
TRANSPOSE-FREE MULTIPLE LANCZOS AND ITS APPLICATION
IN PADÉ APPROXIMATION

MAN-CHUNG YEUNG∗ AND DANIEL BOLEY†

Abstract. A transpose-free two-sided nonsymmetric Lanczos method is developed for multiple
starting vectors on both the left and right. The method is mathematically equivalent to the two-sided
methods without look-ahead or deflation steps, but avoids the use of the transpose of the system
matrix. The method is applied to the computation of the matrix Padé approximation to a linear
dynamical system. The result is a method which can be labeled Transpose-Free Matrix Padé Via
Lanczos (TFMPVL). Under certain circumstances, TFMPVL will actually reduce the total number
of matrix-vector products needed. It is illustrated with some numerical examples.

Key words. transpose-free Lanczos method, model reduction, Padé approximation, MPVL
method, TFMPVL method.

1. Introduction. In [1], Aliaga et al. proposed a Lanczos-type method that
extends the classical Lanczos process for single starting vectors to multiple starting
vectors. For convenience, we will refer to this Lanczos method as a Two-Sided Lanczos
procedure. Given a square matrix A ∈ CN×N and two blocks Û ∈ CN×n and V̂ ∈
CN×m of left and right starting vectors, the Two-Sided Lanczos algorithm employs
matrix-vector products involving both A and AH , and generates (i) two sequences of
biorthogonal basis vectors (“Krylov sequences”) for the left and right block Krylov

subspaces induced by the given data; (ii) band matrices H̄ and H̃ that respectively
constitute oblique projections of the matrices A and AH onto the Krylov spaces.
The remarkable feature of the algorithm is that, with a built-in deflation procedure
and employing the look-ahead technique, it can handle the most general case of left
and right block Krylov subspaces with arbitrary sizes of the starting blocks, while all
previously proposed multiple starting Lanczos procedures are restricted to left and
right starting blocks of identical sizes.

The Two-Sided Lanczos procedure has been used in applications in a variety
of areas. For example, it is useful in the solution of linear systems with multiple
right-hand sides and in the computation of approximate eigenvalues of a large matrix
A ∈ CN×N . In the area of multi-input multi-output (MIMO) time-invariant linear
dynamical systems, the Matrix Padé Via Lanczos (MPVL) method (see [12, 14], for
instance) has been proposed to compute Padé approximation of transfer functions of
the form

F(θ) = Û
H

(I− θA)−1V̂(1.1)

in a stable manner using the Two-Sided Lanczos algorithm, where A, I ∈ CN×N , Û ∈
CN×n and V̂ ∈ CN×m.

In this paper, we propose a transpose-free version of the Two-Sided Lanczos
procedure which computes the band matrix H̄ without accessing AH . A transpose-
free version can be useful in certain situations involving sparse matrices, for which the
cost of computing the matrix-vector product can be very different from the cost of

∗Dept. 3036, 1000 East University Avenue, Laramie, WY 82071. E-mail: myeung@uwyo.edu.
This research was supported by A & S Basic Research Grants during the 2001/02 academic year,
University of Wyoming, and in part by NSF grant DMS-0314152.

†Computer Science and Engineering Department, University of Minnesota, Minneapolis, MN
55455. E-mail: boley@cs.umn.edu. This research was supported in part by NSF grant 0208621.

1

computing the vector-matrix product, depending on the storage format, particularly
when attempting to parallelize the process [24, §3.5 & §11.5]. It also can be useful if the
operator is not represented by an explicit matrix A, but rather by a procedure derived
from a differential operator which yields matrix-vector products but not vector-matrix
products.

It is well known that the classical Lanczos process is intimately related to bi-
conjugate gradient (BiCG) method for solving nonsymmetric systems of linear equa-
tions [19, 24]. Transpose-free versions, e.g., CGS [26], BiCGSTAB [28] for single start-
ing vectors and ML(k)BiCGSTAB [29] for multiple left starting vectors, are methods
derived from BiCG which avoid the need for matrix-vector products involving AH .
In this paper, we extend techniques of avoiding matrix-vector multiplies with AH in
the context of solving systems of linear equations to handle the current case of mul-
tiple starting vectors on both the left and right and obtain a method which we label
Transpose-free Multiple Lanczos Procedure (TFMLP). In our discussion, we assume
for simplicity that no deflation or look-ahead steps occur in the Two-Sided Lanczos
procedure, so TFMLP is actually a transpose-free version of the limited Two-Sided
method. Moreover, we will point out how a variation of TFMPVL is closely related
to the band Arnoldi procedure [17] when n = N .

To illustrate the method, we use the particular application of computing Padé
approximations of transfer functions for Multi-Input-Multi-Output (MIMO) time-
invariant linear dynamical systems (1.1). In this application, the ordinary Two-Sided
Lanczos procedure leads to the so-called “Matrix Padé Via Lanczos” (MPVL) method
[12, 14]. Correspondingly, a transpose-free MPVL method (TFMPVL) can be devel-
oped from the TFMLP method. We will see that the Transpose-Free version not only
avoids computation with the adjoint operator, but can also reduce the total number of
matrix-vector products, in the case when the number of output (left) vectors exceeds
the number of input (right) vectors. Though transpose-free algorithms in the con-
text of linear systems of equations are often less stable than the two-sided algorithm
counterparts, we can stablize the method by introducing extra starting vectors in the
spirit of ML(k)BiCGSTAB.

The close relationship between the Lanczos process, Padé approximants, moment
matching, Asymptotic Waveform Evaluation, and Hankel system of equations has
been explored extensively in the literature, see e.g. [8, 15, 18] and the recent survey
[17]. We will give some specifics of this connection relevant to this paper in §5 after
we have introduced the TFMLP method.

The rest of this paper is organized as follows. In §2 we review the Two-Sided
Lanczos algorithm and introduce our notation, in §3 we derive our transpose-free
Two-Sided Lanczos procedure, in §4 we show that TFMLP is closely related to the
band Arnoldi procedure, in §5 and §6 we show how to use this Lanczos procedure
to compute the Padé approximant, and in §7 we illustrate the methods with some
numerical experiments. We end the paper with a preliminary discussion of the issue
of deflation in §8 and some conclusions in §9.

2. Lanczos Procedure for Multiple Starting Vectors. Aliaga, Boley, Fre-
und and Hernández (ABFH) [1] recently developed a Two-Sided Lanczos-type pro-
cedure that handles multiple starting vectors. Let A ∈ CN×N and let n left starting
vectors û1, û2, · · · , ûn ∈ CN and m right starting vectors v̂1, v̂2, · · · , v̂m ∈ CN be

2

of left Krylov vector pk k 1 2 3 4 5 6 7 8 9 10 11 12 · · ·
power of AH : grade gn(k) 0 0 0 1 1 1 2 2 2 3 3 3 · · ·
applied to left starting vector# rn(k) 1 2 3 1 2 3 1 2 3 1 2 3 · · ·

Fig. 2.1. Simple illustration of the grades for the left vectors (2.2a).

given. Define index functions

gn(k) = ⌊(k − 1)/n⌋ , rn(k) = k − n gn(k) ,

gm(k) = ⌊(k − 1)/m⌋ , rm(k) = k − m gm(k) ,
(2.1)

where k = 1, 2, . . . and ⌊ · ⌋ rounds its argument to the nearest integer towards minus
infinity. Note that

gn(jn + i) = j and rn(jn + i) = i

if we write k = jn + i with j ≥ 0 and 1 ≤ i ≤ n. A similar property holds with the
other two index functions.

Now, we set

(a) pk =
(
AH

)gn(k)

ûrn(k) , (b) qk = Agm(k)v̂rm(k) .(2.2)

The index gn(k) and gm(k) are called the grades of pk and qk respectively. They are
non-decreasing step functions of k. Fig. 2.1 illustrates the grade for the left vectors
pk with n = 3 left starting vectors.

The Two-Sided Lanczos procedure generates two sequences {uk′}k′=1,2,··· and
{vk}k=1,2,··· of vectors such that

uk′ ∈ Gk′

(
AH , Û

)
and uk′ ⊥ Gk′−1

(
A, V̂

)
,

vk ∈ Gk

(
A, V̂

)
and vk ⊥ Gk−1

(
AH , Û

)
,

(2.3)

where

Gk′

(
AH , Û

)
def

= span{p1,p2, · · · ,pk′}
Gk

(
A, V̂

)
def

= span{q1,q2, · · · ,qk}.
(2.4)

The subspaces Gk′

(
AH , Û

)
and Gk

(
A, V̂

)
are referred to as the left block Krylov

subspace and the right block Krylov subspace, respectively.
In the following we present some theory regarding the existence of the vector

sequences {uk′}, {vk} based on [1, 12, 16], but using our own notation. The existence
of two such sequences {uk′} and {vk} of vectors can be guaranteed if the following
matrices

Wk =

pH
1 q1 pH

1 q2 · · · pH
1 qk

pH
2 q1 pH

2 q2 · · · pH
2 qk

...
...

...
pH

k q1 pH
k q2 · · · pH

k qk

 , for all k = 1, 2, . . . , ν(2.5)

3

are all nonsingular for some ν.
Lemma 2.1. If all the leading principal submatrices of Wν are nonsingular,

then there exist two sets {uk′}ν
k′=1 and {vk}ν

k=1 of linearly independent vectors which
satisfy properties (2.3). Moreover,

span{u1,u2, · · · ,uk′} = Gk′

(
AH , Û

)
, span{v1,v2, · · · ,vk} = Gk

(
A, V̂

)
,

where k′, k = 1, 2, . . . , ν.
Proof. In fact, if we express vk as

vk = γ
(k)
1 q1 + γ

(k)
2 q2 + · · · + γ

(k)
k−1qk−1 + qk,(2.6)

then (2.3) is equivalent to Wk−1γ
(k) + b = 0 where γ(k) = [γ

(k)
1 , γ

(k)
2 , · · · , γ(k)

k−1]
T

and b = [pH
1 qk,pH

2 qk, · · · ,pH
k−1qk]T . Furthermore, the vk defined by (2.6) satisfies

vk 6⊥ pk for k ≤ ν and hence v1,v2, · · · ,vν are linearly independent. The same
arguments can be applied to the vectors uk′ .

From the definition of qk, we note that qk = Aqk−m for k > m. Applying (2.6)
to itself recursively, we can write vk (k > m) in terms of the previous v1,v2, · · · ,vk−1

as follows,

vk = Avk−m − h̄
(k−m)
k−1 vk−1 − h̄

(k−m)
k−2 vk−2 − · · · − h̄

(k−m)
1 v1 ,(2.7)

where h̄’s are some scalars. A similar equation for vectors uk′ (k′ > n) is also available.
Lemma 2.2. The vectors vk and uk′ in Lemma 2.1 with k > m and k′ > n can

be expressed with m + n + 1 term recursion relationships of the forms

vk = Avk−m − h̄
(k−m)
k−1 vk−1 − h̄

(k−m)
k−2 vk−2 − · · · − h̄

(k−m)
m̄k−m

vm̄k−m
(2.8)

and

uk′ = AHuk′−n − h̃
(k′−n)
k′−1 uk′−1 − h̃

(k′−n)
k′−2 uk′−2 − · · · − h̃

(k′−n)
m̃

k′
−n

um̃
k′

−n
,

where m̄i = max(i − n, 1) and m̃i = max(i − m, 1).
Proof. Noting that vi ⊥ span{p1,p2, . . . ,pi−1},vi 6⊥ pi and pH

i Avk−m =
pH

i+nvk−m = 0 for i ≤ k − m − n − 1, and examining in turn

pH
i vk = pH

i Avk−m − h̄
(k−m)
k−1 pH

i vk−1 − h̄
(k−m)
k−2 pH

i vk−2 − · · · − h̄
(k−m)
1 pH

i v1

for i = 1, 2, . . . , k − m − n − 1, we find all the coefficients in (2.7) zero except

h̄
(k−m)
k−1 , h̄

(k−m)
k−2 , . . . , h̄

(k−m)
m̄k−m

.

Set Vk = [v1,v2, · · · ,vk] and set H̄ =
(
h̄ij

)
i=1,···,ν;j=1,···,ν−m

, the ν × (ν − m)

band matrix with h̄j+m,j = 1; h̄ij = h̄
(j)
i for m̄j ≤ i ≤ j + m − 1; with h̄ij = 0

otherwise. Then the recurrence relations (2.8) can be written in matrix form as

AVν−m = VνH̄ .(2.9)

Similar results can be drawn for the vectors uk′ . We collect these results into the
following.

Theorem 2.3. Let vectors û1, û2, · · · , ûn, v̂1, v̂2, · · · , v̂m be given starting vectors

and let pk’s, qk’s, Gk′

(
AH , Û

)
, Gk

(
A, V̂

)
and Wν be defined as in (2.2), (2.4),

4

(2.5). If all the leading principal submatrices of Wν are nonsingular, then there exist
two sets {uk′}ν

k′=1 and {vk}ν
k=1 of linearly independent vectors, an ν × (ν −m) band

matrix H̄ whose upper bandwidth is n, lower bandwidth is m and in which all the
entries in its lowest diagonal are equal to 1 (h̄j+m,j = 1), and an ν × (ν − n) band

matrix H̃, whose upper bandwidth is m, lower bandwidth is n and in which all the
entries in its lowest diagonal are equal to 1 (h̃j+n,j = 1), such that

span{u1,u2, · · · ,uk′} = Gk′

(
AH , Û

)
, span{v1,v2, · · · ,vk} = Gk

(
A, V̂

)
(2.10)

and

uH
k′vk

{
6= 0 if k′ = k

= 0 if k′ 6= k

for all k′, k = 1, 2, . . . , ν. Moreover,

AHUν−n = UνH̃ and AVν−m = VνH̄ ,

where Uk′ = [u1,u2, · · · ,uk′] and Vk = [v1,v2, · · · ,vk].
The Two-Sided Lanczos procedure of [1] is a procedure which computes the quan-

tities Uν ,Vν , H̃ and H̄ in Theorem 2.3. The procedure of [1] also handles the cases
where some Wk is singular with a complete deflation and look-ahread process, but in
our transpose-free algorithm, we will postpone discussion of such complications to a
later section.

3. Transpose-free Lanczos Procedure for Multiple Starting Vectors.
The implementation of the Two-Sided Lanczos procedure involves matrix-vector mul-
tiplications with AH . As mentioned in §1, a number of articles in the literature
have discussed Lanczos implementations without accessing AH , see, for instance,
[10, 13, 19, 20, 21, 24, 25, 26, 28, 29], mostly in the context of solving systems of
linear equations. Techniques of avoiding matrix-vector multiplies with AH in the
classical Lanczos procedure can be generalized to the current case. In this section, we
will give a new variant of a “limited” Two-Sided Lanczos procedure which computes
the H̄ in Theorem 2.3 without using AH . To simplify the derivation, we will suppose
the assumption of Theorem 2.3 holds so that the deflation or look-ahead features in
the full Two-Sided algorithm are not needed.

We continue to use the notation introduced in §2. Also, we assume m ≤ n in the
following derivation. Now, we consider the equation (2.8),

vk+m = Avk − h̄
(k)
m̄k

vm̄k
− h̄

(k)
m̄k+1vm̄k+1 − · · · − h̄

(k)
k+m−1vk+m−1,

where k = 1, 2, · · · , ν − m. Because of the property (2.3), the coefficients h̄
(k)
i are

determined by

h̄
(k)
i =

pH
i Avk − pH

i

∑i−1
j=m̄k

h̄
(k)
j vj

pH
i vi

, i = m̄k, m̄k + 1, . . . , k + m − 1.

Thus, we have the following naive procedure to compute the right Lanczos vectors
{vk} and matrix H̄, while computing only the left Krylov vectors {pk} instead of the
left Lanczos vectors {uk}.

5

Lanczos Procedure Version 1.
1. Compute vectors {vk}m

k=1 such that vk ⊥ span{û1, · · · , ûk−1} and vk ∈
span{v̂1, · · · , v̂k}, and compute pk = (AH)gn(k)ûrn(k), k = 1, . . . , m, ac-
cording to (2.2a).

2. For k = 1, 2, · · · , ν − m
3. m̄k = max{k − n, 1};
4. For i = m̄k, m̄k + 1, · · · , k + m − 1

5. h̄
(k)
i =

pH
i Avk − pH

i

∑i−1
j=m̄k

h̄
(k)
j vj

pH
i vi

;

6. End

7. h̄
(k)
k+m = 1;

8. vk+m = Avk − ∑k+m−1
i=m̄k

h̄
(k)
i vi;

9. Compute pk+m = (AH)gn(k+m)ûrn(k+m) according to (2.2a).
10. End
It is obvious that Version 1 can be simplified by noting that the summations in

the numerators of Line 5 are just partial sums of the summation in Line 8. So, we can
accumulate the summations one term at a time into a temporary vector vtmp, and
use the partial sums stored in vtmp directly in Lines 5 and 8 as they are generated.
This avoids effectively having to accumulate the summations multiple times and also
eliminates one redundant matrix-vector product Avk. Since m ≤ n, we have that
gn(k) = 0 and rn(k) = k during the initial stage of processing the starting vectors
when 1 ≤ k ≤ m. We also introduce a scalar variable ck defined by ck = pH

k vk to
save repeatly computing the inner product pH

i vi. Thus, we arrive at the following
version.
Lanczos Procedure Version 2.

1. Compute vectors {vk}m
k=1 such that vk ⊥ span{û1, · · · , ûk−1} and vk ∈

span{v̂1, · · · , v̂k}.
2. Compute pk = ûk for k = 1, . . . , m.
3. Compute ck = pH

k vk for k = 1, . . . , m.
4. For k = 1, 2, · · · , ν − m
5. m̄k = max{k − n, 1};
6. vtmp = Avk;
7. For i = m̄k, m̄k + 1, · · · , k + m − 1

8. h̄
(k)
i = pH

i vtmp/ci;

9. vtmp = vtmp − h̄
(k)
i vi;

10. End

11. h̄
(k)
k+m = 1;

12. vk+m = vtmp;

13. pk+m = (AH)gn(k+m)ûrn(k+m);
14. ck+m = pH

k+mvk+m;
15. End
Based on the above Lanczos version, we are now ready to give a transpose-free

procedure to compute H̄. In order to remove the AH which is used to calculate pk+m

in Line 13, we introduce an auxiliary vector ψk defined by

ψk = Agn(k)vk(3.1)

for k = 1, 2, A note of terminology: ψk represents the k-Krylov vector indirectly,
in that it has an extra factor of Agn(k). We will say that the grade of ψk is gn(k),

6

and is set to match the grade of the corresponding left vector pk.
By combining (3.1) with (2.2a), we can fold powers of A from the left vectors

into the right vectors:

pH
k vk =

(
ûH

rn(k)A
gn(k)

)
vk = ûH

rn(k)

(
Agn(k)vk

)
= ûH

rn(k)ψk.(3.2)

The inner product in line 14 can be written as an inner product of ûrn(k+m) and ψk+m.
Likewise, the inner product in line 8 can be written as the inner product between ûrn(i)

and a temporary vector ψtmp, but the grade of ψtmp must be adjusted to match that

of the corresponding vector pi. That is, we must have that ψtmp = Agn(i)vtmp, to
match the condition

pH
i vtmp =

(
ûH

rn(i)A
gn(i)

)
vtmp = ûH

rn(i)

(
Agn(i)vtmp

)
= ûH

rn(i)ψtmp.

Assuming we can keep the grade of ψtmp adjusted correctly, we can eliminate any

explicit reference to the left Krylov vectors {pk} or the transposed operator AH .
Hence we can eliminate lines 2 and 13 where the left Krylov vectors are computed.

It remains to show how ψk can be recursively computed from the previous ψ’s,
and how the grade of the temporary vector ψtmp can be adjusted on the fly. Our goal

is to compute H̄ and the right vectors ψ and optionally the vectors v.
To keep track of the grade of the temporary vector ψtmp, we introduce a variable

grade = gn(m̄k). Examining Version 2, within each pass through the outer k–loop
(lines 4–15), we initialize

ψtmp = Agn(k)−1vtmp = Agn(k)vk = ψk.(3.3)

When we first enter the inner i–loop (lines 7–10), the grade of ψtmp must match the
that of the first p vector we apply in line 8, namely pm̄k

. But k − n ≤ m̄k ≤ k by
the definition in line 5, hence gn(k) − 1 ≤ gn(m̄k) ≤ gn(k). Hence the initial grade
of ψtmp is either correct or must be incremented by 1. As we progress through the
i–loop, we access the left vectors in increasing order of grade, so occasionally we will
have to increment the grade again. If we started with n left vectors, then this grade
would have to be incremented only once every n passes through the i–loop, and if
n ≥ m, this incrementing happens at least once, but no more than two times. So we
add code to the i–loop to increment the grade of ψtmp when it is necessary.

At the end of each pass through the k–loop, we generate a new vector ψk+m(=
ψtmp) in line 12. The grade of ψtmp at the end of the pass through the k–loop is the
grade it has when we leave the inner i–loop, namely gn(k + m − 1). Hence we need
to add code to possibly increment the grade one last time so that the grade of the
stored vector ψk+m is gn(k + m). Since the vector ψk+m is computed at the end of
the k–loop, we can use the space to be occupied by ψk+m to store the value of ψtmp.

Combining all these manipulations yields the Transpose-free Multiple Lanczos
Procedure (TFMLP).

Algorithm 3.1. Transpose-free Multiple Lanczos Procedure (TFMLP)
Given m right starting vectors {v̂k}m

k=1 and n left starting vectors {ûk′}n
k′=1 with

m ≤ n. Suppose the assumption of Theorem 2.3 holds. The following algorithm
computes the matrix H̄ = {h̄ij} (and optionally Vν) in Theorem 2.3 where h̄ij = h̄

(j)
i .

1. Compute vectors {vk}m
k=1 such that vk ⊥ span{û1, · · · , ûk−1} and vk ∈

span{v̂1, · · · , v̂k}.
2. For k = 1, 2, . . . , m, do: set ψk = vk and compute ck = ûH

k vk.

7

3. For k = 1, 2, 3, · · ·
4. m̄k = max{k − n, 1};
5. grade = gn(m̄k);
6. ψk+m = A1+grade−gn(k)ψk(and optionally vk+m = Avk);
7. For i = m̄k, m̄k + 1, · · · , k + m − 1
8. If gn(i) > grade
9. ψk+m = Aψk+m;
10. grade = grade + 1;
11. End

12. h̄
(k)
i = ûH

rn(i)ψk+m / ci;

13. ψk+m = ψk+m − h̄
(k)
i ψi(and optionally vk+m = vk+m − h̄

(k)
i vi);

14. End

15. h̄
(k)
k+m = 1;

16. If gn(k + m) > grade
17. ψk+m = Aψk+m;
18. End
19. ck+m = ûH

rn(k+m)ψk+m;

20.End
Note that in the above algorithm, we have expressed all the quantities necessary

to carry out the iteration, namely the h̄’s, ψ’s, without using the v vectors. The v
vectors are needed only to define the new v vectors, and hence need to be computed
only if the user needs them explicitly. In addition, we note the extra code needed to
adjust the grades of ψtmp (actually stored in ψk+m) appears in lines 8–11 and 16–18.

It is often the case in practice that the norms ‖ψk‖2 become very large or very
small as Algorithm 3.1 progresses, and as a result, the matrix H̄ obtained by the
algorithm can become very close to singular. So, it is necessary either to normalize
the vectors ψk or to balance H̄ in order to make the algorithm more practicable.

For that purpose, let Λν = diag{λ1, λ2, · · · , λν} be a nonsingular diagonal matrix
and let

Ĥ = Λν H̄Λ−1
ν−m and Ṽν = VνΛ

−1
ν .(3.4)

Because of equation (2.9), Ĥ and Ṽν are related by

AṼν−m = ṼνĤ .

We now modify Algorithm 3.1 to an algorithm which directly computes the ma-

trix Ĥ (and optionally Ṽν). To do so, we redefine the variables ck, h̄
(k)
i and ψk in

Algorithm 3.1 as follows

ĥ
(k)
i

def

= λih̄
(k)
i λ−1

k ; φk
def

= ψk/λk; bk
def

= ck/λk; (optionally ṽk
def

= vk/λk).(3.5)

With these new definitions, Algorithm 3.1 becomes
Algorithm 3.2. Scaled Transpose-free Multiple Lanczos Procedure

(Scaled TFMLP) Given m right starting vectors {v̂k}m
k=1 and n left starting vec-

tors {ûk′}n
k′=1 with m ≤ n. Suppose the assumption of Theorem 2.3 holds. The

following algorithm computes the ν × (ν − m) band matrix Ĥ = (ĥij) with ĥij = ĥ
(j)
i

(and optionally the matrix Ṽν) described in equation (3.4).
1. Compute vectors {vk}m

k=1 such that vk ⊥ span{û1, · · · , ûk−1} and vk ∈
span{v̂1, · · · , v̂k}.

8

2. For k = 1, 2, . . . , m, do: define λk, set φk = vk / λk

(and optionally ṽk = φk), and compute bk = ûH
k φk.

3. For k = 1, 2, 3, . . .
4. m̄k = max{k − n, 1};
5. grade = gn(m̄k);

6. φk+m = A1+grade−gn(k)φk(and optionally ṽk+m = Aṽk);
7. For i = m̄k, m̄k + 1, · · · , k + m − 1
8. If gn(i) > grade
9. φk+m = Aφk+m;
10. grade = grade + 1;
11. End

12. ĥ
(k)
i = ûH

rn(i)φk+m / bi;

13. φk+m = φk+m − ĥ
(k)
i φi;(and optionally ṽk+m = ṽk+m − h̄

(k)
i ṽi);

14. End
15. If gn(k + m) > grade
16. φk+m = Aφk+m;
17. End

18. Define ĥ
(k)
k+m;

19. φk+m = φk+m / ĥ
(k)
k+m; (and optionally ṽk+m = ṽk+m / ĥ

(k)
k+m);

20. bk+m = ûH
rn(k+m)φk+m;

21.End

We remark that the λ’s and ĥ’s in Lines 2 and 18 of Algorithm 3.2 can be assigned

any nonzero numbers; A typical choice is to set λk = ‖vk‖2 in line 2 and ĥ
(k)
k+m =

‖φk+m‖2 in line 18. This choice is equivalent to scaling the vectors φk to unit length.

We also remark that Lines 4 - 20 compute the entries of Ĥ in the k-th column.
The k-th column of Ĥ is related to the k-th column of H̄ by

[0, · · · , 0, ĥ
(k)
k−n, · · · , ĥ(k)

k+m, 0, · · · , 0]T

= [0, · · · , 0, λk−nh̄
(k)
k−nλ−1

k , · · · , λk+mh̄
(k)
k+mλ−1

k , 0, · · · , 0]T

according to (3.4), where h̄
(k)
k+m = 1. The {λj}k+m

j=k−n are free parameters set by the
scaling choices in Algorithm 3.2. For j ≤ m, λj is fixed directly by the choice in line

2, and for j > m, λj = ĥ
(j−m)
j λj−m is fixed by the choices made in line 18 during

successive steps.
We compare the costs for Algorithm 3.2 with that of the Two-Sided Lanczos

procedure without look-ahead or deflation in Table 4.1. There may be many variants
of the limited Two-Sided procedure. In §7, we construct a version of the MPVL
method for the purpose of making a comparison of the TFMPVL method with MPVL.
The last column of Table 4.1 reflects the cost of the Two-Sided Lanczos procedure
that underlies the MPVL produced there.

In arriving at the formulas in Table 4.1, we note that the power 1+grade−gn(k)
of A in Line 6 of Algorithm 3.2 is zero whenever k > n. Hence this line normally does
not involve a multiplication by A. The multiplication by A normally occurs only in
Lines 9 and 16. In each pass through the k–loop (Lines 4 - 20), the multiplication
by A is guaranteed to occur once and sometimes twice, leading to the average cost
estimate of 1+m/n matrix-vector products given in Table 4.1. Regarding the storage
requirements, the data {φk−n, · · · ,φk+m}, {û1, · · · , ûn} and {bk−n, · · · , bk+m−1} of
storage are required in the process of each k–loop in addition to the matrices A and

9

Ĥ.

4. A Relation to Arnoldi Procedure. In this section, we consider the case
where n = N , that is, the number of the left starting vectors û is equal to the size of
A. Theoretically, the indices k and i on Lines 3 and 7 of Algorithm 3.2 never exceed
N − m and N respectively. Therefore

grade = 0 , 1 + grade − gn(k) = 1 , rn(i) = i , rn(k + m) = k + m

at all stages of the algorithm. Because of these observations, Algorithm 3.2 can be
simplified as

Lanczos Procedure Version 3.
1. For k = 1, 2, . . . , m, do:

(i) compute vk such that vk ⊥ span{û1, · · · , ûk−1} and
vk ∈ span{v̂1 · · · , v̂k};

(ii) define λk, set φk = vk / λk and compute bk = ûH
k φk.

2. For k = 1, 2, 3, . . .
3. φk+m = Aφk;
4. For i = 1, 2, · · · , k + m − 1

5. ĥ
(k)
i = ûH

i φk+m / bi;

6. φk+m = φk+m − ĥ
(k)
i φi;

7. End

8. Define ĥ
(k)
k+m;

9. φk+m = φk+m / ĥ
(k)
k+m;

10. bk+m = ûH
k+mφk+m;

11. End
Since the grade is always zero, the vectors φk are the same as the original vectors

vk except for scaling:

φk+m = ψk+m/λk+m = Agn(k+m)vk+m/λk+m = vk+m/λk+m ,

where λk+m = ĥ
(k)
k+mλk/h̄

(k)
k+m = ĥ

(k)
k+mλk by (3.5) and the fact that h̄

(k)
k+m = 1 from

Algorithm 3.1. Properties (2.3) then imply that

span{φ1,φ2, · · · ,φk} = Gk

(
A, V̂

)
(4.1)

and

φk ⊥ span{p1,p2, · · · ,pk−1} = span{û1, û2, · · · , ûk−1}.(4.2)

The equation in (4.2) holds because k ≤ N − m and pi =
(
AH

)gn(i)
ûrn(i) =

(
AH

)gN (i)
ûrN (i) = ûi by (2.2a) where 1 ≤ i ≤ N .

We now show that Version 3 includes Arnoldi procedure as a special case, when
the left vectors are obtained during the course of the algorithm. Let be given a set
of starting vectors v̂1, v̂2, · · · , v̂m. A band Arnoldi procedure (see, for instance, §6 of
[17]) generates a sequence of vectors {vk}k=1,2,··· such that

span{v1,v2, · · · ,vk} = Gk

(
A, V̂

)
and vH

i vj =

{
1 , i = j
0 , i 6= j

(4.3)

10

Table 4.1

Average cost per k–loop of Algorithm 3.2 and its total storage requirement, compared to the
Two-Sided Lanczos Procedure without deflation or look-ahead.

Item
Average count
Algorithm 3.2
without v’s

Average count
Algorithm 3.2

with v’s

Average count
Two-Sided Lanczos without

deflation or look-ahead

Matrix vector
product

1 +
m

n
2 +

m

n
2

Saxpy m + n + 1 2(m + n) + 1 2(m + n)
Inner product m + n + 1 m + n + 1 2(m + n + 1)

Average Storage

beyond A, Ĥ

(m + 2n + 1)N
+ m + n

(2m + 3n + 2)N
+ m + n

2(m + n + 1)N
+ 2(m + n)

if no deflation appears, where the block Krylov subspace Gk

(
A, V̂

)
is defined by

(2.4). We remark that the band Arnoldi process [17] generates the Arnoldi vectors
one single vector at a time. The Arnoldi vectors can also be generated one block at
a time via a block Arnoldi process [9, 8], using a different way to decide deflations.

Version 3 involves two sets of vectors, {φk}k=1,2,··· and {ûk}k=1,2,···,N . If we
consider the set {ûk} to be a set of free parameters and define λk = ‖vk‖2, ûk = φk

on Line 1(ii), ĥ
(k)
k+m = ‖φk+m‖2 on Line 8 and ûk+m = φk+m on Line 10, then the

vectors φ computed by Version 3 are the Arnoldi vectors and Version 3 is a band
Arnoldi procedure. In fact, the vectors φ computed are unit vectors and satisfy the
Arnoldi properties (4.3) because of (4.1), (4.2) and ûi = φi.

5. A Transpose-free Version of the MPVL Method. In this section, we
present one application of the transpose-free multiple Lanczos procedure of Algorithm
3.2.

We consider the task of model reduction via Padé approximation on a multi-input
multi-output (MIMO) linear dynamical system

C
dx

dt
= −Gx(t) + Rw(t), y(t) = LHx(t),

where C,G ∈ CN×N , R ∈ CN×m, L ∈ CN×n, and w(t),y(t) and x(t) are vector-
valued functions of length m, n and N , respectively. For the sake of simplicity, we
assume the initial condition x(0) = 0. See, for instance, [11, 12, 14, 15].

Corresponding to this system is the matrix-valued transfer function F(z) mapping
the input W(z) to the output Y(z) in frequency domain:

Y(z) = LH(zC + G)−1R · W(z) ≡ F(z) · W(z).(5.1)

To compute F(z), write z = z0 + θ. Then we can express the transfer function in
terms of the matrices and expand it in a power series around z = z0:

F(z) = LH(zC + G)−1R
= LH(z0C + G + θC)−1R
= LH(I + θ(z0C + G)−1C)−1(z0C + G)−1R

= ÛH(I− θA)−1V̂

=

∞∑

k=0

Mkθk,

(5.2)

11

where

A = −(z0C + G)−1C, Û = L, V̂ = (z0C + G)−1R, Mk = ÛHAkV̂.(5.3)

The matrix coefficients Mk’s in the power series are often called the moments or
Markov parameters. Our goal is to seek a new lower order system

dx̆

dt
= Ăx̆ + V̆w(t), y̆(t) = ŬH x̆(t)(5.4)

with frequency domain description

Y̆(z) = ŬH(I− θĂ)−1V̆ · W(z) =
∞∑

k=0

M̆k θk · W(z),

that approximates the original (5.1) in the sense that as many terms M̆k as possible
agree with the corresponding terms Mk in the original power series. Specifically, we
seek a Padé approximant defined in the following definition.

Definition 5.1. An l-th Padé approximant fl(θ) of F(θ + z0) is defined to be a
function of the form

fl(θ) = ŬH(I− θĂ)−1V̆(5.5)

whose Taylor expansion about θ = 0 matches as many leading terms of the Taylor
expansion (5.2) of F(θ + z0) as possible, where Ŭ ∈ Cl×n, V̆ ∈ Cl×m, Ă ∈ Cl×l and I
is the l × l identity matrix. See, for instance, [14, 15].

With the given blocks Û and V̂ of (5.3) as the n left starting vectors and m right
starting vectors respectively in the Two-Sided Lanczos procedure, we obtain data
Uν ,Vν , H̄ and H̃. Because of (2.10), there exist matrices η ∈ Cn×n and ρ ∈ Cm×m

such that

Û = Unη and V̂ = Vmρ.(5.6)

Let H̄k be the k × k principal block of the matrix H̄, 0k′×k denote the k′ × k zero
matrix and set

Dk = UH
k Vk .(5.7)

Then the following theorem [14, 15] provides us an l-th Padé approximant.
Theorem 5.2. Let max{m, n} ≤ l. Then,

fl(θ) =

[
DH

n η

0(l−n)×n

]H (
I− θH̄l

)−1
[

ρ

0(l−m)×m

]
(5.8)

is an l-th Padé approximant of the function F(θ + z0) and

fl(θ) = F(θ + z0) + O(θ⌊l/m⌋+⌊l/n⌋)

on the disc {θ : |θ| < 1/δ} where δ = max{δ(A), δ(H̄l)} and δ(M) is the spectral
radius of a matrix M.

In [12, 14], the MPVL method was proposed to compute fl(θ) based on Theorem
5.2 using the Two-Sided Lanczos algorithm. The MPVL method consists of two steps:
(a) the Two-Sided Lanczos procedure is carried out for l steps to obtain data H̄l,Dn,η

12

and ρ, then (b) the state-space realization (5.4) for l-th order Padé approximant is
formed based on (5.8):

dx̃

dt
= H̄lx̃(t) +

[
ρ

0(l−m)×m

]
w(t), ỹ(t) =

[
DH

n η

0(l−n)×n

]H

x̃(t).

Observe that the Two-Sided Lanczos procedure generates not only the data
H̄l,Dn,η,ρ but Ul,Vl, H̃l as well. However, the data Ul,Vl and H̃l do not con-
tribute directly to compute fl(θ) in (5.8). Instead, they are used only to obtain the
matrix H̄l in the Lanczos procedure itself. The question then arises as to whether
or not it is possible in the Two-Sided Lanczos procedure to bypass the computations
of Ul,Vl and H̃l and still generate the quantities that are related to (5.8). The
transpose-free procedure of Algorithm 3.1 or 3.2 provides an answer to this question.
In the following, we will derive a transpose-free version of the MPVL method from
Algorithm 3.2.

We first express the fl(θ) of (5.8) in terms of the quantities computed by Algorithm

3.2. Since Û = Unη and Dn = UH
n Vn from (5.6) and (5.7), we have

fl(θ) =

[
VH

n Û
0(l−n)×n

]H (
I− θH̄l

)−1
[

ρ

0(l−m)×m

]
.

If we let Ĥl and Λl denote the l × l principal blocks of the matrices Ĥ and Λν

respectively, then we have Ĥl = ΛlH̄lΛ
−1
l from (3.4) and therefore

fl(θ) =

[
VH

n Û
0(l−n)×n

]H (
I− θΛ−1

l ĤlΛl

)−1
[

ρ

0(l−m)×m

]

=

[
Λ−1

n VH
n Û

0(l−n)×n

]H (
I− θĤl

)−1
[

Λmρ

0(l−m)×m

]

=

[
ΩH

n Û
0(l−n)×n

]H (
I− θĤl

)−1
[

Λmρ

0(l−m)×m

]
,

(5.9)

where Ωn = [v1/λ1, · · · ,vn/λn] = [ψ1/λ1, · · · ,ψn/λn] = [φ1, · · · ,φn] by (3.1) and
(3.5).

We are now ready to present a transpose-free implementation of the MPVL
method in the following algorithm. We remark that the initial m × m matrix ρ
can be computed via a modified two-sided Gram-Schmidt-type process [12, 22].

Algorithm 5.3. Transpose-free MPVL (TFMPVL) Given m right start-
ing vectors {v̂k}m

k=1 and n left starting vectors {ûk′}n
k′=1 with m ≤ n. Suppose the

assumption of Theorem 2.3 holds. The following algorithm computes an l-th Padé
approximant fl(θ) of the transfer function F(θ + z0) described in Theorem 5.2.

1. Compute ρ via a modified two-sided Gram-Schmidt-type process
2. Run l steps of the transpose-free Lanczos process with multiple starting vectors

(Algorithm 3.2) to obtain Λm,Ωn,ρ and Ĥl.
3. Compute fl(θ) according to (5.9).
Algorithm 5.3 requires about (1 + m/n)l matrix-vector products with A to get

the l-th Padé approximant fl(θ). When n > m, it is cheaper than MPVL to get fl(θ)
(see Table 4.1).

13

6. An Augmented version of TFMPVL. The derivation of Algorithm 5.3 is
based on Theorem 2.3. If the assumptions of the theorem hold, breakdown will not
occur and deflation (see, for instance, [1]) will not be needed within the first ν steps
when we run Algorithm 3.2. An ν-th Padé approximant fν(θ) is therefore guaranteed.
In practice, however, breakdown and deflation are unavoidable — especially, deflation
is guaranteed to occur at some point. So, they must be handled eventually. In the
following, we propose a use of Algorithm 5.3 which empirical evidence suggests can
help avoid near-breakdown and inexact deflation, but not the exact situation (see
the remarks at the end of this section and see [1, pp.6-8] for the meanings of near-
breakdown and inexact deflation). This idea can also be applied to the MPVL method,
but the effect is not as pronounced as for TFMPVL from our experiments (see §7).

About Algorithm 5.3, we can augment the input/output data Û and V̂ before
using it by adding some random vectors, say r

Û
∈ CN×n0 and r

V̂
∈ CN×m0 , as follows

Ûaug = [r
Û

, Û], V̂aug = [r
V̂

, V̂] .(6.1)

Then, the matrix-valued function F(θ + z0) of (5.2) which we want to estimate is just
the diagonal block at the lower-right corner of the matrix-valued function

Faug(θ + z0) = ÛH
aug(I− θA)−1V̂aug .

We now apply Algorithm 5.3 to find a Padé approximant fl(θ) to the function

ÛH
aug(I− θA)−1V̂aug

and then use the lower-right n×m corner block of fl(θ) as an approximant to F(θ+z0).
We call this approximation approach an Augmented TFMPVL.

We remark that the augmented method does not eliminate exact deflation. Sup-
pose the left (or right) starting vectors Û (or V̂) lies in an invariant subspace of small
dimension. Then exact deflation in the Lanczos process will occur after very few steps
(at most the dimension of the invariant subspace). Suppose we prepend some random

vectors in front on the left of Û (or V̂). Then we will be able to generate larger Krylov
spaces, but the original starting vectors will still lie in some invariant subspace, and
we will still suffer exact deflation after only a few “block” steps. Hence the deflation
problem is postponed, but not eliminated.

The augmented method does not eliminate exact breakdown either. When one of
the leading principal submatrices Wk (defined in §2) is singular, exact breakdown is
likely to occur. For clarity, we let Wk(Bl, Br) denote the corresponding Wk-matrix
associated with left starting block Bl and right starting block Br. It is then easy
to see that Wk(Û, V̂) is a submatrix of Wk′(Ûaug, V̂aug) for some k′ ≥ k. For

Wk′(Ûaug, V̂aug), that adding extra random vectors r
Û

, r
V̂

does not guarantee its

nonsingularity. Let us go to the extreme case, for example, where Wk(Û, V̂) = 0,

m0 = 0 and n0 = 1. It is then obvious that Wk′(Ûaug, V̂aug) is singular. Hence

Lanczos process starting with Ûaug and V̂aug can encounter exact breakdown at step
k′.

However, empirical evidence shown in the next section seems to indicate that
the augmented TFMPVL can have a mitigating effect on near-breakdown and inexact
deflation. Inexact deflation depends on the conditioning among the Lanczos vectors
generated, and the presence of random vectors generally reduces that conditioning,
enhancing the numerical independence among the vectors. In addition the empirical

14

Table 7.1

Collection of some information of the experiments in Example 1 of §7.

Title Size Vectors Exp. Lanc Padé Time (secs) #mat-vecs Fig.

Ûaug V̂aug point steps order TF MP TF MP #
N n+n0 m+m0 z0 l

PEEC 306 1+0 1+0 5π109i 60 120 11.87 12.26 120 120 7.1(a)
PEEC 306 1+5 1+0 5π109i 60 70 10.34 12.26 70 115 7.1(b)

results in the next section illustrate that the use of random vectors can actually help
improve the approximation even with a lower order approximation. The Lanczos
vectors would form a basis for the projection from the original system to the Padé
approximant, and this experimental evidence suggests that the projection arising from
an augmented algorithm is better conditioned.

7. Numerical Experiments. In this section, we present some examples to il-
lustrate the effectiveness of Algorithm 5.3. In all the experiments, we defined the

parameters λk and ĥ
(k)
k+m in Algorithm 3.2 as follows,

λk = ‖vk‖2, ĥ
(k)
k+m = ‖φk+m‖2,

With this choice of the parameters, we can normalize the vectors φ, which could
become very large or small in implementing the algorithm. All the experiments were
performed in Matlab Version 6.0.0.88 Release 12 and some information has been
collected in Tables 7.1, 7.2 and 7.3.

For the purpose of making a comparison of TFMPVL with MPVL, we produced
one version of the MPVL method of our own without deflation and look-ahead. This
version of MPVL just combined a scaled Two-Sided Lanczos procedure and formula
(5.9). In the scaled Two-Sided Lanczos procedure, the Lanczos vectors u and v (see
Theorem 2.3) are scaled to unit vectors. We remark that this version of MPVL does
not reduce to the PVL method proposed in [11] since we did not compute or use the

eigenvalues of Ĥ.
In the implementations of TFMPVL and MPVL, we did not explicitly form the

matrix A in (5.3). Instead, we computed the matrix-vector products involving A and
AH with (respectively):

Av = −(z0C + G)−1(Cv)(7.1)

AHv = −CH
[
(z0C + G)−Hv

]
.(7.2)

Example 1. This is the same example used in [2, 3, 11] from a three-dimensional
electromagnetic problem model via PEEC (partial element equivalent circuit) [23]. It
is regarded as a benchmark and difficult test problem. The matrices C and G have
order 306 and both L and R are column vectors. Hence, the transfer function F(z)
in (5.2) is a scalar-valued function.

In [2, 3, 11], the magnitude of F(z) with z = 2πwi was approximated over the
frequency interval 1 ≤ w ≤ 5×109 with a 60-th Padé approximant f60(θ) in Theorem
5.2 obtained by the PVL method, where θ = 2πwi−z0. The numerical results therein
illustrated that the approximation produced by PVL was indistinguishable from the
true |F(2πwi)|.

15

We repeated the above experiment with the expansion point z0 = 5π109
√
−1.

TFMPVL (Algorithm 5.3) and MPVL were employed to compute f60(θ). We plotted
the results in Fig. 7.1(a) and observed that the approximation by MPVL was almost
indistinguishable from the exact curve, but that made by TFMPVL was not accurate
in the high and low frequency w-regions. Theoretically, both PVL and TFMPVL
produce the same f60(θ). Numerically, however, the TFMPVL method is less stable
in this experiment.

We continued the experiment of Fig. 7.1(a). This time, we used Augmented
TFMPVL and MPVL of §6 with m0 = 0 and n0 = 5 to compute f60(θ). We can
see from the results plotted in Fig. 7.1(b) that the approximation by TFMPVL has
been improved and matches the exact curve very well. However, the approximation by
MPVL becomes worse. The corresponding relative errors |F(2πwi)−f60(θ)|/|F(2πwi)|
were shown in Fig. 7.2(a).

In order to provide an explanation to the phenomenon observed, we measured
the conditioning (numerical independence) among the Lanczos vectors u and v (see
Theorem 2.3) and the sizes of their inner-products uH

k vk generated in the experiments
of Fig. 7.1(a) and Fig. 7.1(b) respectively.

Noting that Algorithm 3.2, based on which TFMPVL was built, does not directly
generate u’s or v’s, we therefore computed the condition numbers for the φ’s instead.
Moreover, we only computed the condition numbers of v’s from the Two-Sided Lanc-
zos procedure of MPVL as an illustration. The 2-norm condition numbers of the
matrices [φ1,φ2, . . . ,φk+m] and [v1,v2, . . . ,vk+m] against the iteration index k were
plotted in Fig. 7.3(a). With the addition of some random vectors, we can see that the
conditioning among the φ’s generated in Fig. 7.1(b) has had a big improvement over
that generated in Fig. 7.1(a). On the other hand, however, the conditioning among
the v’s from MPVL almost experienced no improvement.

If inner-products among Lanczos vectors were too close to zero in magnitude, a
Lanczos procedure would face instability or even break down. The inner-products
in Algorithm 3.2 (TFMLP) are already computed as the bk+m’s. Let ck+m denote
the inner-product uH

k+mvk+m in the Two-Sided Lanczos procedure of MPVL. In Fig.
7.2(b), we plotted the absolute values of b’s and c’s obtained in the experiments of
Figures 7.1(a) and 7.1(b). From the figure, we can see that the |bk+m| related to Fig.
7.1(a) quickly dropped down to a size of 10−16 as k increased. However, the quick
drop-down was overcome in the experiment of Fig. 7.1(b) by adding some random
vectors. Surpringly, |ck+m| behaved reversely. It tended to become even smaller with
the existence of random vectors.

The above experiments about condition numbers and inner-products illustrate
that inexact deflation and near-breakdown in Algorithm 3.2 can be partially side-
stepped with the addition of random vectors. For Two-Sided Lanczos procedure,
however, the situation can be made even worse. The observations help to explain
why Augmented TFMPVL in Fig. 7.1(b) outperformed TFMPVL in Fig. 7.1(a) and
Augmented MPVL in Fig. 7.1(b) behaved not as well as MPVL in 7.1(a).

Some information of the experiments in Example 1 has been collected in Table
7.1 for a quick reference.

Example 2. The test data used in this example were from Benchmark examples for
model reduction of linear time invariant dynamical systems, The Control and Systems
Library SLICOT [7]. Information of the experiments carried out were collected in Ta-
ble 7.2 which shows 1) test data we selected from the library; 2) corresponding system
dimensions; 3) numbers of columns in input and output matrices; 4) expansion points

16

Table 7.2

Collection of some information of the experiments in Example 2 of §7.

Title Size Vectors Exp. Lanc Padé Time (secs) #mat-vecs Fig.

Ûaug V̂aug point steps order TF MP TF MP #
N n+n0 m+m0 z0 l

Tline 256 2+0 2+0 2π109 30 30 1.23 1.37 60 60 7.3(b)
CD-player 120 2+0 2+0 102π 30 30 0.20 0.09 60 60 7.4(a)
CD-player 120 2+2 2+0 102π 40 30 0.31 0.14 60 78 7.4(b)

MNA1 578 9+0 9+0 1010π 90 20 14.90 14.07 180 180 7.5(a)
MNA4 980 4+0 4+0 1010π 40 20 23.90 23.44 80 80 7.5(b)
MNA4 980 4+4 4+0 1010π 56 21 25.14 31.77 84 108 7.6(a)
MNA3 4863 22+0 22+0 1010π 220 20 11613 11670 440 440 7.6(b)
MNA2 9223 18+0 18+0 1010π 180 20 51535 52280 360 360 7.7(a)
MNA5 10913 9+0 9+0 1010π 90 20 2688 2671 180 180 7.7(b)
MNA5 10913 9+9 9+0 1010π 126 21 2822 3613 189 234 7.8(a)

ISS 270 3+0 3+0 20π 30 20 0.29 0.15 60 60 7.8(b)

Table 7.3

Collection of some information of the experiments in Example 3 of §7. TFMPVL and MPVL
were applied to (5.2).

Title Size Vectors Exp. Lanc Padé Time (secs) #mat-vecs Fig.

Ûaug V̂aug point steps order TF MP TF MP #
N n+n0 m+m0 z0 l

Power 421 4+0 2+0 2π105 60 45 23.80 17.10 90 118 7.9(a)
Plants
Power 421 4+4 2+0 2π105 60 37 19.99 16.83 74 114 7.9(b)
Plants

z0 used; 5) Lanczos steps l performed in the construction of Padé approximations;
6) Padé orders ⌊l/(m + m0)⌋ + ⌊l/(n + n0)⌋ of the corresponding approximations (
see Theorem 5.2); 7) operation times in seconds consumed by TFMPVL and MPVL;
8) actual numbers of matrix-vector multiplies performed by TFMPVL and MPVL in
the computations; 9) figures in which numerical results were plotted.

Overall, the performance of TFMPVL and MPVL were quite similar on the data
that we selected. In the case where n + n0 > m + m0, TFMPVL performed slightly
better. The experiments illustrated that the addition of random vectors could help
improve the stability of both methods. In terms of operation time, TFMPVL was
about the same with MPVL when m = n and faster than MPVL when m < n in most
cases. It is because the overall computational cost of TFMPVL is less than that of
MPVL in general when n ≥ m (see Table 4.1).

Example 3. In [4, 5, 6], Benner et al collected many examples for the numerical
solution of continuous-time and discrete-time algebraic Riccati equations. This third
example is the 421 × 421 system from Example 20 of [4] which describes a problem
arising in power plants. The matrix C is an identity matrix. Both their (output)
matrix Lo and their (input) matrix Ro contain 211 columns. We generated the data
by the Matlab function carex provided by [4].

In this example, we picked the first four and the first two columns of Lo and

17

Table 7.4

Collection of some information of the experiments in Example 3 of §7. TFMPVL and MPVL
were applied to (7.3).

Title Size Vectors Exp. Lanc Padé Time (secs) #mat-vecs Fig.

Ûaug V̂aug point steps order TF MP TF MP #
N n+n0 m+m0 z0 l

Power 421 2+2 4+0 2π105 60 30 2.65 16.90 120 120 7.10(a)
Plants
Power 421 2+6 4+0 2π105 60 22 2.27 15.74 88 116 7.10(b)
Plants

Ro as our (output) matrix L and (input) matrix R respectively. We simulated the
4 × 2 matrix-valued function F(z) of (5.2) with z = 2πwi over the frequency interval
1 ≤ w ≤ 1012. A 60-th Padé approximant f60(θ) in Theorem 5.2 was computed by
TFMPVL of Algorithm 5.3 and our version of MPVL respectively, where θ = 2πwi−z0

and the expansion point z0 = 2π105. Numerical results of the approximation to the
(1, 2)th element of F(z) are showed in Figures 7.9(a) and 7.9(b).

We can see that TFMPVL performs better than MPVL in this experiment. With
the addition of 4 random vectors (i.e., n0 = 4), the approximation by TFMPVL is
even better while that by MPVL becomes worse (see Fig. 7.9(b)). Noting that n > m,
TFMPVL needs fewer matrix-vector multiplies to get f60(θ) compared to MPVL (see
Table 4.1). An actual count of the numbers of matrix-vector multiplies is listed in the
column under “#mat-vecs” in Table 7.3. One shortcoming about TFMPVL in these
experiments is that the operation time consumed was longer than that by MPVL. It is
not hard to find the reason. Consider the experiment of 7.9(a) for example. TFMPVL
performed 90 matrix-vector multiplies with A and, meanwhile, MPVL performed 59
with A and 59 with AH . However, we observed that computing Av by (7.1) took
much longer in our Matlab implementation than computing AHv by (7.2). As a
result, the operation time consumed by TFMPVL was longer.

To reduce the operation time for TFMPVL, we can use the conjugate-transpose
of F(z) instead:

F(z)H = RH(z̄ CH + GH)−1L.(7.3)

The matrix-vector multiplies in TFMPVL will then all have the form AHv. We
carried out experiments according to this idea and results of the approximation to
the abolute value of the (2, 1)th element of F(z)H were plotted in Figures 7.10(a) and
7.10(b) respectively. Note that the output matrix now is R which has 2 columns and
the input matrix is L that contains 4 columns. Therefore, n = 2 and m = 4. Recall
that TFMPVL requires n ≥ m as a prerequisite to implement. To solve the problem,
we added some random vectors to Û to increase n and used Augmented TFMPVL in
the experiments. Some information has been collected in Table 7.4. From Table 7.4,
we can see that the operation time taken by TFMPVL has been significantly reduced
(compare the “Time” columns of Tables 7.3 and 7.4). We also applied MPVL to (7.3)
for a comparison to TFMPVL.

8. Discussion: Detecting Deflation. In this section, we present some steps to
take with the eventual goal of handling the deflation issue in transpose-free multiple
Lanczos procedure. Since it is complicated and difficult to consider deflation and
breakdown simultaneously, we only consider deflation and assume that no breakdown

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

Dotted: MPVL

Dashed: TFMPVL

PEEC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

Dotted: MPVL

Dashed: TFMPVL

PEEC

Fig. 7.1. Graphs of |F(2πwi)| and |f60(θ)|. Expansion point z0 = 5π109
√
−1. (a) f60(θ) was

computed by ordinary TFMPVL and MPVL. (b) f60(θ) was computed by Augmented TFMPVL and
MPVL with m0 = 0 and n0 = 5. Solid: exact; Dotted: MPVL; Dashed: TFMPVL.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−15

10
−10

10
−5

10
0

10
5

10
10

(a) frequency (w)

re
la

tiv
e

er
ro

r

Dotted: MPVL

Dashed: TFMPVL

PEEC

0 10 20 30 40 50 60
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(b) iteration k

in
ne

r
pr

od
uc

t

TFMPVL of Fig. 7.1(b)

TFMPVL of Fig. 7.1(a)

MPVL of Fig. 7.1(a)

MPVL of Fig. 7.1(b)

PEEC

Fig. 7.2. (a) Relative errors of the approximation in Fig. 7.1(b). Dotted: MPVL; Dashed:
TFMPVL. (b) The absolute values of inner-product bk+m in Algorithm 3.2 and the inner-product
ck+m = uH

k+m
vk+m in the Two-Sided Lanczos procedure used by MPVL of our version against

iteration index k. Solid: TFMPVL in Fig. 7.1(a); Dashed: TFMPVL of Fig. 7.1(b); Point: MPVL
in 7.1(a); Circle: MPVL in 7.1(b).

will occur. Of the two issues, deflation is almost guaranteed to occur eventually
whereas “look-ahead”-style breakdown occurs only in exceptional cases. For this
reason, we choose to devote our discussion to deflation, and reserve our discussion of
breakdown for a future paper.

In the following, we will assume no breakdown occurs. Since transpose-free mul-
tiple Lanczos procedure, say, Algorithm 3.1, only computes the data H̄ and ψk, we
have to detect through them deflations among the left Lanczos vectors (2.10)

u1,u2,u3, . . .

or among the right Lanczos vectors (2.10)

v1,v2,v3, . . .

If some vk linearly depends on previous v-vectors, then vk must be zero and therefore,

19

0 10 20 30 40 50 60
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

(a) iteration k

co
nd

iti
on

 n
um

be
r

TFMPVL of Fig. 7.1(a)

TFMPVL of Fig. 7.1(b)

MPVL of Fig. 7.1(b)

MPVL of Fig. 7.1(a)

PEEC

10
0

10
2

10
4

10
6

10
8

10
10

10
0

10
1

10
2

10
3

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

TLINE

Fig. 7.3. (a) 2-norm condition numbers of the matrix [�1,�2, . . . ,�k+m] in Algorithm 3.2 and
the matrix [v1,v2, . . . ,vk+m] in the Two-Sided Lanczos procedure used by MPVL of our version
against iteration index k. Solid: TFMPVL in Fig. 7.1(a); Dashed: TFMPVL of Fig. 7.1(b);
Point: MPVL in 7.1(a); Circle: MPVL in 7.1(b). (b) Graphs of the absolute values of the
(1, 1)th elements of F(2πwi) and f30(θ). f30(θ) was computed by ordinary TFMPVL and MPVL
respectively. Expansion point z0 = 2π109. Solid: exact; x-mark: MPVL; Circle: TFMPVL.

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

(a) frequency (w)

|F
(

2
π

w
 i)

|

CD−PLAYER

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

(b) frequency (w)

|F
(

2
π

w
 i)

|

CD−PLAYER

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

Fig. 7.4. (a) Graphs of the absolute values of the (1, 2)th elements of F(2πwi) and f30(θ).
f30(θ) was computed by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 102π.
(b) Graphs of the absolute values of the (1, 2)th elements of F(2πwi) and f40(θ). f40(θ) was computed
by Augmented TFMPVL and MPVL respectively. Expansion point z0 = 102π, m0 = 0 and n0 = 2.
Solid: exact; x-mark: MPVL; Circle: TFMPVL.

ψk = Agn(k)vk = 0 by (3.1). So, we can tell a deflation among the right Lanczos
vectors by looking at whether or not ψk is 0.

To detect deflations among the left Lanczos vectors, we can look at ck+m in Line
19 of Algorithm 3.1. According to Line 19,

ck+m = ûH
rn(k+m)ψk+m = ûH

rn(k+m)A
gn(k+m)vk+m = pH

k+mvk+m

by (3.1) and (2.2). For the vector pk+m, there are two situations in which it can
make ck+m zero: (i) pk+m is linearly dependent on previous p’s (deflation occurs);
(ii) pk+m is independent of previous p’s but still ck+m = 0 (breakdown occurs). So, if
we assume no breakdown occurs, ck+m = 0 will imply that pk+m depends on previous
p’s. Therefore, we can tell a deflation among the left Lanczos vectors by looking at
whether or not ck+m is 0.

20

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact
x−mark: MPVL
Circle: TFMPVL

MNA1

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

MNA4

Fig. 7.5. (a) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f90(θ).
f90(θ) was computed by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 1010π.
(b) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f40(θ). f40(θ) was computed
by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 1010π. Solid: exact; x-mark:
MPVL; Circle: TFMPVL.

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

MNA4

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

MNA3

Fig. 7.6. (a) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f56(θ).
f56(θ) was computed by Augmented TFMPVL and MPVL respectively. Expansion point z0 = 1010π,
m0 = 0 and n0 = 4. (b) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and
f220(θ). f220(θ) was computed by ordinary TFMPVL and MPVL respectively. Expansion point
z0 = 1010π. Solid: exact; x-mark: MPVL; Circle: TFMPVL.

However, the difficulties of incorporating the above deflation idea into Algorithm
3.1 arise from the fact that the bookkeeping becomes difficult when continuing the
algorithm after some vectors have been deleted as part of the deflation process. When
deflation occurs among the right vectors, the size of the blocks of generated vectors
will be reduced, changing all the indexing introduced in section 2. It will become
necessary to keep the g and r indices of (2.1) for each generated vector explicitly
instead of relying on the formulas (2.1). When deflation occurs on the left, it becomes
necessary not only to change the indexing, but it is also necessary to preserve some
vectors for future use, just as it is done in the two-sided algorithm of [1]. However,
in our transpose-free method, we are not even generating the vectors that would
have to be preserved, so we would have to recover the same information using other
vectors. At the very least, the result will be Extra matrix-vector multiplications

21

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact
x−mark: MPVL
Circle: TFMPVL

MNA2

10
0

10
2

10
4

10
6

10
8

10
10

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL
Circle: TFMPVL

MNA5

Fig. 7.7. (a) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f180(θ).
f180(θ) was computed by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 1010π.
(b) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f90(θ). f90(θ) was computed
by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 1010π. Solid: exact; x-mark:
MPVL; Circle: TFMPVL.

10
0

10
2

10
4

10
6

10
8

10
10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

MNA5

10
0

10
2

10
4

10
6

10
8

10
10

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

ISS

Fig. 7.8. (a) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f126(θ).
f126(θ) was computed by Augmented TFMPVL and MPVL respectively. Expansion point z0 = 1010π,
m0 = 0 and n0 = 9. (b) Graphs of the absolute values of the (1, 1)th elements of F(2πwi) and f30(θ).
f30(θ) was computed by ordinary TFMPVL and MPVL respectively. Expansion point z0 = 20π.
Solid: exact; x-mark: MPVL; Circle: TFMPVL.

needed to be handled every time deflation occurs in right or even in left Lanczos
vectors. The detailed algorithm to continue the transpose-free Lanczos process in
the face of deflation is still under development, even under the assumption of no
breakdown.

9. Concluding Remarks. We have proposed a transpose-free version of a Lanc-
zos procedure for multiple starting vectors for the limited case of no deflation and no
look-ahead Lanczos process. This version was derived from the Two-Sided Lanczos
procedure and includes band Arnoldi procedure as its variant. The method has been
illustrated with the problem of computing a Padé approximation to a given transfer
function and has resulted in a method called TFMPVL. Besides avoiding the need
for explicitly carrying the transpose of the matrix A, TFMPVL reduces the average
number of matrix-vector products per iteration from 2 (which is required by the two-

22

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

POWER PLANTS

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

POWER PLANTS

Fig. 7.9. Graphs of the absolute values of the (1, 2)th elements of F(2πwi) and f60(θ). Ex-
pansion point z0 = 2π105. (a) f60(θ) was computed by ordinary TFMPVL and MPVL respectively;
(b) f60(θ) was computed by Augmented TFMPVL and MPVL with m0 = 0 and n0 = 4 respectively.
Solid: Exact; x-mark: MPVL; Circle: TFMPVL.

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(a) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

POWER PLANTS

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b) frequency (w)

|F
(

2
π

w
 i)

|

Solid: Exact

x−mark: MPVL

Circle: TFMPVL

POWER PLANTS

Fig. 7.10. TFMPVL and MPVL were applied to (7.3). Graphs of the absolute values of the
(2, 1)th elements of F(2πwi)H and f60(θ) are plotted. Expansion point z0 = 2π105. (a) f60(θ) was
computed by Augmented TFMPVL and MPVL with m0 = 0 and n0 = 2 respectively; (b) f60(θ) was
computed by Augmented TFMPVL and MPVL with m0 = 0 and n0 = 6 respectively. Solid: Exact;
x-mark: MPVL; Circle: TFMPVL.

sided MPVL method) to 1+m/n, where m, n are the number of input, output vectors
respectively. In fact, the overall computational cost of TFMPVL is less than that of
MPVL (see Table 4.1). Strictly speaking, TFMPVL is a one-sided procedure. It only
involves matrix-vector multiplies of the form Av if applied to (5.2). In the case where
computing AHv is much faster than computing Av, one may apply TFMPVL to
(7.3) to speed up the overall computation, as we did in Example 3 of §7.

Numerical experiments indicate that, although the TFMPVL method can be less
stable than the original two-sided MPVL method in general when m = n, its numerical
properties can be as favorable as those for MPVL and sometimes even better than
MPVL in the case where m < n. Moreover, by adding some random vectors to the
starting vectors, we may avoid the possible occurrence of near-breakdown and inexact
deflation. We can understand the transpose-free Lanczos method to some extent
through the behavior of the TFMPVL method.

23

In section 8, we gave some discussion of incorporating deflation into the transpose-
free algorithm and also some hints at the difficulties when we do so. This variant of
this algorithm will be addressed in detail in a future paper.

Acknowledgements. The authors wish to thank Profs. Zhao J. Bai and Peter
Benner for their help in setting up the experiments. We would also like to thank Prof.
Lothar Reichel as well as the anonymous referees for their valuable comments on an
earlier version of this paper.

REFERENCES

[1] J. Aliaga, D. Boley, R. Freund and V. Hernández, A Lanczos-type method for multiple starting
vectors, Math. Comp. 69 (2000), pp. 1577-1601.

[2] Z. Bai, P. Feldmann and R. Freund, How to make theoretically passive reduced-order models
passive in practice , in Proceedings of the IEEE 1998 Custom Integrated Circuits Confer-
ence, pp. 207-210. IEEE, 1998.

[3] Z. Bai and Q. Ye, Error estimation of the Padé approximation of transfer functions via the
Lanczos process, Electronic Trans. Numer. Anal. 7, 1-17, 1998.

[4] P. Benner, A. Laub and V. Mehrmann, A collection of benchmark examples for the numerical
solution of algebraic Riccati equations I: continuous-time case, Technical Report SPC
95 22, Fak. f. Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1995. Available
from http://www.tu-chemnitz.de/sfb393/spc95pr.html.

[5] P. Benner, A. Laub and V. Mehrmann, A collection of benchmark examples for the numerical
solution of algebraic Riccati equations II: Discrete-time case, Technical Report SPC 95 23,
Fak. f. Mathematik, TU Chemnitz-Zwickau, 09107 Chemnitz, FRG, 1995. Available from
http://www.tu-chemnitz.de/sfb393/spc95pr.html.

[6] P. Benner, A. Laub and V. Mehrmann, Benchmarks for the Numerical Solution of Algebraic
Riccati Equations, IEEE Control Systems Magazine, Vol. 7, No. 5, pp. 18-28, 1997.

[7] P. Benner, V. Mehrmann, V. Sima, S. Van Huffel and A. Varga, SLICOT - A Subroutine
Library in Systems and Control Theory, June 1997, NICONET Report 97-3.

[8] D. L. Boley, Krylov Space Methods on State-Space Control Models, Circ. Syst. & Signal Proc.
13 #6, pp 733-758, 1994.

[9] D. L. Boley and G. H. Golub, The Lanczos-Arnoldi algorithm and controllability, Systems &
Control Letters 4, pp 317-324, 1984.

[10] T. Chan, L. de Pillis and H. van der Vorst, Transpose-free formulations of Lanczos-type methods
for nonsymmetric linear systems, Numerical Algorithms, 17, pp.51-66, 1998.

[11] P. Feldmann and R. Freund, Efficient linear circuit analysis by Padé approximation via the
Lanczos process, IEEE Trans. Computer-Aided Design 14 (1995), 639-649.

[12] P. Feldmann and R. Freund, Reduced-order modeling of large linear subcircuits via a block
Lanczos algorithm, in Proceedings of the 32nd Design Automation Conference, pp. 474–
479, ACM, San Francisco, 1995.

[13] R. Freund, A transpose-free quasi-minimum residual algorithm for non-Hermitian linear sys-
tems, SIAM J. Sci. Comput., 14 (1993), pp. 470-482.

[14] R. Freund, Computation of matrix Padé approximations of transfer functions via a Lanczos-
type process, in: Approximation Theory VIII, Vol. 1: Approximation and Interpolation, ed.
C. K. Chui and L. L. Schumaker, World Scientific Publishing Co., Inc., Singapore, 1995,
215-222.

[15] R. Freund, Circuit simulation techniques based on Lanczos-type algorithms, in Systems and
Control in the Twenty-First Century, C. I. Byrnes, B. N. Datta, D. S. Gilliam, C. F.
Martin, eds., pp. 171–184, Birkäuser, 1997.

[16] R. Freund, Computation of matrix-valued formally orthogonal polynomials and applications,
Journal of Computational and Applied Mathematics, 127, pp. 173-199, 2001.

[17] R. Freund, Model reduction methods based on Krylov subspaces , Technical report 03/4-01.
Available at http://cm.bell-labs.com/cm/cs/doc/nam.html.

[18] K. Gallivan, E. Grimme, D. Sorensen and P. Van Dooren, On some modifications of the Lanczos
algorithm and the relation with Padé approximations, Mathematical Research Series, 7:87–
116, 1996.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, second edition, The Johns Hopkins
University Press (Baltimore), 1989.

24

[20] M. H. Gutknecht, Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci.
Comput. 14, 1020-1033, 1993.

[21] M. H. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 6(1997), pp. 271-397.

[22] B. N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J., Matrix Anal.
Appl., 13 (1992), pp. 567–593.

[23] A. E. Ruehli, Equivalent circuit models for three-dimensional multi-conductor systems, IEEE
Trans. Microwave Theory Tech., 22:216-221, 1974.

[24] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.
[25] G. L. G. Sleijpen and D. R. Fokkema, BiCGSTAB(k) for linear equations involving unsym-

metric matrices with complex spectrum, Electronic Trans. Numer. Anal. 1, 11-32, 1993.
[26] P. Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM Journal

on Scientific and Statistical Computing, 10(1):36-52, 1989.
[27] M. Steinbuch, P. J. M. Van Groos, G. Schootstra, P. M. R. Wortelboer and O. H. Bosgra, µ-

synthesis for a compact disc player, International Journal of Robust and Nonlinear Control,
8(2):169-189, Feb 1998.

[28] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of non-symmetric linear systems, SIAM Journal on Scientific and Statistical Com-
puting, 12:631-644, 1992.

[29] M. Yeung and T. Chan, ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos
Starting Vectors, SIAM J. Sci. Comput., Vol. 21, No. 4, pp. 1263-1290, 1999.

25

