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Abstract

We propose to speed up the training process of support

vector machines (SVM) by resorting to an approximate

SVM, where a small number of representatives are extracted

from the original training data set and used for training.

Theoretical studies show that, in order for the approximate

SVM to be similar to the exact SVM given by the original

training data set, kernel k-means should be used to extract

the representatives. As practical variations, we also propose

two efficient implementations of the proposed algorithm,

where approximations to kernel k-means are used. The

proposed algorithms are compared against the standard

training algorithm over real data sets.

1 Introduction

Support vector machines (SVM) [9, 27] have been suc-
cessfully applied in a variety of domains, for exam-
ple, [5, 7, 14]. One challenge in using SVM for large
problems, which are common in data mining applica-
tions, is the expensive training process, where a huge
quadratic optimization problem needs to be solved.

Many efforts have been made to design efficient
training algorithms for SVM. One class of algorithms
reduces the optimization problem to a series of small
optimization problems, such as chunking and decompo-
sition methods [5,15,16,21]. The noteworthy sequential
minimal optimization (SMO) algorithm [23] uses only
two training items in each small optimization problem.
The SVMs given by these algorithms and other algo-
rithms, such as [18], correspond to the entire training
data set and are denoted as exact SVM s here.

Another class of algorithms accelerates the training
process by giving up the exact SVM and resorting
to an approximate SVM by, for example, low rank
approximation [12], sampling [1,28], squashing [22], and
other approaches [26].

In this paper, we propose to train an approximate
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SVM with a small number of representatives extracted
from the original training data set, thus reducing the
size of the optimization problem and speeding up the
training process. Theoretical considerations developed
in this paper indicate that, to minimize the difference
between the approximate and exact SVMs, kernel k-
means should be used to extract the representatives.
Here, the difference between exact and approximate
SVMs is measured by the difference between corre-
sponding Gram matrices. It turns out that kernel k-
means is also indicated when the measure is the differ-
ence between the weight vectors of corresponding hyper-
planes, which is a more direct measure of the difference
between two SVMs, though space limits precludes any
discussion here. To achieve better efficiency, we also
propose two efficient implementations that are approxi-
mations to the kernel k-means. Compared with similar
strategies that are limited to a linear kernel [22,29], the
proposed algorithms are applicable to both linear and
non-linear kernels.

In the rest of this paper, section 2 briefly introduces
SVM, section 3 describes the theory and algorithms for
training approximate SVMs, section 4 shows experimen-
tal results, and section 5 concludes the paper.

2 Support Vector Machines

Given a training data set D = {(x1, y1), . . . , (xn, yn)}
of size n, where xi ∈ X is a vector of attributes and
yi ∈ {−1, 1} is a label, for i = 1, · · · , n, the SVM
classifier h∗ is a hyperplane classifier whose weight
vector w∗ =

∑n

i=1 α∗
i yiφ(xi) [27]. The expansion

coefficients α
∗ = [α∗

1 . . . α∗
n]

T
is the solution of the

following quadratic optimization problem

Maximize : W (α) = α
T 1 − 1

2
α

T YT GYα(2.1a)

Subject to : 0 ≤ αi ≤ C, ∀i = 1, 2, ..., n(2.1b)

α
T y = 0,(2.1c)

where C > 0 is the regularization coefficient, 1 is a
vector of ones, G is the Gram matrix with entries
Gij = K(xi,xj), α is a vector of length n, and Y is
an n × n diagonal matrix with diagonal entries Yii =
yi. Here, K is the so-called Mercer kernel satisfying
K(xi,xj) = 〈φ(xi), φ(xj)〉 for all xi,xj ∈ X , and φ is a



mapping from the data space X to a reproducing kernel
Hilbert space H with dot product 〈·, ·〉.

We denote the algorithm that solves optimization
problem (2.1) with Gram matrix G as Aexact, and call
the resulting SVM h∗ the exact SVM. The empirical
time complexity of algorithm Aexact is T (Aexact) =
O(n2) [6], although it could be better in practice [23].

3 Algorithms for Approximate SVM

A generic algorithm Aapprox for training approximate
SVMs is described in Algorithm 1, where it is assumed
that each datum in D has exactly one representative,
which has the same label as the original datum. The
total number k of representatives is pre-specified and
should depend on available computational resources.
The empirical time complexity of Aapprox is thus O(k2)
plus the time complexity of the underlying extraction
algorithm An→k.

Algorithm 1 Algorithm Aapprox

Require: A training data set D of size n, kernel K,
regularization coefficient C, number k of represen-
tatives, representative extraction algorithm An→k.

1: Extract k representatives from D using An→k.
2: Using kernel K and coefficient C, the approximate

SVM h̄ is trained on the k representatives.

The Gram matrix G in problem (2.1) can be re-
written as G = XT X, where X = [φ(x1) . . . φ(xn)].
It can be shown that the approximate SVM h̄ given
by Algorithm 1 can also obtained by solving prob-
lem 2.1 by replacing G with Ĝ = X̂T X̂, where X̂ =
[φ(x̂1) . . . φ(x̂n)] and (x̂i, ŷi) is the representative of
(xi, yi) with ŷi = yi by assumption.

We claim that a good choice of algorithm An→k

should output such a set of representatives that mini-
mizes the difference between two Gram matrices G and
Ĝ, which can be bounded above as follows
∥∥∥G − Ĝ

∥∥∥ =
∥∥∥XT X − X̂T X̂

∥∥∥

≤
∥∥∥X + X̂

∥∥∥
∥∥∥X − X̂

∥∥∥

≤
∥∥∥X + X̂

∥∥∥

√√√√
k∑

j=1

∑

(x,y)∈Dj

‖φ(x) − φ(x̄j)‖2
,(3.2)

where Dj is the set of data in D whose representative is
the j-th representative (x̄j , ȳj).

By minimizing the term inside the square root in
equation (3.2), a good set of representatives can be
obtained (approximately) by applying kernel k-means
with kernel K (see, e.g., [10, 13] for kernel k-means)
to the data of class 1 and those of −1 separately

and combining the resulting feature-space centroids.
Assuming D′ is a cluster of size n′, its representative
x′ is given formally by

(3.3) φ(x′) =
1

n′

∑

x∈D′

φ(x).

This quantity is well defined even if x′ does not exist,
and inner products involving φ(x′) can be computed
without knowing its value explicitly using K.

Let k+ and k− be the number of representatives for
the data of class 1 and −1 respectively, we try k − 1
combinations of k+ and k− satisfying k+ + k− = k

and choose the one that minimizes the term inside the
square root of equation (3.2). For each trial, the time
complexity of kernel k-means is O(n2) [10]. Thus, the
time complexity of Algorithm 1 with above strategy for
representative extraction is O(n2k + k2 + l2), where l is
the size of the largest cluster and the term l2 reflects the
cost of evaluating the kernel between the representatives
of two clusters, which has also been observed in [10].

The above implementation of Algorithm 1 is effi-
cient when one wants to train multiple SVMs with the
same training data set D and the same kernel K, but dif-
ferent values of the regularization coefficient C. In these
situations, the time complexity of above implementation
is O(n2k + k2 + l2) for the first SVM and O(k2) for the
rest, since kernel k-means does not depend on the choice
of C and needs to run once and, because k is usually
small, the Gram matrix can be cached. This compares
favorably with training algorithms for the exact SVM
where the time complexity is always O(n2).

However, the above implementation is not efficient
when one wants to train a single SVM or multiple
SVMs with different kernels. Thus, we provide next two
simplified implementations of Algorithm 1 whose time
complexity is better than O(n2).

First, instead of trying all k − 1 combinations of
k+ and k− for a pre-specified k, we choose k+ =

round
(√

n+
)

and k− = round
(√

n−

)
, where n+ (n−)

be the number of data in class 1 (−1) and round(·) is the
rounding operation. The total number k of representa-
tives becomes k+ + k−. This heuristic was shown to be
effective in [4]. Second, we replace the expensive ker-
nel k-means with less expensive data space clustering
algorithms. Due to its computational efficiency, Prin-
cipal Direction Divisive Partition (PDDP) [3] is used
here, whose time complexity is O(n log k) [20]. Other
algorithms such as standard k-means can also be used.

With these simplifications in mind, we have follow-
ing two implementations of Algorithm 1 which differ on
the definition of a cluster’s representative.

• Algorithm Aφ
approx: The representative of a clus-



ter is defined as the feature space center (3.3). This
strategy can be seen as an approximation to ker-
nel k-means, where there is no further iterations
after clustering initialization (by PDDP) and cen-
troid computation. The resulting implementation
of Algorithm 1 is denoted as Aφ

approx and its time
complexity is O(n log k + k2 + l2).

• Algorithm AP−φ
approx: For a cluster D′ of size n′,

we define its representative x′ as the feature-space
pseudo-center, i.e.,

(3.4) x′ = argmin
x∈D′

∥∥∥∥∥φ(x) − 1

n′

∑

x′′∈D′

φ(x′′)

∥∥∥∥∥ .

Using an explicit datum x′ ∈ D as a representa-
tive substantially reduces the cost of kernel evalua-
tions that involve it, compared to using (3.3). This
pseudo-center can also be seen as a crude approx-
imation to the pre-image defined in [24, 25], where
“argmin” is taken over the entire data space X in-
stead of just D′. The resulting implementation of
Algorithm 1 is denoted as AP−φ

approx and its time com-
plexity is O(n log k + k2). Thus, this algorithm is
faster than algorithm Aφ

approx.

Finally, as a baseline algorithm, the representatives
are chosen by randomly selecting elements from D. This
method is in the class of sampling-based SVM training
algorithms. Here, we arbitrarily partition the training
data set into clusters and defines the representative of a
cluster by arbitrarily drawing a datum from this cluster.
The resulting approximate SVM training method is
denoted as ARnd

approx and its time complexity is O(k2).

4 Experiments

In this section, we compare the proposed algorithms
Aφ

approx and AP−φ
approx, which give approximate SVMs hφ

and hP−φ respectively, against the standard training
algorithm SMO [8, 11, 23] and the baseline algorithm
ARnd

approx, which give the exact SVM h∗ and an approxi-

mate SVM hRnd respectively.
We use four binary classification data sets in our

experiments. The data sets “Adult” and “Web” come
from UCI data mining repository [2], the data set
“MNISTb” is constructed from the MNIST handwritten
digits recognition data set [19] by treating the data
representing digits 1, 2, 3, 4, 5 as class 1 and the data
representing digits 6, 7, 8, 9, 0 as class −1, and the
data set “Yahoo” concerns the prediction of customer’s
behavior and is extracted from a data set [17] of 1
million samples.

We implement Algorithm 1 based on LibSVM [8,
11], an efficient implementation of SMO [23]. The

clustering needed by algorithms Aφ
approx and AP−φ

approx is
performed by a Matlab R© implementation of PDDP [3].
The exact SVM h∗ is given by LibSVM [8, 11]. All
experiments were run on a PC running Windows 2000
Server R© with one Pentium IV 2.8 GHz CPU and 1
GB RAM. The kernel cache is 128MB and the KKT
tolerance is 10−3.

To demonstrate that the proposed strategy can
apply to non-linear kernels, which is an advantage
over other algorithms such as those in [22, 29], we use
Gaussian kernel in all experiments. Furthermore, since
our goal is not to show the superior performance of SVM
compared to other non-SVM methods, a comprehensive
parameter tuning was not performed, thus the error
rates reported here may be worse than those reported
elsewhere.

The results are summarized in Table 1. Taking the
Adult data set as an example, we observe the following
for all data sets. (i) The algorithm Aφ

approx speeds up the
training process significantly with slight loss of accuracy.
The reason for the extended test time of hφ is that hφ

now has “support clusters” instead of “support vectors”,
and the number of data in all support clusters could be
larger than the number of support vectors of h∗. (ii)
The algorithm AP−φ

approx speeds up both training and test

dramatically, but the resulting SVM hP−φ has a rather
high error rate, fairly close to that of hRnd. (iii) The
algorithm ARnd

approx has not only the smallest training
time but also the largest error rate.

Figure 1 compares the scaling behavior of algo-
rithms Aφ

approx, AP−φ
approx, and SMO [8, 23] over the data

sets “Web” and “Adult”, where a nested sequence of
training data sets of increasing size is created [23]. It
can be seen that, in terms of scaling behavior, algorithm
AP−φ

approx is better than algorithm Aφ
approx, both of which

are better than SMO.
In summary, the algorithm Aφ

approx has the best
trade-off in terms of training time, test time, and
classification accuracy.

5 Conclusion and Future Work

Aiming at speeding up the training process of SVM,
we studied a kind of approximate algorithms where the
number of training data is reduced by extracting and us-
ing only a small number of representatives of the original
training data set. We show that, to minimize the dif-
ference between the exact and approximate SVMs, the
kernel k-means should be used to extract the represen-
tatives. We also proposed two efficient implementations
and compared them against SMO [23] and a random-
sampling based algorithm over real data sets, showing
that the algorithm Aφ

approx has the best trade-off be-
tween time complexity and accuracy.



Table 1: Comparison of exact SVM training algorithm SMO [8, 23] and the approximate SVM training
algorithms Aφ

approx, AP−φ
approx, ARnd

approx in terms of corresponding SVMs. T (An→k) is the time used to extract
the representatives. T (SVM) is the time used to solve the optimization problem (2.1). T (Total) = T (An→k) +
T (SVM). “Test Time” is the time used to classify all Ntest test data. Every entry in the row of hRnd takes the
form of “mean ± standard deviation” over 10 independent runs. For each data set, we also show the number of
features d, the number of training data Ntrain, the number of test data Ntest, the regularization coefficient C, and
the parameter σ in the Gaussian kernel K(xi,xj) = exp

(
−σ‖xi − xj‖2

)
.

Data SVMs
Training Time (sec.) Test Time Error Rate

T (An→k) T (SVM) T (Total) (sec.) (%)

Adult (d = 123, Exact SVM h∗ NA 1877 1877 246 4.3

Ntrain = 32561, Approx. SVM hφ 8.8 237 245.8 277 6.1

Ntest = 29589, Approx. SVM hP−φ 9.8 < 0.05 9.8 2 23.3

C = 5, σ = 1.0.) Approx. SVM hRnd 0.7 ± 0.48 0.1 ± 0.32 0.8 ± 0.42 2.1 ± 0.57 23.9 ± 0.17

Web (d = 300, Exact SVM h∗ NA 2908 2908 442 0.2

Ntrain = 49749, Approx. SVM hφ 13.4 474 487.4 559 1.3

Ntest = 38994, Approx. SVM hP−φ 18.4 < 0.05 18.4 4 2.6

C = 5, σ = 1.0.) Approx. SVM hRnd 2.1 ± 0.01 < 0.05 2.1 ± 0.01 2.6 ± 1.07 2.7 ± 0.03

MNISTb (d = 784, Exact SVM h∗ NA 6718 6718 298 1.2

Ntrain = 60000, Approx. SVM hφ 99 2827 2926 605 4.6

Ntest = 10000, Approx. SVM hP−φ 122 < 0.05 122 7 7.3

C = 5, σ = 0.04.) Approx. SVM hRnd 2.7 ± 0.52 0.2 ± 0.42 2.9 ± 0.79 7.8 ± 1.93 9.2 ± 0.73

Yahoo (d = 80, Exact SVM h∗ NA 18437 18437 6055 16.2

Ntrain = 100000, Approx. SVM hφ 31.3 1921 1952.3 4677 19.9

Ntest = 200000, Approx. SVM hP−φ 38.3 1 39.3 23 19.8

C = 1, σ = 0.01.) Approx. SVM hRnd 7.5 ± 0.52 0.1 ± 0.32 7.6 ± 0.53 25.5 ± 2.17 20.3 ± 0.89

Future research directions will focus on (i) devel-
oping a PAC-style bound on the generalization perfor-
mance of hφ given by Aφ

approx, and (ii) designing algo-
rithms that can efficiently compute an approximation
to the feature-space centroid that is better than the
feature-space pseudo-center, thus giving an algorithm
having the speed of AP−φ

approx and the accuracy of Aφ
approx.
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