectors L if � � 0, and the ones used to advancethe left block Krylov subspaces by multiplications with AT if � > 0.



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 13In (3:18), the term Vdl� is an N � � matrix that is built up as follows:Vdl� = 8><>:hVdl��1 vi if v 6= 0 and v is de
ated;hVdl��1 0i otherwise;where V0 is the empty matrix. In other words, Vdl� contains the vectors v that arediscarded due to inexact de
ation, together with lots of zero vectors. In particular,if no de
ation occurs or only exact de
ation is performed, then Vdl� is the N � �zero matrix. Similarly, in (3:19), the term Wdl� is an N � � matrix that containsthe vectors w that are discarded due to inexact de
ation, together with lots of zerovectors. It is de�ned byWdl� = 8><>:hWdl��1 wi if w 6= 0 and w is de
ated;hWdl��1 0i otherwise;where W0 is the empty matrix. If no de
ation occurs or only exact de
ation isperformed, then Wdl� is the N � � zero matrix.In the case of inexact de
ation, the matrices Vdl� and Wdl� are no longer zero,but they are still small in norm. First, we note that, at any stage of our algorithm,the number of de
ations of v vectors during the �rst n passes is given by m�n+�;similarly, the number of de
ations of w vectors during the �rst n passes is given byp�n+�. Now, suppose we de
ate whenever kvk � dtol, respectively kwk � dtol,where dtol is some small de
ation tolerance. Thus Vdl� has at most m � n + �nonzero columns and each of these columns has Euclidean norm at most dtol.Similarly, Wdl� has at most p� n+ � nonzero columns and each of these columnshas Euclidean norm at most dtol. It follows that

Vdl� 

 � dtolpm� n+ � and 

Wdl� 

 � dtolpp� n+ �:We conclude this section with some remarks on the zero structure of the ma-trices T(e)� and eT(e)� in (3:20) and (3:21), respectively. In the simplest case of node
ation and no look-ahead, the matrix T(e)� is banded with a lower bandwidthm+ 1 and an upper bandwidth p+ 1, and eT(e)� is banded with a lower bandwidthp+1 and an upper bandwidth m+1. Look-ahead steps result in additional \bulges"in T(e)� and eT(e)� above their upper bands. Finally, each de
ation of a v vector re-duces both the lower bandwidth of T(e)� and the upper bandwidth of eT(e)� by one.Similarly, each de
ation of a w vector reduces both the lower bandwidth of eT(e)�and the upper bandwidth of T(e)� by one. Furthermore, each inexact de
ation ofa v vector requires that all successive left Lanczos vectors need to be explicitlybiorthogonalized against a certain vector vi, respectively all vectors of the clustercontaining vi in the look-ahead case. Similarly, inexact de
ation of a w vectorrequires explicit biorthogonalization of all successive right Lanczos vectors againsta certain vector wi, respectively all vectors of the cluster containing wi in thelook-ahead case. The indices of the vectors, respectively of the look-ahead clusters,against which we need to explicit biorthogonalize due to inexact de
ation of v andw vectors are stored in the index sets Iw and Iv in Algorithm 4.1, respectively Al-gorithm 5.2, below. These additional biorthogonalizations are re
ected in nonzeros



14 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZin rows of T(e)� of eT(e)� whose row indices correspond to Iv and Iw, respectively.However, these nonzeros only appear to the right of the bands. In particular, evenin the most general case of de
ation and look-ahead, T(e)� and eT(e)� always havelower bandwidth m+ 1 and p+ 1, respectively. Finally, we refer the reader to theAppendix where the zero structures of T(e)� and eT(e)� are illustrated for a speci�cexample. 4. The generic Lanczos-type algorithmIn this section, we present the generic Lanczos-type algorithm in a form that willlead naturally to the look-ahead algorithm in x5 below.Algorithm 4.1. (Lanczos-type method with de
ation, but without look-ahead.)INPUT: Matrix A 2 CN�N ;m right starting vectors r1; r2; : : : ; rm 2 CN ;p left starting vectors l1; l2; : : : ; lp 2 CN .0) Set � = �m and � = �p.(� is the index of the currently expanded vector in the v sequence; � is theindex of the currently expanded vector in the w sequence. A non-positive �or � means we are still fetching starting vectors.)Set Iv = ; and Iw = ;.(Iv and Iw record indices of vectors that must be preserved due to inexactde
ation. If i 2 Iv, respectively i 2 Iw, then the currently constructedLanczos vector v, respectively w, needs to be biorthogonalized against wi,respectively vi.)For n = 1; 2; : : : , do (Build n-th pair of Lanczos vectors vn and wn.) :1) (Build the unnormalized right Lanczos vector v.)1a) Set � = �+ 1.1b) (Check if the right Krylov blocks are exhausted.)If � = n, then stop. (There are no more right Krylov vectors.)1c) (Advance the right block Krylov subspace.)Set v = (r�+m if � � 0;Av� if � > 0:1d) (Determine against which vectors v needs to be biorthogonalized.)Set iv = (1 if � � 0;maxf 1; �� g if � > 0;and de�ne the temporary index setI = f iv; iv + 1; : : : ; n� 1 g [ [i2Ivi<ivfig:1e) (Biorthogonalize v against these vectors.)Compute the coe�cientsti;� = wTi v�i for all i 2 I:(4.1)



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 15Set v = v �Xi2I viti;�:(4.2) 1f) Decide if v should be de
ated, e.g., by checking if kvk � dtol.If yes, do the following :(i) If � > 0 and the de
ated vector v is nonzero, then set Iw = Iw[f�gand save the vectors v� and w�.(The vector v is the �-th column of the matrix Vdl� in (3:18).)(ii) Repeat all of Step 1.2) (Build the unnormalized right Lanczos vector w.)2a) Set � = �+ 1.2b) (Check if the left Krylov blocks are exhausted.)If � = n, then stop. (There are no more left Krylov vectors.)2c) (Advance the left block Krylov subspace.)Set w = (l�+p if � � 0;ATw� if � > 0:2d) (Determine against which vectors w needs to be biorthogonalized.)Set iw = (1 if � � 0;maxf 1; �� g if � > 0;and de�ne the temporary index setI = f iw; iw + 1; : : : ; n� 1 g [ [i2Iwi<iwfig:2e) (Biorthogonalize w against these vectors.)Compute the coe�cients~ti;� = vTi w�i for all i 2 I:(4.3) Set w = w �Xi2I wi~ti;�:2f) Decide if w should be de
ated, e.g., by checking if kwk � dtol.If yes, do the following :(i) If � > 0 and the de
ated vector w is nonzero, then set Iv = Iv[f�gand save the vectors v� and w�.(The vector w is the �-th column of the matrix Wdl� in (3:19).)(ii) Repeat all of Step 2.3) (Normalize v and w to obtain the n-th pair of Lanczos vectors vn and wn.)Set vn = vtn;� and wn = w~tn;� ;(4.4) where tn;� and ~tn;� are suitable scaling factors, e.g.,tn;� = kvk and ~tn;� = kwk :



16 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZ4) (Update the history indices.)Set �n = � and �n = �.(This records that vn was obtained from r�n+m if �n � 0 or from Av�n if�n > 0, and that wn was obtained from l�n+m if �n � 0 or from ATw�n if�n > 0.)5) (Compute �n and check for breakdown.)Set �n = wTnvn:If �n = 0, then stop.5. The general Lanczos-type algorithm with look-aheadIn this section, we present a statement of the general Lanczos-type algorithmwith de
ation and look-ahead.5.1. Keeping track of the look-ahead clusters. Recall from (3:9){(3:10) that,in the general algorithm, the Lanczos vectors are grouped into look-ahead clustersV(
) and W(
), 
 = 1; 2; : : : ; 
max. To keep track of the sizes of these clusters, weuse a sequence of cluster indices f
(n)g1�n�nmax:(5.1)Here, for each n, we de�ne 
(n) = 
 as the (unique) index of the clusters V(
)and W(
) that contain the n-th pair of Lanczos vectors vn and wn. Note that thesequence of cluster indices is non-strictly increasing:
(1) � 
(2) � � � � 
(n) � 
(n+ 1) � � � � � 
(nmax):For the sequence (5:1), one can easily deduce any other required information on theclusters. For example, for each 
 = 1; 2; : : : ; 
max, the setC
 := f i j 
(i) = 
 g(5.2)consists of all the indices of the Lanczos vectors vi and wi that are contained in the
-th pair of clusters V(
) andW(
). Furthermore, we de�ne the auxiliary sequence�(n) := mini2C
(n) i for all n = 1; 2; : : : ; nmax;(5.3)which records the indices of the �rst vector in each cluster. Clearly, the sequencef�(n)g1�n�nmax is non-strictly increasing, and is component-wise less than or equalto f 1; 2; : : : ; nmax g. Note that, in view of (5:3), the 
(n)-th pair of clusters is givenby V(
(n)) = �v�(n) v�(n)+1 : : : v�(n+1)�1�and W(
(n)) = �w�(n) w�(n)+1 : : : w�(n+1)�1� ;where, for n = nmax, we set �(nmax + 1) = nmax + 1.The sequences (5:2) and (5:3) clearly encode the same information as the clusterindices (5:1), and thus they are redundant. However, it turned out to be convenientto use all three quantities (5:1){(5:3) in the statement of the general algorithm withlook-ahead and in the proofs of its properties.



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 17Example 5.1. Suppose that the look-ahead clusters start withV(1) = �v1� ; V(2) = �v2 v3� ; V(3) = �v4� ; : : : ;W(1) = �w1� ; W(2) = �w2 w3� ; W(3) = �w4� ; : : : :The sequence of cluster indices then starts withf
(n)gn�1 = f 1; 2; 2; 3; : : :g:Moreover, we have C1 = f1g, C2 = f2; 3g, C3 = f4g, etc., and the sequencef�(n)gn�1 would start o� as f 1; 2; 2; 4; 5; : : :g. The situation in this example wouldarise when �2 = wT2 v2 � 0 triggers a look-ahead step, resulting in a pair of clustersstarting with v2 andw2, and when�(2) = �w2 w3�T �v2 v3� is well conditioned,allowing to terminate the clusters after adding only v3 and w3.5.2. Statement of the algorithm. We now present a formal statement of thegeneral algorithm with de
ation and look-ahead. In particular, this statementshows exactly against which vectors one needs to biorthogonalize, and it givesexplicit formulas for the recurrence coe�cients.Algorithm 5.2. (Lanczos-type method with de
ation and look-ahead.)INPUT: Matrix A 2 CN�N ;m right starting vectors r1; r2; : : : ; rm 2 CN ;p left starting vectors l1; l2; : : : ; lp 2 CN .0) Set � = �m and � = �p.(� is the index of the currently expanded vector in the v sequence; � is theindex of the currently expanded vector in the w sequence. A non-positive �or � means we are still fetching starting vectors.)Set Iv = ; and Iw = ;.(Iv and Iw record indices of clusters that must be preserved due to inexactde
ation. If k 2 Iv, respectively k 2 Iw, then the currently constructedLanczos vector v, respectively w, needs to be biorthogonalized against allvectors wi, respectively vi, with i 2 Ck.)Set 
(1) = 1, 
 = 1, C1 = ;, and V(
) =W(
) = ;.(
(n) is the index of the cluster containing the n-th Lanczos vectors vn andwn, 
 is the number of the currently constructed look-ahead cluster, and C
is the set of indices of the already constructed Lanczos vectors in the 
-thclusters V(
) and W(
).)For n = 1; 2; : : : , do (Build n-th pair of Lanczos vectors vn and wn.) :1) (Build the unnormalized right Lanczos vector v.)1a) Set � = �+ 1.1b) (Check if the right Krylov blocks are exhausted.)If � = n, then stop. (There are no more right Krylov vectors.)1c) (Advance the right block Krylov subspace.)Set v = (r�+m if � � 0;Av� if � > 0:If the current 
-th cluster contains at least one vector, i.e., C
 6= ;, wemay add arbitrary combinations of the vectors in the 
-th cluster to v :



18 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZSet v = v +V(
) �ti;��i2C
 ; with arbitrary ti;� 2 C :1d) (Determine against which clusters v needs to be biorthogonalized.)Set 
v = (1 if � � 0;maxf 1; 
(��(�)) g if � > 0;(5.4) where, in the latter case, �(�) = mini2C
(�)i, and de�ne the temporary indexset I = f 
v; 
v + 1; : : : ; 
 g [ [k2Ivk<
vfkg:1e) (Biorthogonalize v against these clusters.)Compute the coe�cient vectors�ti;��i2Ck = ��(k)��1 �W(k)�Tv for all k 2 I:(5.5) Set v = v �Xk2IV(k) �ti;��i2Ck :1f) Decide if v should be de
ated; for example, this can be done by �rstorthogonalizing (in the ordinary one-sided sense) v against the vectors vi,i 2 C
, in the current 
-th cluster and then checking if the resultingvector v satis�es kvk � dtol.If yes, do the following :(i) If � > 0 and the de
ated vector v is not an exact linear combinationof the vectors vi, i 2 C
 , then set Iw = Iw [ f 
(�) g, and save thevectors vi and wi, i 2 C
(�).(The vector v is the �-th column of the matrix Vdl� in (3:18).)(ii) Repeat all of Step 1.2) (Build the unnormalized right Lanczos vector w.)2a) Set � = �+ 1.2b) (Check if the left Krylov blocks are exhausted.)If � = n, then stop. (There are no more left Krylov vectors.)2c) (Advance the left block Krylov subspace.)Set w = (l�+p if � � 0;ATw� if � > 0:If the current 
-th cluster contains at least one vector, i.e., C
 6= ;, wemay add arbitrary combinations of the vectors in the 
-th cluster to v :Set w = w +W(
) �~ti;��i2C
 ; with arbitrary ~ti;� 2 C :2d) (Determine against which clusters w needs to be biorthogonalized.)Set 
w = (1 if � � 0;maxf 1; 
(��(�)) g if � > 0;(5.6)
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(�)i, and de�ne the temporary indexset I = f 
w; 
w + 1; : : : ; 
 g [ [k2Iwk<
wfkg:2e) (Biorthogonalize w against these clusters.)Compute the coe�cient vectors�~ti;��i2Ck = ��(k)��T �V(k)�Tw for all k 2 I:(5.7) Set w = w �Xk2IW(k) �~ti;��i2Ck :2f) Decide if w should be de
ated; for example, this can be done by �rst or-thogonalizing (in the ordinary one-sided sense) w against the vectors wi,i 2 C
 , in the current 
-th cluster and then checking if the resulting vec-tor w satis�es kwk � dtol.If yes, do the following :(i) If � > 0 and the de
ated vector w is not an exact linear combinationof wi, i 2 C
, then set Iv = Iv [ f 
(�) g and save the vectors viand wi, i 2 C
(�).(The vector w is the �-th column of the matrix Wdl� in (3:19).)(ii) Repeat all of Step 2.3) (Normalize v and w to obtain the n-th pair of Lanczos vectors vn and wn,and add them to current cluster.)Set vn = vtn;� and wn = w~tn;� ;(5.8) where tn;� and ~tn;� are suitable scaling factors, e.g.,tn;� = kvk and ~tn;� = kwk :Set V(
) = V(
) [ fvng and W(
) =W(
) [ fwng.4) (Update the history indices.)Set �n = � and �n = �.(This records that vn was obtained from r�n+m if �n � 0 or from Av�n if�n > 0, and that wn was obtained from l�n+m if �n � 0 or from ATw�n if�n > 0.)Set C
 = C
 [ fng.(This records that vn and wn are in the cluster with index 
 = 
(n).)5) (Compute �(
) and check for end of look-ahead cluster.)Form �(
) = �W(
)�TV(
):If the matrix �(
) is \su�ciently" nonsingular, then :Increment the cluster counter 
 = 
 + 1;Set 
(n+ 1) = 
, C
 = ;, and V(
) =W(
) = ;.(The current cluster is complete, and so the n+1-th vectors constructedin the next iteration will start a new cluster.)Otherwise :
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(n+ 1) = 
.(The current cluster is still incomplete, and so the n+ 1-th vectors con-structed in the next iteration will still be added to the current clusterwith index set C
(n).)Remark 5.3. If no look-ahead steps occur, then
(n) = n; Cn = fng; �(n) = n; ;V(n) = vn; and W(n) = wnfor all n = 1; 2; : : : ; nmax. Thus, in this case, the general Algorithm 5.2 just reducesto the generic Algorithm 4.1.Remark 5.4. The optional orthogonalization in Steps 1f) and 2f) of Algorithm 5.2only needs to be performed if the current cluster, C
 , is nonempty.Remark 5.5. For the optional orthogonalization in Steps 1f) and 2f) of Algorithm 5.2,modi�ed Gram-Schmidt should be used. Furthermore, the coe�cients ti;�, i 2 C
 ,respectively ~ti;�, need to be updated to include the orthogonalization coe�cients.Thus the orthogonalization in Step 1f) should be performed as follows:For all i 2 C
 ; set :�i;� = vHi vkvik2 ; v = v � vi�i;�; and ti;� = ti;� + �i;�:Similarly, the orthogonalization in Step 2f) is implemented as follows:For all i 2 C
 ; set :~�i;� = wHi wkwik2 ; w = w �wi~�i;�; and ~ti;� = ~ti;� + ~�i;�:Remark 5.6. The \cluster indices" 
v and 
w de�ned in (5:4) and (5:6) correspondto the \vector indices" iv = (1 if � � 0;maxf 1; �(��(�)) g if � > 0;and iw = (1 if � � 0;maxf 1; �(��(�)) g if � > 0:(5.9)Indeed, using (5:3), the indices 
v and 
w directly translate into (5:9).6. Properties of the Lanczos vectorsIn Algorithm 5.2, true biorthogonality can always be achieved by explicitly bior-thogonalizing against all previous vectors, i.e., by setting 
v = 
w = 1 in Steps 1d)and 2d). In this section, we prove two propositions to show that true biorthogo-nality can be achieved by explicitly biorthogonalizing only against the more recentclusters of vectors. We also discuss the case of inexact de
ation for which the in-dices of the vectors involved must also be saved. We also show that in Steps 1f)and 2f), linear dependence against all previous vectors can be checked by examiningonly the vectors in the current cluster.For the statements and the proofs of these results, we will use the vector in-dices (5:9) instead of 
v and 
w.



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 21Proposition 6.1. In Step 1e) of Algorithm 5:2 at pass n, the vector v is alreadybiorthogonal to wi for all i < iv (where iv is given by (5:9) with � = �n), as longas de
ation occurs only when v and w are exact linear combinations of previousright and left vectors, respectively. Likewise in Step 2e), the vector w is alreadybiorthogonal to vi for all i < iw (where iw is given by (5:9) with � = �n), under thesame provision about de
ation. Hence, in Steps 1e) and 2e), it is su�cient to bior-thogonalize against just those more recent vectors starting with indices iv and iw.With this limited biorthogonalization, the vectors vn and wn will be biorthogonalto all vectors fv1;v2; : : :v�(n)�1 g and fw1;w2; : : : ;w�(n)�1 g, respectively.Proof. The proof is by induction on the pass n through the main loop of the algo-rithm. At Step 1e) for a given pass n, we want to enforce the condition wTi v = 0for i < �(n). We would like to determine for which i is wTi v = wTi Av�n guaran-teed to be already zero, relieving us of the necessity to biorthogonalize v againstwi explicitly. By induction, we know that wTj v�n = 0 for all j < �(�n), i.e. forall vectors in previous clusters W(1); : : : ;W(
(n)�1). Therefore, wTi Av�n = 0 ifATwi is a linear combination of the vectors w1; : : : ;w�(�n)�1. We consider twocases: I. there exists a j such that �j = i, and II. there is no such j.Case I. In this case, wj was computed at the pass j through the main loop of thealgorithm from ATwi plus a linear combination of w1; : : : ;wj�1, hence ATwi is alinear combination of w1; : : : ;wj . The strict monotonicity of the sequence f�lgl�1guarantees that for any i, i = �j < ��(�n) implies j < �(�n), which implies thatwTi ATv�n = 0.Case II. In this case, for any given i, choose j such that �j < i, but �j+1 > i.This situation arises when at pass j+1 through the main loop, we were attemptingto compute wj+1 by forming ATwi, but ATwi was de
ated out because it wasalready a linear combination of all the vectors computed to date: w1; : : : ;wj . ThenwTi ATv�n = 0 is guaranteed as long as j < �(�n) as before, which in turn isguaranteed if i < ��(�n).Returning to pass n in the main loop, Step 1e), we are computing coe�cients toenforce the conditionwTi v = wTi Av�n �wTi V�(n)�1��1�(n)�1WT�(n)�1v = 0:(6.1)For i < �(��(�n)) � ��(�n), the preceding argument ensures that wTi Av�n = 0, andthus the �rst term of the right-hand side of (6:1) is zero. Next we show that thesecond term, wTi V�(n)�1��1WT�(n)�1v;(6.2)of the right-hand side of (6:1) is also zero. Because of the clustering, wTi V�(n)�1 is avector with nonzeros in positions corresponding to the cluster containing vector wi,andWT�(n)�1v is a vector with nonzeros in positions ��(�n); 1+��(�n); : : : ; �(n)�1,by the preceding argument. Since, by (3:13), ��(n)�1 is block diagonal with blockscorresponding to clusters de�ned by the sequence f�(n)g, the expression above iszero if wi lies in a cluster earlier than the one containing vector number ��(�n),hence, to guarantee that (6:2) is zero, i must be less than �(��(�n)).By swapping the roles of the left and right vectors and using the same arguments,we conclude that we do not need to biorthogonalize against all previous vectors,but only against the more recent ones. Speci�cally, we can amend Step 1d) and 1e)in the look-ahead algorithm to set iv and iw as given in (5:9).



22 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZRemark 6.2. In the generic case, we have �(i) = i for all i, and so the expressions(5:9) reduce to the integers iv and iw used in Steps 1d) and 2d) of the genericAlgorithm 4.1.Proposition 6.3. In Step 2f), if the temporary vector v is a linear combinationof v1;v2; : : : ;vn�1, then it must be a linear combination of v�(n);v�(n)+1; : : : ;vn�1.Thus in Step 2f), linear independence of the vector v with respect to v1;v2; : : : ;vn�1can be checked by just looking at the vectors v�(n);v�(n)+1; : : : ;vn�1, i.e., those inthe current cluster. A corresponding statement holds for the left Lanczos vectors.Proof. Decompose v = V�(n)�1�+�v�(n) � � � vn�1��, in terms of the vectors inthe current cluster, v�(n); : : : ;vn�1 and in all the previous clusters, V�(n)�1. Thenthe biorthogonality condition (3:11) (just enforced in the preceding Step 1e)) yields0 =WT�(n)�1v=WT�(n)�1V�(n)�1�+WT�(n)�1 �v�(n) � � � vn�1��=��(n)�1�:Since ��(n)�1 is nonsingular by construction, this implies that � = 0.The above discussion leads to the following theorem stating that Algorithm 5.2actually generates the two cluster-wise biorthogonal bases for the appropriate blockKrylov subspaces.Theorem 6.4. The general Lanczos Algorithm 5:2 generates a sequence of vec-tors (3:1) satisfying the conditions (3:2), (3:3), and the cluster-biorthogonality con-ditions (3:11), where the vectors are grouped into clusters (3:9). Algorithm 5:2 alsogenerates two matrices of coe�cients T(e)� and eT(e)� such that the recurrences (3:18)and (3:19) are satis�ed.Proof. Conditions (3:2) and (3:3) follow directly from the formulas in Steps 1)and 2) of the algorithm by induction, since each new vector generated is equal toA or AT times a previous vector, plus a linear combination of previous vectors.Condition (3:11) also follows by a rearrangement of the same formulas, just as inthe generic algorithm. If de
ation is carried out only when the vector to be de
atedis an exact linear combination of previous vectors, then Proposition 6.1 applies toshow that the biorthogonality condition (3:11) is satis�ed.What if we choose to de
ate a vector that is not an exact linear combination ofpreceding vectors? Such a circumstance could occur if a vector were \numericallyalmost" a linear combination, for instance if the residue left after all biorthogonal-ization has been applied is very small. We consider the same situation as in theproof of Proposition 6.1. We are computing v = Av�n , and given a wi, we wouldlike to know if wi is already orthogonal to v. As in the proof of Proposition 6.1,we de�ne j as the smallest index such that i < �j+1, but i > �j ; j + 1 is the indexof the pass through the main loop when ATwi was computed. But in this case, weassume that at the j +1-th pass, ATwi had been thrown away even though it wasnot an exact linear combination of the vectors existing to date: w1; : : : ;wj . ThenATwi is not in the space of vectors against which v�n has ever been biorthogonal-ized, and hence wTi Av�n 6= 0. The expression (6:2) is also not zero, since ti;�n 6= 0.All the entries in the entire cluster containing the i-th entry are also nonzero dueto the block-diagonal structure (3:13) of �. Therefore, in order to maintain the



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 23conditions (3:11), it is necessary and su�cient to orthogonalize v explicitly againstthe entire cluster containing wi. This is encoded in the algorithm 5.2 by accumu-lating the index sets Iv and Iw containing the indices of each entire cluster to beso saved. 7. Computational aspectsIn this section, we discuss some implementation details for Algorithms 4.1 and 5.2.These details are necessary to produce a complete or e�cient implementation, buthave been left out of the descriptions of Algorithms 4.1 and 5.2 to keep the expo-sition as simple as possible.Steps 1e) and 2e) implement a classical two-sided Gram-Schmidt biorthogonal-ization, but in practice a \modi�ed" two-sided Gram-Schmidt process would bepreferred [33]. For example, for the \modi�ed" version of Step 1e) in Algorithm 4.1,one simply replaces (4:1) and (4:2) by the following update:For all i 2 I; set : ti;� = wTi v�i and v = v � viti;�:In Step 2f), we must decide whether or not to de
ate. De
ation must occur ifthe newly generated vector w is an exact linear combination of previous vectorsw1; : : : ;wn�1. We call this situation exact de
ation. Proposition 6.3 shows thatthe biorthogonalization in Step 2e) has removed any component in the directionsw1; : : : ;w�(n)�1, leaving only the component in the span of vectors in the currentcluster: w�(n); : : : ;wn�1. If not already zero, w must be orthogonalized againstthe vectors w�(n); : : : ;wn�1 in order to determine whether it is linearly indepen-dent. If it is exactly linearly dependent, then it must be de
ated. If it is linearlyindependent, then it is the user's choice whether to save the w before or after thislast orthogonalization. In any case, the coe�cients �~ti;���(n)�i�n�1 of ~T(e)� mustbe �lled in, unless w is not de
ated and the unorthogonalized version is saved. Inexact de
ation, Proposition 6.1 applies, and there is no need to accumulate anyindices in Iv. Corresponding statements hold for exact de
ation of a right Lanczosvector in Step 1f).If the w in Step 2f) is not an exact linear combination of previous vectors, theuser may decide to de
ate anyway. This situation is called inexact de
ation. Thismay happen if, for example, w is \almost" a linear combination, according to somecriteria set in advance. Whenever inexact de
ation occurs, Theorem 6.4 statesthat it is necessary to save the indices of vectors in Iv in order to accomplish truebiorthogonalization against older Lanczos vectors in later passes. It may happenthat throwing away these indices will have only a small e�ect on the resultingLanczos vectors, but we will reserve discussion of these numerical issues for a laterpaper. In any case, in Step 1d), we need only consider those indices less than�(n), since we cannot biorthogonalize against vectors in the same cluster as wn.Corresponding statements apply to the right vectors in Step 2f).We emphasize that the index sets Iw and Iv do not contain indices of vectorsthat have been de
ated out|these vectors have no index since they do not appearamong the Lanczos vectors at all. Rather, in the case of the generic Algorithm 4.1without look-ahead, Iw, respectively Iv, contain the indices of the vectors alreadyamong the right, respectively left, Lanczos vectors from previous passes such thatwhen these vectors are expanded in Step 1c), respectively Step 2c), the expanded



24 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZresult almost lies within the space of existing vectors. Similarly, in the case of thegeneral Algorithm 5.2 with look-ahead, Iw, respectively Iv contain the indices ofthose look-ahead clusters that contain at least one vector that lead to an almostlinearly dependent vector when expanded in Step 1c), respectively Step 2c).In Step 5) of the general Algorithm 5.2, one needs to decide if the current look-ahead cluster can be closed. In view of (3:12), a necessary condition for closing thelook-ahead cluster is that the matrix �(
) is nonsingular. It is thus tempting tobase the look-ahead strategy solely on a measure of singularity of �(
), such as thesmallest singular value. However, as was illustrated in [17] for the Lanczos algorithmwith single starting vectors, such a look-ahead strategy is not appropriate and doesnot lead to a robust algorithm. Instead, a reliable look-ahead strategy needs tocheck the singularity of �(
), as well as the sizes of the recurrence coe�cients ti;�and ~ti;� in (5:5) and (5:7) relative to some estimate, n(A), for kAk. More precisely,the second check states that the current look-ahead cluster should only be closed ifjti;�j ; ��~ti;��� � fac� n(A) for all i:(7.1)Here, fac is an appropriate constant, typically fac = 10, and if not available apriori, the norm estimate n(A) can be obtained easily during the �rst few iterations.This check guarantees (7:1) that the component Av�, respectively ATw�, of thenew Lanczos vector is not dominated by the previous Lanczos vectors. Note thatAv� and ATw� are the only parts of v and w, respectively, that advance the blockKrylov subspaces. 8. Concluding remarksWe presented a Lanczos-type algorithm for the construction of biorthogonal basisvectors for the right and left block Krylov subspaces induced by a given squarematrix and two blocks of m right and p left starting vectors. Our algorithm canhandle the most general case of arbitrary, and not necessarily identical, initial blocksizes m and p, while all previously proposed Lanczos-type algorithms for multiplestarting vectors are restricted to the special case m = p. Another feature of ouralgorithm is a built-in de
ation procedure to detect and delete linearly dependentor almost linearly dependent vectors in the underlying block Krylov subspaces. Wealso showed how look-ahead can be incorporated into our algorithm in order toremedy the potential breakdowns and near-breakdowns that can occur in Lanczos-type algorithms for nonsymmetric matrices.The objective of this paper is to describe our Lanczos-type algorithm and to provesome of its key properties. In order to keep the length of the paper reasonable, wedecided not to include numerical examples. Applications of the algorithm to theproblems mentioned in Section 1.2 and results of numerical experiments will bereported elsewhere.Freund and Malhotra [18] already developed a block version of QMR, calledBL-QMR, for the solution of multiple linear systems (1:1) that uses the genericLanczos-type Algorithm 4.1 with de
ation, but without look-ahead. The BL-QMRalgorithm has been tested extensively and numerical results are presented in [18, 30].The results in [18, 30] clearly illustrate the importance of de
ation in the underlyingLanczos-type algorithm. More precisely, basis vectors do become almost linearlydependent in several of the numerical examples in [18, 30], yet BL-QMR converges



A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 25as long as these vectors are de
ated properly. However, as soon as the de
ationprocedure is turned o�, BL-QMR fails to converge.In [13], Feldmann and Freund describe the application of an early version (with-out de
ation and without look-ahead) of our Lanczos-type algorithm to the problemof computing matrix Pad�e approximants to matrix-valued transfer functions (1:5).Some numerical results for problems of this type arising in circuit simulation arealso presented in [13].Finally, we stress that we are well aware of the connections between the prob-lem treated in this paper, namely the construction of suitable basis vectors forblock Krylov subspaces, and the related problems of solving block Hankel systemsand constructing matrix Pad�e approximations; see, e.g., [7, 8, 35, 41, 42] and thereferences given therein. The connections between the proposed Lanczos-type al-gorithm and these related problems should be explored further. A �rst such resulton the connection of our algorithm to matrix Pad�e approximation was given byFreund [15]. AppendixIn this appendix, we illustrate the e�ects of exact de
ation, inexact de
ation, andlook-ahead clusters with a speci�c example. In order to simplify the presentation ofthe example, we just give the overall structure of the matrices computed withoutgiving actual numerical values. In the case of inexact de
ation and/or look-aheadclusters, it is easy to construct an arti�cial example that will exhibit the indicatedstructure by just starting with a completely generic Lanczos expansion. It is thenalways possible to force an inexact de
ation and/or a look-ahead cluster at anypoint in the expansion, even if not called for by any heuristic such as a norm bound.However, to generate an example exhibiting exact de
ation, it is necessary to startwith blocks of starting vectors, R and L, such that the block Krylov subspaces theyinduce intersect low-order invariant subspaces of A and AT , respectively.Consider a matrix A 2 CN�N , a matrix of m right starting vectors R, and amatrix of p left starting vectors L, where N = 20, m = 3, p = 2, and suppose that,in Algorithm 5.2, we encounter a de
ation on a v vector at iteration n = 11 andon a w vector at iteration n = 14. For n � 10 (i.e., before any de
ation), each newvn is generated from v = Av� where � = n � 3, and each new wn is generatedfrom w = ATw� where � = n� 2. Now suppose that at iteration n = 11 we �ndthat Av8 is a linear combination of v1;v2; : : : ;v10, and that at iteration n = 14 we�nd that ATw12 is a linear combination of w1;w2; : : : ;w13. Hence in both cases,we decide to de
ate those vectors out so that v11 and w14 end up being generatedfrom Av9 and ATw13, respectively.In the situation described above, the indices computed by Algorithm 4.1 areshown in Table 1. The iteration number n is placed in parentheses when a de
ationoccurs, since then the computation of the new n-th v or w vector is postponed.The matrices of coe�cients generated have the banded nonzero structure givenin Figures 2 and 3. Here and in the sequel, we use \+" to denote a diagonal entry,\x" to denote a nonzero o�-diagonal entry, and \d" to denote an entry that isnonzero only if the de
ations are inexact. Furthermore, we use \�" to mark zeroentries.In this example, nmax = N = 20, and the matrices of recurrences coe�cientsat termination of the algorithm are T(e)20 and eT(e)20 . The structure of T(e)20 can be



26 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZTable 1. Table of indices for example with de
ation but no look-ahead.n �n �n ��n ��n Remarks1 -2 -1 - -2 -1 0 - -3 0 1 - -4 1 2 - -5 2 3 - -6 3 4 1 17 4 5 2 28 5 6 3 39 6 7 4 410 7 8 5 5(11) 8 6 Av8 de
ated11 9 9 7 612 10 10 8 713 11 11 9 9(14) 12 10 ATw12 de
ated14 12 13 10 1115 13 14 11 1216 14 15 13 1317 15 16 14 1418 16 17 15 1519 17 18 16 1620 18 19 17 17(21) 19 Av19 de
ated(21) 20 Av20 de
ated(21) 20 18 ATw20 de
ated
read o� Table 1 by reading down the table column labeled �n as follows. To �ndout the nonzeros in matrix column 9, read the line in Table 1 where a 9 appearsin table column �n. Then the nonzeros in the 9-th matrix column lie in the rowsbetween the indices in the table columns marked ��n and n, namely 7 through 11.When a de
ation occurs, as in Av8 while in iteration n = 11, the table entry is
agged by the parentheses. In this case the nonzeros lie the range from the indexin table column ��n up to one less than the entry in table column n, namely 6through 10. These limits do not include the entries arising from inexact de
ation.A dual procedure can be used for the structure of eT(e)20 , using table columns �n, n,��n in place of �n, n, ��n , respectively.In this example, the matrix �20 = WT20V20 is diagonal, since no look-aheadsteps have been performed.We now modify this example to add look-ahead clusters to illustrate the ef-fect of such clusters on the structure of the coe�cient matrices. We form twoconsecutive pairs of look-ahead clusters of length 3 each, one with �v5 v6 v7�,�w5 w6 w7� and one with �v8 v9 v10�, �w8 w9 w10�. The � and � indicesare identical to the above, but the indices marking the vectors against which wemust orthogonalize will also incorporate the look-ahead structure, according to theformulas 
v = maxf 1; �(��(�)) g, 
w = maxf 1; �(��(�)) g. The indices are shown
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377777777777777777777777777777777775Figure 2. Zero structure of right-hand coe�cient matrix for ex-ample with de
ation but no look-ahead.
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377777777777777777777777777777777775Figure 3. Zero structure of left-hand coe�cient matrix for exam-ple with de
ation but no look-ahead.in Table 2. The resulting cluster index sets are as follows:C1 = f1g C5 = f5; 6; 7g C9 = f13g C13 = f17gC2 = f2g C6 = f8; 9; 10g C10 = f14g C14 = f18gC3 = f3g C7 = f11g C11 = f15g C15 = f19gC4 = f4g C8 = f12g C12 = f16g C16 = f20g



28 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERN�ANDEZTable 2. Table of indices for example with both de
ation andlook-ahead.n �n �n 
(n) �(n) �(��(�n)) �(��(�n)) Remarks1 -2 -1 1 1 - -2 -1 0 2 2 - -3 0 1 3 3 - -4 1 2 4 4 - -5 2 3 5 5 - -6 3 4 5 5 1 17 4 5 5 5 2 28 5 6 6 8 3 29 6 7 6 8 3 210 7 8 6 8 3 5(11) 8 5 Av8 de
ated11 9 9 7 11 5 512 10 10 8 12 5 513 11 11 9 13 8 8(14) 12 8 ATw12 de
ated14 12 13 10 14 8 1115 13 14 11 15 11 1216 14 15 12 16 13 1317 15 16 13 17 14 1418 16 17 14 18 15 1519 17 18 15 19 16 1620 18 19 16 20 17 17(21) 19 18 Av19 de
ated(21) 20 19 Av20 de
ated(21) 20 18 ATw20 de
atedThe structure of the coe�cient matrices are shown in Figures 4 and 5, using thesame notation as before. The zero structures in this case can be read o� Table 2in a manner similar to the previous. For example, the nonzeros in column �n ofT(e)20 lie in the rows with indices ranging from the corresponding \�(��(�n))" entrythrough the \n" entry (one less if de
ation occurs) in Table 2.In the look-ahead case, the matrix �20 is only block diagonal, as illustrated inFigure 6. AcknowledgmentsThe third author would like to thank Jane Cullum for pointing out the de
ationprocedure in [9]. He is also grateful to Susanne Freund for proof-reading variousversions of this paper. References[1] J. I. Aliaga, Algoritmos paralelos basados en el m�etodo de Lanczos. Aplicaciones en prob-lemas de control, Doctoral Thesis, Departamento de Sistemas Inform�aticos y Computaci�on,Universidad Polit�ecnica de Valencia, Valencia, Spain, 1995.[2] J. I. Aliaga, D. L. Boley, and V. Hern�andez, A block clustered Lanczos algorithm, Presentationat the workshop on \Numerical Linear Algebra with Applications", Oberwolfach, Germany,April 1994.
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