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From Shortest-path to All-path: The Routing

Continuum Theory and its applications
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Abstract—As a crucial operation, routing plays an important role in various communication networks. In the context of data and sensor networks,

routing strategies such as shortest-path, multi-path and potential-based (“all-path”) routing have been developed. Existing results in the literature

show that the shortest path and all-path routing can be obtained from L1 and L2 flow optimization, respectively. Based on this connection between

routing and flow optimization in a network, in this paper we develop a unifying theoretical framework by considering flow optimization with mixed

(weighted) L1/L2-norms. We obtain a surprising result: as we vary the trade-off parameter θ, the routing graphs induced by the optimal flow

solutions span from shortest-path to multi-path to all-path routing – this entire sequence of routing graphs is referred to as the routing continuum.

We also develop an efficient iterative algorithm for computing the entire routing continuum. Several generalizations are also considered, with

applications to traffic engineering, wireless sensor networks, and network robustness analysis.

Index Terms—Routing continuum, network flow, betweenness centrality.

F

1 INTRODUCTION

Routing is a crucial operation in many types of networks

from communication networks to transportation networks. For

instance, in modern IP-based data networks, shortest path

routing is most commonly used. In traditional telecommu-

nication networks, dynamic alternative routing strategies that

employ paths that are longer than shortest paths have been also

proposed to reduce call blocking probabilities (see, e.g., [1],

[17]). In wireless networks, due to the unstable channel charac-

teristics, using a single “shortest” path (e.g., with link quality

as link weights) for routing is often not the best choice; routing

strategies that go beyond shortest path routing (see, e.g., [4],

[16], [22], [31] and references therein) using multiple paths are

often more effective. In the other extreme, in wireless sensor

networks – due to their power and other resource constraints

– potential-based routing [26] has been proposed, where the

source essentially utilizes all (eligible) paths to transmit data

to the destination. In [26], it is shown that such “all-path”

routing minimizes the total energy dissipation of routing and

thus maximizes the network lifetime. Clearly, what routing

strategies to employ in a network hinges on what objectives are

important in practice, therefore should be optimized. However,

from a theoretical perspective, when using multi-path routing

that goes beyond a single shortest path, two questions arise:

i) what set of paths should be used for routing? and ii) how

traffic should be split (and merged) at any node along the

multiple paths, especially when the paths are not all disjoint?

In addressing these questions, in this paper we consider

routing as flow optimization in a network. Our idea is inspired

by the earlier results where it has been shown that shortest

path routing can be derived from network flow optimization
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with L1 norm [35], whereas potential-based, “all-path” routing

can be derived from network flow optimization with L2-norm

objective [17], [26]. We introduce the network flow opti-

mization problem, with mixed L1/L2-norm objective, which

intuitively can be interpreted as a trade-off between the latency

and energy dissipation of paths used for routing (collectively,

the paths form a routing graph): shorter paths lead to better

routing with low latency, while diffusing traffic along more

paths generally reduces energy dissipation. Using this formu-

lation, we obtain a surprising result: as we vary the trade-

off parameter θ, the routing graphs induced by the optimal

flow solutions span from the shortest-path routing to multi-

path routing with increasing path lengths to the potential-

based (“all-path”) routing – this entire (finite) sequence of

routing graphs is referred to as the routing continuum. Our

theory therefore subsumes the earlier L1 and L2 network flow

optimization results [17], [35] as two extreme points in the

entire routing continuum.

Furthermore, by considering the dual of the mixed L1/L2-

norm network flow optimization problem, we develop an

efficient iterative algebraic process as well as algorithms for

identifying precisely the boundary conditions separating the

finite sequence of routing graphs, and for computing the entire

routing continuum and optimal flow solutions X∗(θ) for any

θ ≥ 0. In particular, X∗(θ) specifies how traffic should be split

and merged in the induced routing graph. We also generalize

the theory to account for multiple flows (traffic demands), link

capacity constraints and heterogeneous L1/L2 link weights,

with applications to traffic engineering and wireless sensor

networks. For instance, given a set of link weights and traffic

demands on a network, our theory can be used to find the

“best” routing graph (i.e., the best mix of shorter and longer

paths) that minimizes the overall maximum link utilization.

In summary, our contributions are i) we develop a unifying

theory using mixed L1/L2-norm network flow optimization

and show that it can generate the entire routing continuum

from shortest-path to “all-path” routing; ii) we develop an

efficient iterative process for computing the entire routing
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continuum and optimal flow solutions X∗(θ) for any θ ≥ 0;
iii) the basic theory is further generalized to account for

multiple flows (traffic demands), link capacity constraints and

heterogeneous L1/L2 link weights, with applications to traffic

engineering and wireless sensor networks. iv) Moreover, by

applying the routing continuum theory, we generalize the

betweenness centrality measure using mixed network flow,

with applications in network robustness analysis. Last but

not the least, while we focus on network routing in this

paper, we believe that our results can be applied to many

other applications where the problems can be cast in terms

of flows in a network. Going beyong a preliminary version

of this work [24], we provide numerical analysis using a

real network topology, i.e., the Abilene network topology, to

illustrate the routing continuum theory. Moreover, we discuss

an application of the routing continuum theory in analyzing

network robustness. Lastly, in section 3.1, we introduce new

theoretical results that the mixed L1- and L2-norm network

flow problem can achieve the optimal trade-off between the

average delay and the average energy consumption in the

network. Due to the limited space, we delegate parts of these

results to the supplementary file [25] of the paper.

The remainder of the paper is organized as follows. In

Section 2 we introduce the basic notations and re-state the

known L1 and L2 flow optimizations using our notations.

In Section 3 the general theory and results using the mixed

L1/L2-norm flow optimization are established, and the iter-

ative computation process and algorithms are described in

Section 4. In Section 5, we consider several generalizations,

with applications to traffic engineering, wireless sensor net-

works, and network robustness analysis. Section 6 discusses

the related work, and the paper is concluded in Section 7.

2 SHORTEST PATH AND “ALL-PATH” ROUTING AS

NETWORK FLOW OPTIMIZATION

In this section, we first introduce the basic notations that

will be used throughout the paper. Then, we illustrate how

shortest path routing and potential-based “all-path” routing can

be formulated as the flow optimization problems in a network

using metric norms (on the flow space). More specifically, the

shortest path routing results from minimizing the (weighted)

L1-norm of flows between a given source-destination pair in a

network, whereas the potential-based, “all-path” routing results

from minimizing the corresponding L2-norm.

2.1 Network and Flows: Basic Notations
We represent a n-node network as an undirected, weighted

graph, G = (V,E,W ), where V = {1, 2, . . . , n} is the set

of vertices, E is the set of edges, and each edge (i, j) ∈ E
is assigned a positive weight wij . W is an n × n matrix,

where each (i, j)-th entry denotes the link weight wij . As G is

undirected, (i, j) and (j, i) represent the same edge in E, and

wij = wji > 0. Define wij = 0 if (i, j) 6∈ E, then the weight

matrix W = [wij ] is symmetric. In particular, if all edges

have a unit weight, i.e., W is a 0-1 matrix, then G represents

a simple graph, and W is the corresponding adjacency matrix.

Let d = [s, t], s, t ∈ V, s 6= t, denote a source-destination

(or source-sink) pair in the network G. A flow of I(d)-
unit amount that flows from source s to destination t is

mathematically defined as a function, X(d) : V × V → R+

(R+ is the set of non-negative real numbers), satisfying the

following constraints:

along one direction: if X
(d)
ij > 0 then X

(d)
ji = 0, (1)

along network edges: if (i, j) 6∈ E then X
(d)
ij = 0, (2)

flow conservation at s: I(d) +
∑n

k=1 X
(d)
ks =

∑n
j=1 X

(d)
sj ,(3)

intermediate node i 6= s, t:
∑n

k=1 X
(d)
ki =

∑n
j=1 X

(d)
ij , (4)

at destination t:
∑n

k=1 X
(d)
kt =

∑n
j=1 X

(d)
tj + I(d).(5)

Note that in this flow definition, for each (undirected) edge

(i, j) ∈ E, both X
(d)
ij and X

(d)
ji are defined, and the constraint

in eq.(1) states that if X
(d)
ij > 0, then X

(d)
ji = 0; or if X

(d)
ji >

0, then X
(d)
ij = 0. It is possible that for (i, j) ∈ E, both

X
(d)
ij = X

(d)
ji = 0. In particular, by the constraint in eq.(2),

X
(d)
ij = X

(d)
ji = 0 for (i, j) 6∈ E. The flow constraints in

eqs.(3)-(5) state that an amount of I(d) units of flow is injected

at source s, and the same amount is removed from destination

t, while the amount of flow entering any intermediate node i
is the same as the amount leaving the node.

Given a flow X(d) between a source-destination pair d =
[s, t], it induces an oriented (or directed) sub-graph of G,

GX(d) = (VX(d) , EX(d)), where an arc 〈i, j〉 ∈ EX(d) and

i, j ∈ VX(d) if and only if X
(d)
ij > 0. As a directed acyclic

graph (DAG) between s and t, GX(d) represents the routes

used to route the flow X(d) (of I(d) units) from source s to

destination t, and we refer to it as the routing graph for the

flow X(d). When GX(d) consists of more than a single path

between s and t, then X
(d)
ij indicates how much flow is routed

along the edge (arc) 〈i, j〉. In general, the flow may be split or

merged1 at nodes in GX(d) , and routed along different paths

between s and d. We will use F (d) to denote the collection

of flows, i.e., all functions that satisfy eqs.(2)-(5).

In the next two subsections we will use two well-known re-

sults [17], [35] to illustrate that certain common routing strate-

gies, namely, shortest path routing and potential-based, “all-

path” routing, can be derived by minimizing the (weighted)

L1-norm and L2-norm, respectively, of flows between a given

source-destination pair in a network. In Section 3 we will

generalize these results and establish that by minimizing

flows using mixed L1-norm and L2-norm, we can generate

a continuum of routing strategies, resulting in a sequence of

routing graphs with varying numbers of paths of differing costs

selected, from the shortest paths to all paths (between a source-

destination pair). Table 1 provides notations used in the paper.

2.2 Shortest-Path Routing & L1-norm Flow Optimization

Without loss of generality, unless otherwise specified, we

assume that s = 1 and t = n, and I(d) = 1. For clarity

of notation, we drop the superscript d from X(d). In other

1. The flow definition implicitly assumes that flows are “infinitely divisible
fluid” – they can be split and merged arbitrarily at any node of the network,
as long as the above flow conservation constraints are met. This mathematical
definition of network flows thus provides an idealized (fluid) abstraction of,
e.g., traffic demands routed from a source to a destination in a communication
network, or commodities transported from a source to a destination in a
transportation network, and so forth.
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TABLE 1

Notations

G = (V,E,W ) G is an undirected graph, with link weight
matrix W , with |V | = n.

d = [s, t] d is a network demand, with source s and
destination t.

θ Trade-off parameter between L1- and L2-
norm objectives in the mixed network flow
optimization problem eq.(18).

X(d) = [X
(d)
ij ],

X = [Xij ],
X∗(θ) = [X∗

ij(θ)]

X(d) is the network flow matrix for the
demand d, where each entry X

(d)
ij rep-

resents the flow distributed on the edge
〈i, j〉. When d = [1, n] is considered, the

superscript (d) is omitted. X∗(θ) is the
optimal flow for the mixed network flow
optimization problem eq.(18).

U = [Ui],
U∗(θ) = [U∗i (θ)]

Ui’s are the Lagrange multipliers of
the flow conservation constraints eq.(7).
U∗i (θ)’s are the optimal values of Ui’s
to the mixed flow optimization problem
eq.(18).

R(θ), R(0),
R(∞)

R(θ) is the routing graph induced by
X∗(θ). In particular, R(0) and R(∞) are
the routing graphs for “all-path” routing
and shortest path routing, respectively.

∆(+)(θ) = [∆
(+)
i (θ)]

∆(−)(θ) = [∆
(−)
i (θ)]

∆(θ) = [∆i(θ)]

∆
(+)
i (θ) (resp. ∆

(−)
i (θ)) is the number of

incoming (resp. outgoing) edges of node
i with no-zero flow in X∗(θ). ∆i(θ) =

∆
(−)
i (θ)−∆

(+)
i (θ).

words, the flow X (as a function) is equivalently specified by

a set of n2 variables, Xij’s, 1 ≤ i, j ≤ n.

Consider the following L1-norm network flow optimization

problem, which can be solved using linear programming (LP).

L1-norm Network Flow Optimization (L1 Primal):

min
X

n∑

i=1

n∑

j=1

wijXij (6)

subject to the flow conservation constraints eqs.(2)-(5), which

are more compactly represented below using Xij’s:

∑

j:(i,j)∈E
Xij −

∑

k:(k,i)∈E
Xki =





1 if i = 1
0 if i = 2, . . . , n− 1
−1 if i = n,

(7)

and Xij ≥ 0, 1 ≤ i, j ≤ n. (8)

Note that the feasible solutions to eq.(6) subject to eqs.(7)

and (8) satisfy constraints eqs.(2)-(5), and an optimal solution

to this must also satisfy eq.(1) automatically. Hence without

loss of generality, when considering the optimization in eq.(6),

we can restrict ourselves to X’s that are flows, i.e., X ∈ F .
Thus we can re-state the optimization in eq.(6) as

min
X∈F

n∑

i

n∑

j

wijXij .

In other words, the optimization solution to eq.(6) is the flow

that minimizes the weighted L1-norm.

To show that the optimal solution to this L1-norm network

flow optimization gives rise to the shortest-path routing, we

consider its dual, stated below in terms of the Lagrange

multipliers −Ui’s (corresponding to the flow conservation

constraints eq.(7)2):

Dual of L1-norm Network Flow Optimization (L1 Dual):

max
U

U1 (9)

subject to Un = 0 and Ui − Uj ≤ wij , ∀(i, j) ∈ E. (10)

Let X∗ denote the optimal flow solution to the primal problem

eq.(6), and U∗ the optimal solution to the dual problem. The

duality and complementary slackness give us the following

relations between X∗
ij’s and U∗i ’s (cf. Lemma 1 in [35] and

the transportation and network flow problems in Chapter 5

in [27]).

if X∗
ij > 0,then U∗i − U∗j = wij ; (11)

and if X∗
ij = 0,then U∗i − U∗j < wij . (12)

Using these relations, the authors in [35], show that the

optimal solution to the dual problem, U∗i ’s, have the following
properties (cf. Theorem 1 and its proof in [35]):

LEMMA 1. Let P be a path from node 1 to node n. If for
each edge (arc) 〈i, j〉 ∈ P , U∗i −U∗j = wij , then P is a shortest

path from node 1 to node n (with respect to the weights wij’s),

and U∗1 =
∑
〈i,j〉∈P wij . Alternatively, if Q is a path from

node 1 to node n that is not a shortest path, then U∗1 <∑
〈i,j〉∈Q wij .

The above lemma implies that for any node i on a shortest

path, U∗i is the shortest-path distance from node i to node

n (the destination). Furthermore, the optimal flow X∗ is

only routed along the shortest paths between source 1 and

destination n. In other words, the resulting routing graph GX∗

is the DAG formed by the shortest paths from 1 to n only.

When there are multiple shortest paths between 1 and n, X∗
ij

specifies the amount of flow carried on the edges of node i
that are on the shortest paths, thus how the flow should be

split among multiple shortest path at node i.

2.3 Potential-based (“All-path”) Routing and L2-norm

Flow Optimization

We now consider the following (weighted) L2-norm network

flow optimization problem:

L2-norm Network Flow Optimization (L2 Primal):

min
X∈F

n∑

i=1

n∑

j=1

wijX
2
ij . (13)

To show that the optimal solution to this L2-norm network

flow optimization gives rise to the potential-based, “all-path”

routing, we again consider its dual, stated below in terms

of the Lagrange multipliers Ui’s (where for convenience we

have used −2Ui’s as the multipliers for the flow conservation

constraints eq.(7)), where the proof is similar to that in [17],

and we omit it here:

Dual of L2-norm Network Flow Optimization (L2 Dual):

max
U

U1 −
1

2

n∑

i=1

∑

j:Ui>Uj

(Ui − Uj)
2

wij
. (14)

2. Note that our Lagrange multipliers are negatives of those used in the
“Dual Shortest Path Formulation (D-SP)” in [35], p. 3.
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subject to Un = 0.
Let X∗ denote the optimal flow solution to the primal

problem eq.(13), and U∗ the optimal solution to the dual

problem. The duality and complementary slackness give us

the following relations between X∗
ij’s and U∗i ’s: for any edge

(i, j) ∈ E,

if U∗i > U∗j , then X∗
ij =

U∗
i −U∗

j

wij
> 0; (15)

and if U∗i ≤ U∗j , then X∗
ij = 0. (16)

If we treat wij as the resistance on edge (i, j) ∈ E, then the

relation eq.(15) gives us precisely Ohm’s law [17], and U∗i
is the voltage (potential) at node i when a unit of current is

injected at source node 1 and removed at sink node n (and

grounded with U∗n = 0). For any (i, j) ∈ E, if U∗i > U∗j ,
then the current Iij flowing from node i to node j along edge

(i, j) is exactly X∗
ij , as Iij = (U∗i − U∗j )/wij = X∗

ij > 0. (In
a electrical network, the reverse current flow, i.e., the current

from node j to node i is defined as Iji := −Iij = −X∗
ij < 0.)

Hence the optimal solution to the dual problem eq.(14), U∗, is
a potential function (the voltage potential in the electrical net-

work G): U∗i is the voltage potentialfrom node i to destination

node n (ground).

For (i, j) ∈ E, define aij := 1/wij , the conductance

on edge (i, j), and for (i, j) 6∈ E, aij = 0. From the

flow conservation constraints (or directly by solving the dual

optimization problem eq.(14)), we see that

U∗i =





∑n
j=1

aij∑
k aik

U∗j + 1∑
k aik

if i = 1∑n
j=1

aij∑
k aik

U∗j if i = 2, . . . , n− 1

0 if i = n

,

(17)

which gives the Kirchhoff’s law for voltage in an electrical

network. The dual problem eq.(14) gives us the Dirichlet

principle [17]: the voltage potentials, U∗, taken within the

electrical network G minimizes the total energy dissipation.

Likewise, the L2-norm flow optimization problem also has a

physical interpretation (Thompson’s Principle [17]): among all

flows X ∈ F , the optimal (current) flow, X∗, minimizes the

energy dissipation in the (electrical) network.

This connection between currents (and voltage) in electrical

networks and L2-norm network flow optimization is well

known in the literature (see, e.g., [8], [13], [17], [18], [34]),

where the expected round-trip commute times between two

nodes in a random walk over a network, whose link weights

are conductances (reciprocals of resistances), is the same as the

effective resistance between the those two nodes treating the

graph as an electrical network. These connections give rise to

potential-based (“all-path”) routing (or “stochastic routing”)

in communication and wireless sensor networks [17], [26].

Using the relations eq.(15) and eq.(16), it is easy to see that

for any path P from node 1(source) to node n (destination)

in the network G, the (current) flow along P is nonzero (i.e.,

X∗
ij > 0, ∀〈i, j〉 ∈ P ) if and only if the potential (voltage) at

any node i along the path from node 1 to node n is strictly

decreasing (i.e., ∀〈i, j〉 ∈ P , U∗i > U∗j ). Hence the routing

graph GX∗ induced by the optimal flow to the L2-norm flow

minimization problem is a DAG consisting of any path from

source node 1 to destination node n with strictly decreasing

potentials – that is what we also refer to the potential-based

routing as “all-path” routing. Moreover, Ohm’s law specifies

how flows along the paths are split – proportional to the

potential difference along an edge and inverse to the resistance

of the edge, namely, X∗
ij = (U∗i − U∗j )/wij .

3 MIXED L1 AND L2-NORM NETWORK FLOW OP-

TIMIZATION AND THE ROUTING CONTINUUM

The results in the previous section show that the optimal

flows that minimize the (weighted) L1-norm and L2-norm in a

network yield the shortest path and (potential-based) “all-path”

routing, respectively. Intuitively, if we treat wij as “delay” on

each link (i, j), then the L1-norm minimization produces an

optimal flow routing that minimizes the total delay; whereas

the L2-norm minimization produces an optimal flow routing

that minimizes the total energy dissipation (treating wij as the

resistance of link (i, j)). This gives rise to a natural question:

can we generate other routing strategies between these two

extremes, e.g., routing using shortest paths as well as second-

shortest paths, via network flow optimization with respect to

some other forms of cost metrics? In particular, can these

routing strategies be derived by trading off the total delay (the

L1-norm) and the total energy (the L2-norm)? This leads us

to posing the following mixed L1- and L2-norm network flow

optimization problem with θ ≥ 0, subject to flow conservation

law eqs.(7) and (8), denoted as X ∈ F .

Mixed L1- and L2-norm Network Flow Optimization

(Primal):

min
X∈F

n∑

i=1

n∑

j=1

wijX
2
ij + 2θ

n∑

i=1

n∑

j=1

wijXij . (18)

The objective function of the above mixed network flow

optimization problem consists of a linear combination between

the L1- and L2-norm via the tradeoff parameter θ ≥ 0.
Alternatively, the mixed objective function can be designed

as a convex combination between L1- and L2-norm, i.e.,

(1−λ)
∑n

i=1

∑n
j=1 wijX

2
ij+λ

∑n
i=1

∑n
j=1 wijXij , with 0 ≤

λ ≤ 1, which leads to exactly the same problem as eq.(18),

by taking the relation λ = 1/(1 + 2θ). In the paper, we focus

on the linear combination form objective function for brevity.

Theorem 1 below presents the dual and optimal solution

to this flow optimization problem, by introducing Lagrange

multipliers −2Ui.

THEOREM 1. Mixed L1- and L2-norm Network Flow

Optimization (Dual):

max
U

U1 −
1

2

∑

i

∑

j:Ui−Uj>θwij

(Ui − Uj − θwij)
2

wij
(19)

s.t.Un = 0. (20)

Let X∗(θ) be the optimal solution to the primal problem

eq.(18), and U∗(θ) the optimal solution to the dual problem

eq.(19). X∗(θ) and U∗(θ) follow the following relations.

X∗
ij(θ) =

{
U∗

i (θ)−U∗
j (θ)

wij
− θ if U∗i (θ)− U∗j (θ) > θwij

0 if U∗i (θ)− U∗j (θ) ≤ θwij .

(21)
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Proof : By introducing Lagrangian multiplier 2Ui (1 ≤ i ≤ n)
for each equality constraint in eq.(7), and Lagrangian multi-

plier 2tij (1 ≤ i, j ≤ n) for each inequality constraint in

eq.(8), the Lagrangian function of the problem eq.(18) can be

written as

L(X,U, t) =
∑

i

∑

j

(
X2

ijwij − 2(Ui − Uj − θwij + tij)Xij

)

+ 2(U1 − Un). (22)

Then, we take the partial derivative of L(X,U, t) (eq.(22))

with respect to Xij , and solve the equation that the partial

derivative equals 0 for each i, j = 1, . . . , n.

∂L(X,U, t)

∂Xij
= 2 (Xijwij − (Ui − Uj − θwij + tij)) = 0,

(23)

Xij =
Ui − Uj + tij

wij
− θ. (24)

Plugging the eq.(24) into eq.(22) yields the following dual

problem.

max
U

U1 −
1

2

∑

i

∑

j

(Ui − Uj − θwij + tij)
2

wij
(25)

s.t. Un = 0 and tij ≥ 0, for i, j = 1, . . . , n, (26)

Since the primal problem is convex, the strong duality and

complementary slackness hold, thus the Karush-Kuhn-Tucker

(KKT) conditions [7] are sufficient and necessary to be the

optimal solution to both of the primal and dual problems. The

KKT conditions include the primal constraints eq.(7)–(8) and

the following three conditions.

tij ≥ 0, (27)

tijXij = 0, (28)

Xijwij − (Ui − Uj − θwij + tij) = 0. (29)

From the eq.(28), Xij or tij cannot both be zero. By setting

one of them to be zero, we can solve the other. Then by

checking the positivity of the solution, we get the optimal

solution.

t∗ij =

{
0 if U∗i − U∗j > θwij ,

−(U∗i − U∗j − θwij) if U∗i − U∗j ≤ θwij ,
(30)

X∗
ij =

{
U∗

i −U∗
j

wij
− θ if U∗i − U∗j > θwij ,

0 if U∗i − U∗j ≤ θwij .
(31)

Since the optimal t∗ij is a function of U∗i ’s, we can plug it

in eqs.(25)-(26) to simply the dual problem, and eliminate the

variable tij , which yields eq.(21).

3.1 Optimal trade-off
Now, we are in a position to prove that the mixed L1- and L2-

norm network flow optimization problem and its solution (in

eq.(18) and Theorem 1) reflect the optimal trade-off between

the shortest path routing and the “all path” routing, namely,

for a given average delay (upper) bound, the optimal solution

in Thoerem 1 leads to the minimal energy consumption, and

vice versa.

Given a unit network flow from node 1 to node n, let

y be a given average delay bound as a constraint, that is,

the distribution of the flow in the network yields a L1-norm

objective (the average delay) less than or equal to y. Then, the
problem is to find the optimal flow distribution that minimizes

L2-norm objective (the energy consumption). This problem

can be formulated as follows.

L1-norm constrained L2-norm network flow optimiza-

tion problem(Primal):

min
X∈F

n∑

i=1

n∑

j=1

wijX
2
ij . (32)

s.t.

n∑

i=1

n∑

j=1

wijXij ≤ y (33)

LEMMA 2. The L1-norm constrained L2-norm network flow

optimization problem in eq.(32) and (33) is equivalent to the

mixed L1- and L2-norm problem in eq.(18).

Proof Sketch: Let 2Ui, 2tij , and 2θ be the lagrange multipli-

ers for the flow conservation constraints eq.(8), Xij ≥ 0, and
the inequality (33), respectively. Then, by the KKT condition,

the dual problem is obtained as follows.

L1-norm constrained L2-norm network flow optimiza-

tion problem(Dual):

max
U,θ

U1 −
1

2

∑

i

∑

j:Ui−Uj>θwij

(Ui − Uj − θwij)
2

wij
(34)

s.t.Un = 0 and

n∑

i=1

n∑

j=1

wijXij ≤ y. (35)

The optimal solutions to the dual problem, denoted as

U∗(θ), and θ∗, can be obtained as following relations.

∑

j:U∗
i −U∗

j ≥θwij

(U∗i − U∗i
wij

− θ∗
)
=

{
1 i = 1
0 1 < i < n,

(36)

U∗n = 0, and

n∑

i=1

n∑

j=1

(U∗i − U∗i − θ∗wij) = y. (37)

From the strong duality and the complementary slackness, we

have the optimal solution for the primal problem as

X∗
ij(θ) =

{
U∗

i −U∗
j

wij
− θ∗ if U∗i − U∗j > θ∗wij

0 if U∗i − U∗j ≤ θ∗wij .
(38)

where θ∗ can be obtained by solving the dual problem

in eq.(36) and (37), in terms of y. Hence, the L1-norm

constrained L2-norm network flow optimization problem has

exactly the same optimal solution of X∗
ij as the mixed L1-

and L2-norm network flow optimization problem, where the

trade-off parameter θ∗ is governed by the L1-norm (or average

delay) constraint y, which in turn illustrates that both problems

are identical.

Similarly, given a certain average energy consumption

bound, the problem of minimizing the average delay, is

also equivalent to the mixed L1- and L2-norm optimization

problem, with the trade-off parameter θ∗ determined by the

average consumption constraint.
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3.2 Routing Continuum

Clearly, θ = 0 gives us the L2-norm network flow opti-

mization. In the following we will show that for sufficiently

large θ, the routing graph induced by the optimal solution

to eq.(18) gives the same shortest path DAG as the L1-norm

flow optimization. In other words, for sufficiently large θ, the
optimal solution to eq.(18) yields the shortest path routing.

Furthermore, for θ in between, the optimal solution to eq.(18)

yields a continuum of routing graphs with the “all-path” and

shortest-path DAGs as two extremes in the continuum.

Fix θ ≥ 0, and let GX∗(θ) denote the routing graph (DAG)

induced by the optimal flow solution X∗(θ) to eq.(18), i.e.,

for any edge (i, j) ∈ E, the arc 〈i, j〉 is included in GX∗(θ) if

and only X∗
ij(θ) > 0. We use P ∈ GX∗(θ) to denote a path P

from node 1 (source) to node n (destination) where the flow

along this path is nonzero, i.e., for any 〈i, j〉 ∈ P , X∗
ij(θ) > 0.

We have the following lemma:

LEMMA 3. Consider any path P ∈ GX∗(θ), and Q be any

path from node 1 to node n. The following holds:

θ
∑

〈i,j〉∈P
wij < U∗1 (θ) ≤ (θ + 1)

∑

〈i,j〉∈Q
wij . (39)

Proof : For any 〈i, j〉 ∈ P , since X∗
ij(θ) > 0, from eq.(21)

we have U∗i (θ) − U∗j (θ) = θwij + wijX
∗
ij(θ). Therefore∑

〈i,j〉∈P (U
∗
i (θ) − U∗j (θ)) =

∑
〈i,j〉∈P (θwij + wijX

∗
ij(θ)).

Hence

U∗1 (θ) =
∑

〈i,j〉∈P
(θwij + wijX

∗
ij(θ)) > θ

∑

〈i,j〉∈P
wij , (40)

as X∗
ij > 0 for any 〈i, j〉 ∈ P . On the other hand, for any

〈i, j〉 ∈ Q, from eq.(21) we have U∗i (θ) − U∗j (θ) ≤ θwij +
wijX

∗
ij(θ), where the inequality holds when X∗

ij(θ) = 0.
Summing up along all edges 〈i, j〉 ∈ Q, we have

U∗1 (θ) ≤
∑

〈i,j〉∈Q
(θwij + wijX

∗
ij(θ)) ≤ (θ + 1)

∑

〈i,j〉∈Q
wij ,

where the last inequality follows from the fact that X∗
ij ≤

1. Combining this and the inequality in eq.(40) proves the

lemma.

From Lemma 3, the following holds for any θ > 0,
∑

〈i,j〉∈P
wij < (1 + θ−1)min

Q

∑

〈i,j〉∈Q
wij . (41)

Using this Lemma, we establish the following theorem.

THEOREM 2 (Routing Continuum). Let R(0) denote the

(potential-based) “all-path” routing graph in Section 2.3,

namely, the routing graph induced by the optimal L2-norm

flow X∗(0), the optimal solution to eq.(18) with θ = 0. Let
P denote the collection of all paths (with nonzero flow), P ∈
R(0), from source node 1 to destination n. Sort and group the

paths based on their length, i.e., |P | := ∑
〈i,j〉∈P wij , which

yields a partition (equivalent classes) of P: P1, . . . ,PM ,

where Pm = {P ∈ R(0) : |P | = Lm}, m = 1, . . . ,M ,

and L1 < . . . < LM . Clearly L1 is the length of the shortest

paths.

For θ > 0, let R(θ) denote the routing graph induced by

the optimal flow X∗(θ), the solution to the mixed L1- and L2-

norm flow optimization problem. Then for (Lm − L1)/L1 <
θ−1 ≤ (Lm+1 − L1)/L1, m = 1, . . . ,M (here we define

LM+1 = ∞), we have

R(θ) ⊆ ∪m
k=1Pk. (42)

In other words, paths in R(θ) have length at most Lm.

Proof : We prove by contradiction. Given any m, m =
1, . . . ,M , and θ > 0 where (Lm − L1)/L1 < θ−1 ≤
(Lm+1 − L1)/L1, suppose there exists P ∈ R(θ) such that

|P | > Lm (thus |P | ≥ Lm+1). From Lemma 3, the length of

any path in the routing graph R(θ) used to route the optimal

flow X∗(θ) is less than (1 + θ−1)L1 ≤ Lm+1. This leads to

a contradiction.

Theorem 2 states as θ increases from 0 to∞, or equivalently

θ−1 decreases to 0, longer paths inR(0) are pruned, yielding a
“sparser” routing graphR(θ) that contains only paths of length
less than (1 + θ−1)L1. In fact, there are a finite sequence of

routing graphs Rm, 1 ≤ m ≤ M , where Rm only contains

paths of length at most Lm. We refer to this sequence of

routing graphs as the routing continuum.

In the next section we will present an algorithm for explic-

itly constructing the routing continuum, and in particular, for

computing the optimal flow solution, X∗(θ), which specifies

how the optimal flow is routed among the paths in Rm.

4 COMPUTING THE ROUTING CONTINUUM

In this section we describe an efficient algorithm for com-

puting the routing continuum and the associated optimal flow

X∗(θ) for all θ’s, and use two simple examples to illustrate

the algorithm and results obtained thereof.

We introduce an iterative process for computing the routing

continuum and the optimal flow X∗(θ), starting with θ = 0,
where each step involves solving a set of linear equations in

U∗i (θ)’s. Below, we provide detailed derivations of how to

compute the routing continuum of a given graph, which in

turn serve as a formal proof of the correctness of our proposed

algorithm.

For any θ, let R(θ) = (V (θ), E(θ)) denote the routing

graph induced by X∗(θ), a subgraph of G = (V,E), where
(i, j) ∈ R(θ) if and only if X∗

ij(θ) > 0. In the following,

we will treat R(θ) as an undirected graph. Hence an edge

(i, j) ∈ R(θ) if and only if either X∗
ij(θ) > 0 or X∗

ji(θ) > 0,
or equivalently, (i, j) ∈ R(θ) if and only if |U∗i (θ)−U∗j (θ)| >
θwij . For i ∈ V (θ), let ∆

(+)
i (θ) denote the number of edges

(k, i) with incoming flow (i.e., X∗
ki(θ) > 0); or formally,

∆
(+)
i (θ) :=

∑
k 1{U∗k (θ) − U∗i (θ) > θwki}. Likewise, let

∆
(−)
i (θ) denote the number of edges (i, j) with outgoing flow

(i.e., X∗
ij(θ) > 0); thus ∆

(−)
i (θ) :=

∑
j 1{U∗i (θ) − U∗j (θ) >

θwij}. Define ∆i(θ) := ∆
(−)
i (θ) − ∆

(+)
i (θ), and di(θ) =∑

j:|Ui−Uj |>θwij
aij =

∑
j:(i,j)∈E(θ) aij , where aij := w−1

ij

if wij > 0, and aij := 0 if otherwise. Then from eq.(19) (by

letting the first order derivative of the objective function equal

to zero), we see that the optimal U∗i (θ)’s satisfy the following

Page 8 of 19Transactions on Parallel and Distributed Systems

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



 
 
   

     
     

  
 
  

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 201X 7

conditions:

di(θ)U
∗
i (θ)−

∑

j:(i,j)∈E(θ)

aijU
∗
j (θ)− θ∆i(θ) =

{
1 i = 1
0 1 < i < n,

(43)

and U∗n(θ) = 0. (44)

We can rewrite eq.(43) more compactly in the matrix form:

L(θ)U∗(θ)− θ∆(θ) = b. (45)

Here, L(θ) := [Lij(θ)] is the n − 1 by n − 1 submatrix of

the standard graph Laplacian [10] of R(θ) (with the adjacency

matrix A(θ) := [aij ], i, j ∈ V (θ)), restricted to V (θ) − {n},
namely, Lii(θ) := di(θ), and Lij(θ) := −aij , i, j ∈ V (θ) −
{n}. ∆(θ) := [∆i(θ)], the vector consisting of ∆i(θ), and
b = [1, 0, . . . , 0]T is the vector corresponding to the right hand

side of eq.(43). Since R(θ) is connected, L(θ) is non-singular
and thus

U∗(θ) = L−1(θ)(θ∆(θ) + b). (46)

Hence given θ, we can explicitly solve for U∗(θ) using eq.(46).
However, the definitions of both L(θ) and ∆(θ) hinge on the

routing graph R(θ) = (V (θ), E(θ)), which is itself defined

assuming we know X∗
ij(θ)!

This circular dependency fortunately can be broken. From

Theorem 2, we know that there exist only a finite sequence of

routing graphs, R(θm), 0 ≤ m ≤ M , where 0 = θ0 < θ1 <
. . . < θM . In other words, for θm ≤ θ < θm+1, 0 ≤ m ≤ M
(and define θM+1 =∞), R(θ) = R(θm). Hence if we know

R(θm), we can solve U∗(θ) for any θm ≤ θ < θm+1 and

thus X∗(θ). This leads to the following recursive process for

computing the routing continuum and X∗(θ) for all θ ≥ 0.
Phase 1: from θ0 = 0 to θ1:

When θ = 0(= θ0), L(0) is n − 1 dimensional square

submatrix of the graph Laplacian on the original network G
(restricted to V −{n}). Then U∗(0) = L−1(0)b is the optimal

solution to the L2-norm flow optimization, and R(0) is the

“all-path” routing graph induced by the optimal L2-norm flow

X∗(0).
Now consider any sufficient small θ > 0 (any θ < θ1 would

suffice) such that R(θ) = R(0) (thus X∗
ij(θ) > 0 for any

(i, j) ∈ R(0). Hence ∆(θ) = ∆(0), L(θ) = L(0), and U∗(θ)
is given by

U∗(θ) = L−1(0)(θ∆(0) + b) = U∗(0) + θL−1(0)∆(0).
(47)

From eq.(21) and eq.(47), if Ui(θ)− Uj(θ) > θwij ,

X∗
ij(θ) =

U∗i (θ)− U∗j (θ)

wij
− θ = X∗

ij(0)− θαij(0), (48)

where αij(0) = 1 − (βi(0) − βj(0))/wij is a constant, with

βi(0) = [L−1(0)∆(0)]i, if i ∈ V − {n}; and βi(0) = 0, if
i = n. Eq.(47) shows that U∗(θ) is linear function of θ, and
for any edge (i, j) where X∗

ij(0) > 0, X∗
ij(θ) is also linear

in θ. Clearly, on edge (i, j) with αij(0) > 0, the optimal

flow X∗
ij(θ) decreases when θ increases; whereas on those

with αij(0) < 0, the optimal flow X∗
ij(θ) increases (θ has

no impact on those edges with αij(0) = 0). Hence we know

precisely the (first) boundary condition, namely, the smallest

positive θ, when the first set of edges are to be truncated from

R(0), namely, those where X∗
ij(θ) becomes 0:

θ1 := min
〈i,j〉:αij(0)>0

{X∗
ij(0)/αij(0)}.

Removing these edges yields the next routing graphR(θ1), for
which L(θ1) and ∆(θ1) can now be defined. Using eqs.(47)

and (48), we can solve for the optimal solution, U∗(θ1) , and
consequently, X∗(θ1).
Phase 2: from θk to θk+1:

More generally, givenR(θk), and the corresponding optimal

solutions, U∗(θk) and X∗(θk), we can solve for U∗(θ) and

X∗(θ) for any θk ≤ θ < θk+1, using a similar argument.

Again from eq.(46), with L(θ) = L(θk) and ∆(θ) = ∆(θk),
we have

U∗(θ) = L−1(θk)(θ∆(θk) + b)

= U∗(θk) + (θ − θk)L
−1(θk)∆(θk), (49)

and if Ui(θ)− Uj(θ) > θwij ,

X∗
ij(θ) =

U∗i (θ)− U∗j (θ)

wij
− θ = X∗

ij(θk)− (θ − θk)αij(θk),

(50)

where αij(θk) = 1 − (βi(θk) − βj(θk))/wij is a constant,

with βi(θk) = [L−1(θk)∆(θk)]i, if i ∈ V (θk) − {n}; and

βi(θk) = 0, if i = n. This gives us the next boundary, θk+1,

for the next set of links to be truncated (from R(θk)), where

θk+1 = min
〈i,j〉:αij(θk)>0

{X∗
ij(θk)/αij(θk)}+ θk. (51)

Removing these edges from R(θk) yields R(θk+1), using

which we can then solve for the optimal solutions, U∗(θk+1)
and X∗(θk+1).

A pseudo-code algorithm for computing the boundary con-

ditions θm’s, 0 ≤ m ≤ M , is given in Algorithm 1, and

for computing the optimal flow solution, X∗(θ), is given in

Algorithm 2.

Complexity analysis. Since each step of the recursive

process involves solving a set of linear equations [33], the

worse case complexity of which is O(n3), and M is at

most |E| (the number of edges), the worst-case complexity

of computing the entire routing continuum is O(n3|E|), or
O(n5) in the worst case.

In [25], we provide some numerical results from two

synthetic networks and a real network, illustrating how the

routing continuum grows as the parameter θ changes.

5 GENERALIZATIONS AND APPLICATIONS

In this section, we present some extensions to the mixed

L1/L2-norm network flow optimization, and briefly touch on

their potential applications to traffic engineering and wireless

sensor networks. In [25], we also discuss how to apply the

routing continuum theory to analyze network robustness.
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Algorithm 1 Routing Continuum Algorithm

1: INPUT: Weight matrix W , source-id 1, destination-id n;
2: OUTPUT: Boundary vector [θ0 = 0, . . . , θM ], the corre-

sponding [X∗(θ0), . . . , X∗(θM )];
3: k = 0;
4: Compute All-path flow distribution X∗(θ0 = 0) from

eq.(15)(16);

5: Compute the shortest path flow distribution X∗(∞) from
eq.(11)(12);

6: while (X∗(θk) 6= X∗(∞)) do
7: k = k + 1;
8: Compute θk and X∗

ij(θk) using eq.(51) and eq.(50)

respectively;

9: end while

Algorithm 2 Solving the Optimal Flow Distribution X∗(θ),
for a θ ≥ 0.

1: INPUT: [θ0 = 0, . . . , θM ], [X∗(θ0), . . . , X∗(θM )],θ, W ,

source-id 1, destination-id n;
2: OUTPUT: Optimal flow distribution X∗(θ);
3: Search for the interval, such that θ ∈ [θk, θk+1);
4: Compute the X∗(θ) from eq.(50), for θ.

5.1 Multiple Flows, Link/node Capacity Constraints and

Traffic Engineering

In the previous sections, for simplicity we have assumed a

single flow of unit 1 from source node 1 to destination n. The
formulation can be easily extended to accommodate multiple

flows [29], [32], [35] between different source-destination

pairs and with different units, as flows are additive on (links

of) the network. Consider K flows, where the k-th flow X(k)

of I(k) units is routed from source node sk to destination node

tk, 1 ≤ k ≤ K. Thus each flow X(k) satisfies the following

conservation constraints:

∑

j:(i,j)∈E
X

(k)
ij −

∑

l:(l,i)∈E
X

(k)
li =





I(k) if i = sk (Src)

−I(k) if i = tk (Dst)

0 if i 6= sk, tk,
(52)

We use Fk to denote the collection of flows satisfying eq.(52).

Then the mixed L1/L2-norm multi-flow optimization is given

in eq.(53). It is not too hard to see that this problem can

be decomposed into K subproblems, each of which forms a

single-flow mixed L1 and L2-norm optimization problem, and

thus can be solved using the method presented before.

min
X(k)∈Fk
1≤k≤K

K∑

k=1

n∑

i=1

n∑

j=1

(wijX
(k)
ij

2
+ 2θwijX

(k)
ij ) (53)

subject to X
(k)
ij ≥ 0, 1 ≤ i, j ≤ n, 1 ≤ k ≤ K.

In addition to having multiple flows (demands), many

practical network flow problems, e.g., traffic engineering in

a data network, also impose the link capacity constraints [14],

[19]. Namely, given a network G = (V,E), for each edge

(i, j) ∈ E, let Cij(= Cji) denote the link capacity. Then

the total amount of flows on link (i, j) cannot exceed Cij .

Given any set of K flows, X(k) ∈ Fk, 1 ≤ k ≤ K, let

α be a variable representing the maximum link utilization

in the network, i.e.,
∑

k X
(k)
ij ≤ αCij . Similar to [35], we

consider the following maximum link utilization optimization

and mixed L1/L2-norm flow optimization with link capacity

constraints (where ǫ = θ−1):

Capacity Constrained Mixed Flow Optimization (Prime):

min
X(k)∈Fk
1≤k≤K

α+

K∑

k=1

n∑

i=1

n∑

j=1

( ǫ

2
wijX

(k)
ij

2
+ wijX

(k)
ij

)
(54)

subject to X
(k)
ij ≥ 0, 1 ≤ k ≤ K; and (55)

K∑

k=1

X
(k)
ij ≤ Cijα, 1 ≤ i, j ≤ n. (56)

Let U
(k)
i be the Lagrange multipliers for the flow conservation

constraints eq.(52), and sij the Lagrange multipliers for the

inequality constraints
∑K

k=1 X
(k)
ij − Cijα ≤ 0. Then the dual

problem is given by

Capacity Constrained Mixed Flow Optimization (Dual):

max
U,s

K∑

k=1

I(k)U (k)

1

− 1

2

K∑

k=1

n∑

i=1

∑

j:U
(k)
i

−U
(k)
j

>wij+sij

(U (k)
i − U (k)

j − (wij + sij))
2

ǫwij

subject to sij ≥ 0,

n∑

i=1

n∑

j=1

sijCij = 1, and U (k)
n = 0.

Let α∗ and X(k)∗
ij’s be the optimal solution to the primal

problem and U (k)∗
i ’s and s∗ij’s the optimal solution to the

dual problem. Then by the complementary slackness, we have

X(k)∗
ij > 0 if and only if U (k)∗

i − U (k)∗
j ≥ wij + s∗ij ; and

furthermore, if s∗ij > 0, then
∑K

k=1 X
(k)∗

ij = Cijα
∗. The latter

implies that any link (i, j) ∈ E with s∗ij > 0 is a “bottleneck”

link where the (optimal) maximum link utilization is attained.

We see that on a bottleneck link (i, j), if X(k)∗
ij > 0, then

X(k)∗
ij = (U (k)∗

i − U (k)∗
j − (wij + s∗ij))/(ǫwij); whereas on

a non-bottleneck link (i.e., s∗ij = 0), if X(k)∗
ij > 0, then

X(k)∗
ij = (U (k)∗

i − U (k)∗
j − wij)/(ǫwij).

Comparing this with the optimal flow solutions to the mixed

L1/L2-norm without the capacity constraints, an additional

s∗ij/(ǫwij) amount is reduced from each flow X(k)∗
ij on the

bottleneck links (i, j). Intuitively, it is as if the weights on the

bottleneck links were replaced with w′ij = wij + s∗ij to dis-

courage and shift away flows on the bottleneck links. In fact,

suppose s∗ij’s are known a priori. We can convert the network

flow optimization eq.(54) with link capacity constraints to one

(without link capacity constraints) as eq.(53), where wij’s in

the L1-norm term are replaced by w′ij := wij + s∗ij’s, but not
those in the L2-norm term. This yields an example of net-

work flow optimization with heterogenous L1/L2 costs to be

discussed in the next subsection. Intuitively, this implies that

the optimal flow with link capacity constraints that minimizes

overall maximum link utilization is the one that discourages
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the usage of bottleneck links by increasing the (L1) link costs

on these links and thus shifting flows away from them.

Finally, for each ǫ(= θ−1), we can use the optimal solution

α∗(θ) to eq.(54) to determine the best trade-offs between using

shorter paths and longer paths, namely, the best routing graph

R(θ) which minimizes the overall network link utilization

α(θ) among any choice of θ ≥ 0:

θ∗ := argminθ≥0 α
∗(θ). (57)

In general, with the link capacity constraints, finding the

optimal θ∗ requires search in the solution space, {θ : α∗(θ)}.
On the other hand, assuming that wij’s are fixed, we can

find the optimal θ∗ in polynomial time by first computing

the entire routing continuum using Algorithms 1 and 2, and

then calculating the corresponding maximum link utilization

α∗(θ) := max(i,j){
∑

k X
(k)∗

ij/Cij} for each θ > 0. Thus
with respect to a fixed set of link weights wij’s, the routing

graph R(θ∗) yields the best trade-offs in usage of shorter and

long paths: it minimizes the overall network utilization among

all routing graphs.

Moreover, practical network flow problems, e.g., routing in

bandwidth constrained wireless networks, may involve node

capacity constraints [6], [12], [37], where for node i ∈ V ,

with node capacity Ci, the total amount of flows going through

node i cannot exceed Ci. For a set of K flows, X(k) ∈ Fk,

1 ≤ k ≤ K,
∑

k

∑
j X

(k)
ij ≤ ξCi holds true, where ξ is

the maximum node capacity utilization in the network. While

considering node capacity constrained mixed L1/L2-norm

flow optimization problem, similar results can be obtained

as the link capacity constrained L1/L2-norm optimization

problem. We omit the details here for brevity.

5.2 Flow Optimization with Heterogeneous L1/L2 Link

Weights

We consider the following generalization where L1-norm and

L2-norm have different sets of link weights, wij’s and rij’s:
Flow Optimization with Heterogeneous L1/L2 Weights

(Prime):

min
X(k)∈Fk
1≤k≤K

K∑

k=1

n∑

i=1

n∑

j=1

(
rijX

(k)
ij

2
+ 2θwijX

(k)
ij

)
, (58)

subject to X
(k)
ij ≥ 0, 1 ≤ k ≤ K.

We have already seen one instance of such generalization in

the application of traffic engineering with link/node capacity

constraints. Another application arises more naturally in wire-

less sensor networks, where deciding on the best strategies

hinge on trading off different cost considerations [22], e.g.,

transmission latency as well as energy consumption – the latter

is important, for example, to maximize the sensor network

life time, where it is shown in [26] that potential-based

routing using L2-norm maximizes the network life time. Let

wij’s denote the per-hop transmission latency, and rij’s be

the transmission energy costs. Then, eq.(58) represents the

mixed L1/L2-norm network flow optimization problem with

heterogeneous L1/L2 link weights. The dual problem can be

formulated as follows:

Flow Optimization with Heterogeneous L1/L2 Weights

(Dual):

max
U,s

K∑

k=1

I(k)U (k)
1 − 1

2

K∑

k=1

n∑

i=1

∑

j:(i,j)∈E(k)(θ)

(U
(k)
i −U

(k)
j −θwij)

2

rij

subject to U (k)
n = 0, 1 ≤ k ≤ K,

where E(k)(θ) is the edge set, link (i, j) ∈ E(k)(θ) if

and only if U
(k)
i − U

(k)
j > θwij . Let X(k)∗

ij’s and U (k)∗
i ’s

be the optimal solution to the primal and dual problems,

respectively. By complementary slackness, we have X(k)∗
ij =

(U (k)∗
i − U (k)∗

j − θwij)/rij > 0 if and only if U (k)∗
i −

U (k)∗
j > θwij . Using this relation, we can generalize Lemma 3

as below:

θ
∑

〈i,j〉∈P (k)

wij < U (k)∗
1(θ) ≤ θ

∑

〈i,j〉∈Q(k)

wij +
∑

〈i,j〉∈Q(k)

rij ,

(59)

where P (k) is a routing path with nonzero flow X(k)∗ from

source sk to destination tk (i.e., P (k) ∈ GX(k)∗ ), whereas Q(k)

is an arbitrary (simple) path in the network G from source

sk to destination tk. For any given θ ≥ 0 and 1 ≤ k ≤ K,

using eq.(59) we can again characterize all paths in the routing

graph R(k)(θ) – the routing graph induced by X(k)∗(θ): for
any P ∈ R(k)(θ), its path length, |P | < L

(k)
min,1 + θ−1L

(k)
max,2,

where L
(k)
min,1 := minQ(k)

∑
〈i,j〉∈Q(k) wij is the path length

of the shortest (in terms of L1 link weights ) paths from

sk to tk, and L
(k)
max,2 := maxQ(k)∈R(k)(0)

∑
〈i,j〉∈Q(k) rij is

the the path length of the longest (in terms of L2 link

weights) paths in the routing graph R(k)(0), the routing graph

induced by the optimal L2-norm flow X(k)(0). Therefore,

we can establish a generalized routing continuum theorem

analogous to Theorem 2, yielding a finite sequence of routing

graphs,R(k)(θ
(k)
m )’s. Furthermore, the boundary conditions for

θ
(k)
m ’s can be precisely characterized using a similar iterative

process as presented in Section 4, and Algorithms 1 and 2

can be analogously generalized to compute the entire routing

continuum and {X(k)∗(θ), 1 ≤ k ≤ K} for all θ > 0. We

omit the details here for brevity.

6 RELATED WORK

Routing in networks has been extensively studied under prac-

tical settings, with a literature too vast to cite completely. Here

we will mention a few that are most relevant. For example, the

authors in [28] propose an optimization model for QoS routing

protocol design with multiple L1-norm performance objec-

tives, where the objectives are linearly combined with tunable

parameter. In the context of traffic engineering in IP data

networks, the authors in [15] show that given a set of traffic

demands, optimizing the link weights in a network (assuming

shortest-path routing) is NP-hard, and develop heuristics. The

authors in [36] propose a new link-state routing protocol PEFT

that goes beyond shortest paths by allowing longer paths and

splitting traffic over multiple paths with an exponential penalty

on longer paths. Via convex optimization, the authors show

PEFT achieves optimal traffic engineering. The studies in [2],

[3], [11], [30] analyze the trade-offs between shortest path
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routing and multi-path routing in both wired and wireless

network settings.

Different from earlier works, which focus on routing pro-

tocol designs for specific (wired/wireless) network scenarios,

our work studies routing from a more general and theoretical

perspective. It is partly inspired by the finding in [35], where

motivated by traffic engineering in IP networks, the authors

show that shortest path routing results from the optimal flow

minimizing the L1-norm in a network. In contrast, the optimal

flow minimizing the L2-norm in a network and its connection

to currents in resistive electrical networks (and random walks

on a graph) are well-known (see [17] and references thereof);

it leads to the potential-based, “all-path” (or stochastic)

routing that has been applied in wireless sensor networks,

e.g., to maximize network life time [26], or to minimize state

maintenance [9]. Our work generalizes these earlier results to

show that using the mixed L1/L2-norm flow optimization, we

can construct the entire routing continuum from the shortest-

path to all-path, with routing graphs consisting of paths of

increasing path lengths.

7 CONCLUSION

In this paper, we have formulated the network routing problem

as flow optimization problem in a network with mixed L1/L2-

norms. Using this formulation, we established a surprising

result: the routing graphs induced by the optimal flow solutions

span the entire routing continuum from the shortest-path to all-

path routing. Using the duality theory, we also developed an

efficient iterative process for computing the entire routing con-

tinuum and optimal flow solutions X∗(θ) for any θ ≥ 0. The
basic theory is further extended to account for multiple flows

(traffic demands), link capacity constraints and heterogeneous

L1/L2 link weights, with applications to traffic engineering

and wireless sensor networks, and network robustness analysis.

As part of future work, we plan to investigate the routing

continuum theory on directed graphs (with both uni- and bi-

directional links) or signed graphs (with both positive and neg-

ative links), by applying the spectral graph theory developed

for directed graphs [5], [21]–[23] and signed graphs [20].
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From Shortest-path to All-path: The Routing

Continuum Theory and its applications

(Supplementary Materials)
Yanhua Li, Member, IEEE, Zhi-Li Zhang, Fellow, IEEE, and Daniel Boley, Member, IEEE

Abstract—This documents provides numerical illustration results obtained by applying the routing continuum theory in two synthetic networks and

a real network topology. Moreover, besides the generalizations of the mixed L1- and L2-norm network flow optimization problem discussed in the

main file, in this document, we discuss one more application in analyzing network robustness, by introducing the generalized shortest path and

random walk betweenness centrality measures.

Index Terms—Routing continuum, network flow, betweenness centrality.

F

1 NUMERICAL ILLUSTRATION OF ROUTING CON-

TINUUM THEORY

We use two synthetic networks and a real network to show

how the routing continuum grows as the parameter θ changes.

Fig. 1 shows an example topology, with three disjoint paths

between the source 1 and the destination 5, and each link

is with 1-unit weight. As the parameter θ ≥ 0 increases,

the longer paths P3 = {1 → 3 → 4 → 5} and P2 =
{1 → 2 → 5} are truncated gradually, and the shortest path

P1 = {1→ 5} is obtained when θ increases to 1. Fig. 2 shows

the routing continuum, i.e. the optimal flow distributions at

each θ. We see that within the interval θ ∈ [0, 0.4], the flows

on the longer paths P2 and P3 get linearly redistributed to the

shortest path P1, and the longest path P3 gets truncated when

θ = 0.4. Then the flow of the second longest path P2 keeps

decreasing as θ increases, until the second boundary condition

θ = 1 holds, where P2 is truncated. During the routing

evolution process, the network flows are always redistributed

from longer paths to the shorter path, while increasing θ. When

θ > 1, namely, the largest boundary condition, the routing

solution is stabilized to the shortest path, i.e. P1.
Fig. 3 shows another example with five connected nodes

in the topology. Weights wij’s are marked on the links. The

flow initiates at source 1 and is removed from destination 5.
Fig. 4~Fig. 8 show the optimal flow distributions (marked on

individual links) under five boundary conditions, [θ0 = 0, θ1 =
0.0914, θ2 = 0.2850, θ3 = 0.5700, θ4 = 2], In Fig. 4(θ0 = 0),
every link is active and follows the potential based “all-path”

routing. Then, as θ increases to θ1 = 0.0914 (in Fig.5), link

(1, 4) is truncated, and within the interval θ ∈ [0, θ1], only the

flow on path {1 → 4 → 5} decreases, and gets redistributed

to other paths, because this path with total length 11 is the

• This work was supported in part by the NSF grants CNS-1017092 and

IIS-0916750, the DTRA grant HDTRA1-09-1-0050. An earlier version of

this work appeared in the Proceedings of IEEE ICDCS [22], June 2011.

Yanhua Li is with HUAWEI Noah’s Ark Lab, China. Zhi-Li Zhang and

Daniel Boley are with the Department of Computer Science and Engineer-
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E-mail: {yanhua,zhzhang,boley}@cs.umn.edu

longest path in P(0), i.e. the “all-path” routing graph. Then,

when θ increases to θ2 = 0.2850, the flows on links (2, 3)
and (3, 5) are truncated, because these two links are on the

second longest path {1 → 2 → 3 → 5}, with path length

5. Similarly, when θ keeps increasing to θ3 and θ4, the rest

two longer paths {1 → 2 → 5} and {1 → 2 → 4 → 5} get

removed, respectively, and only the shortest path {1 → 5} is

left at last.

Now, we apply the routing continuum theory to Internet2

Abilene Network [1]. The Abilene network was a high-

performance backbone network established by the Internet2

community in the late 1990s. The Abilene Network was retired

and became the “Internet2 Network” in 2007. Fig. 15 shows its

11 regional network aggregation points and backbone connec-

tions across them (primarily OC192 or OC48 backbone). We

consider the transmission cost between two end points roughly

proportional to their actual geographic distance, because the

velocity of light in an optical fiber becomes 60-70% compared

to it in vacuum [13], [26], [33]. Hence, in the numerical

analysis, we simply use the geographical distance as the link

weight for the transmission cost as marked in Fig. 9. We

choose the flow demand from Sunnyvale to New York.

As we increase θ from 0, we observe a sequence of five

boundary θ’s, i.e., [θ0 = 0, θ1 = 0.1082, θ2 = 0.2498, θ3 =
0.4943, θ4 = 3.2108], in which order links (4→ 6), (5→ 1),
(10 → 9 → 3) and (10 → 7 → 4 → 1 → 11 → 8)
get truncated in sequence, and the optimal flow distribution

evolves from the “all-path” routing to “shortest-path” routing.

When θ0 = 0, all paths are present in delivering the contents,

whereas only the shortest path {10→ 3→ 6→ 5→ 2→ 8}
is active for θ ≥ 3.2108.

2 NETWORK ROBUSTNESS ANALYSIS VIA GENER-

ALIZED CENTRALITY MEASURE

The optimal flow distribution X∗(θ) to the mixed L1−
and L2−norm network flow optimization problem indicates

exactly the loads on each link (resp. node) for certain flow

demands. When considering flow demands from all source
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destination pairs, the average network flow on each link (resp.

node) infers the “importance” of the link (resp. node), namely,

the influence of the link (resp. node) in case of failure or being

attacked, which in turn reveals the robustness structure of

networks, i.e., which area of the network is more vulnerable to

attacks. The robustness centrality measure of links and nodes

in the network has been extensively studied, and has been ap-

plied to design topology control algorithm and routing protocol

in wireless sensor networks and delay tolerant networks [14],

[19]. Below, we show how our routing continuum theory can

be used to generalize various robustness centrality measures

of links/nodes in networks, where the ranking of links/nodes

in terms of their betweenness infer the network robustness

structure, i.e., those areas with high betweenness links/nodes

expose more risks to attacks or failures, as when removing

these links/nodes, more flows have to be rerouted or failed.

2.1 Centrality measures for mixed network flow

Centrality measures were first developed in social network

analysis [9], [25], for example, how influential a user is

in a social network, with applications in robust community

detection [18], [23], mobility prediction [5], and etc. There

are four widely used centrality measures [25], that capture

the relative importance of a vertex or an edge within a

network from various aspects: degree 1, eigenvector central-

ity 2, betweenness [10], [16], and closeness [28]. Betweenness

and closeness centrality measures are directly interpretable in

1. The node degree centrality is simply defined as the number of links
associated with a node, which reflects locally (i.e., within one hop,) how well
the node is connected to other nodes.

2. Eigenvector centrality takes the leading Eigenvector, i.e., the Eigenvector
corresponding to the largest Eigenvalue, of the adjacent matrix A as relative
scores to all nodes in the network, which follows the concept that connections
to nodes with higher scores contribute more to the score of the node than con-
nections to nodes with lower scores. PageRank [27] and Katz centrality [20]
can be viewed as two variations of the Eigenvector centrality measure.
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Fig. 15. Abilene network topology

terms of the shortest path and all-path routing, thus can be

generalized using our routing continuum theory to account

for mixed network flows. In the following, we will introduce

the mixed-flow betweenness for nodes or edges, a natural

generalization of the existing betweenness centrality measures.

The mixed-flow betweenness measures indicate the importance

of nodes or edges in terms of the degree to which a node

or an edge is participating in the communication between

node pairs in the network, which has implications in network

resource relocations and detecting robust subgraphs that are

resilient to attacks and failures. Note that closeness centrality

can similarly be generalized, and we omit these results here

for brevity.

2.2 Node Betweenness centrality

Node betweenness has been studied in the past as a measure

of the centrality and influence of nodes in networks.

Shortest-path betweenness. A simple example of such a

betweenness measure initially proposed by Freeman [8],

[16], [17] is shortest-path betweenness. Given a node i, its
shortest-path betweenness is defined as the number of shortest

(geodesic) paths between pairs of all other nodes that run

through i. To be precise, given a graph G = (V,E), node
i’s betweenness centrality [16], [17] CS

i is defined as3

CS
i =

2
∑

s<t∈V g
(st)
i

n(n− 1)
, (1)

where g
(st)
i is the number of shortest paths from node s to node

t that pass through i. Since the graph is undirected, g
(st)
i =

g
(ts)
i always holds, thus computing g

(st)
i for only half of all

node pairs (i.e., for s < t) is sufficient. If there is more than

one shortest path between a node pair, each path is given equal

weight such that the total weight of all of the paths is unity.

Since when θ is large enough, the optimal flow distribution

denoted by X∗(∞) represents the shortest path solution, the

3. Here, the normalizing constant is n(n− 1), where i may also be a start
or end node of a source destination pair. Some definitions only count for those
node pairs without i as a start or end node, where the normalizing constant
becomes (n− 1)(n− 2) instead.

shortest path betweenness centrality CS
i can be written as

CS
i =

2
∑

s<t∈V
∑

k∈V X(st)∗
ki(∞)

n(n− 1)
. (2)

Current-flow betweenness4. Considering that the circuit cre-

ated by placing a resister on each edge of the network and unit

current source and destination at a particular node pair. The

resulting current flow in the network will follow Kirchhoff’s

and Ohm’s laws, going from source to destination along a

multitude of paths. Hence, The current-flow betweenness [24]

for a node i is defined as the absolute value of the currents

summed over all node pairs that run through i. The optimal

optimal flow distribution X(st)∗(0) of the L2 norm flow

optimization problem represents exactly the current flow for

source destination pair (s, t) with θ = 0. The current-flow

betweenness CC
i of node i can be written in terms ofX(st)∗(0)

as

CC
i =

2
∑

s<t∈V
∑

k∈V X(st)∗
ki(0)

n(n− 1)
. (3)

Mixed-flow betweenness. Shortest-path betweenness and

current-flow betweenness present two extremes. One uses

only shortest paths, and the other favors all-path to deliver

network flow. Our routing continuum theory naturally leads

to a generalized mix-flow betweenness, Ci(θ), which captures

how much mixed flow X∗(θ) runs through a node given a

flow combination parameter θ.

Ci(θ) =
2
∑

s<t∈V
∑

k∈V X(st)∗
ki(θ)

n(n− 1)
, (4)

with θ ≥ 0. Note that the shortest-path betweenness (eq.(2))

and the current-flow betweenness (eq.(3)) are two special

cases of mixed-flow betweenness, as CS
i = Ci(∞) and

CC
i = Ci(0), respectively. Given a specific θ ≥ 0, Ci(θ)

captures the importance of node i, in terms of the average

optimal flow going through node i over all source destination

pairs.

2.3 Edge betweenness centrality

Analogically, the betweenness centrality can be defined for

edges, capturing how much network flow going through a

particular edge, summed over all node pairs in the network.

The shortest-path betweenness of an edge (i, j) is the total

number of shortest paths running along (i, j), which was

first introduced by Anthonisse in [6], and Newman formally

defined it in [23]. It can be written in terms of the optimal

shortest path flow distribution denoted by X∗(∞) as

CS
ij =

2
∑

s<t∈V X(st)∗
ij(∞)

n(n− 1)
(5)

Similarly, the current-flow betweenness of an edge (i, j) is
the current flow running along (i, j) [10], [23], which can be

4. Current-flow betweenness is proven to be equivalent to random walk
(RW) betweenness [24]. For a node i, we calculate the expected number of
times that a random walk between a particular node pair will pass through i,
and RW betweenness is the summation over all node pairs.
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computed using the following eq.(6) in terms of the optimal

L2 network flow distribution denoted by X∗(0) as

CC
ij =

2
∑

s<t∈V X(st)∗
ij(0)

n(n− 1)
(6)

The mixed-flow betweenness of an edge (i, j) is then a natural

generalization of eq.(5) and eq.(6) for θ ≥ 0.

Cij(θ) =
2
∑

s<t∈V X(st)∗
ij(θ)

n(n− 1)
(7)

As discussed earlier, the trade-off parameter θ ≥ 0 governs

how much shortest path flow vs current flow is considered

in the mixed flow optimization problem. The mixed-flow

betweenness centrality measure for a link/node captures how

crucial the link/node is in carrying the network flow for all

possible node pairs. In communication networks, the link/node

betweenness measures in fact indicate how much (mixed)

network flow has to go through a particular link/node for all

source-destination pairs. An attack or failure to the links/nodes

with high betweenness leads to more influential impacts to the

network traffic. Hence the ranking of the links/nodes in terms

of their betweenness infer the network robustness structure,

namely, areas with high betweenness links/nodes are more

vulnerable to attacks or failures, since more flows have to be

rerouted or failed if these links/nodes fail.

TABLE 1

Edge ranking in mixed-flow betweenness (θ ≥ 0).

Edge when θ ∈ when θ ∈ when
ranking [0, 0.002) [0.002, 0.06) θ ≥ 0.06

# 1 (1,2) (1,2) (2,4)

# 2 (4,5) (2,4) (1,2)

# 3 (2,4) (4,5) (4,5)

# 4 (2,3) (2,3) (2,3)

# 5 (3,5) (3,5) (3,5)

# 6 (1,5) (1,5) (1,5)

# 7 (2,5) (2,5) (2,5)

# 8 (1,4) (1,4) (1,4)

2.4 Numerical examples

Next, we use the topology in Fig. 3 and a real network

topology, i.e., Internet2 Abilene Network [1], as examples, to

show how the ranking of node/link in terms of betweenness

changes over θ.
When computing the betweenness centrality measures for

the five node topology in Fig. 3, we observe that as increasing

θ ≥ 0, the ranking of links in terms of their mixed-flow

betweenness keeps relatively robust, namely, there are only

three different link ranking orders (See Tab 1). The highest

betweenness links are (1, 2), (4, 5) and (2, 4), which all have

the smallest link weights. The link (2, 4) steps up to the highest
ranking, when θ ≥ 0.06. The node betweenness ranking is

more stable, which is unchanged over θ’s for topology in

Fig. 3 with nodes ranked as {2, 5, 4, 1, 3} in a decreasing order.
Nodes with more links and lower link weights are ranked

higher, since they are more likely to serve as hubs to carry

more network flows.

Now we investigate how the link and node betweenness

ranking vary over θ in Abilene network. As we increase θ ≥ 0,
there are twelve boundary θ’s, governing the different ranking

of link betweenness in Abilene network as shown in Table 2.

We observe that when θ changes, namely, the network flow

evolves from “all-path” flow to “shortest-path” flow, the ranks

of links with the highest betweeness keep high ranking over θ,
i.e., links at rank # 1 to # 5 are unchanged. On the other hand,

the betweenness centrality link (3, 10) increases from the rank

#11 to #6 gradually (as highlighted in Table 2), which happens

because the high link weight of (3, 10) suppress the “all-path

(current)” flow going through it, but it resides on more shortest

paths among node pairs, thus generates higher shortest-path

flow when θ is large. Moreover, the ranks of links such as

(1, 11), (2, 8), and (8, 11) decrease as θ increases. The ranks

of some other links, including (1, 5) and (4, 7), keep stable

at rank #7-#9. When looking at the node betweenness, the

ranking is more stable than links, which is unchanged for all

θ’s as shown in Table 3. The nodes placed in central US,

such as Kansas City and Indianapolis posses highest

node betweenness centrality, namely, being the busiest nodes

in carrying network flow.

We also computed the ranking of link/node betweenness

in other real networks, such as Roofnet [3] (with 38 nodes),

CERNET [4] (with 36 nodes), GEANT [2] (with 23 nodes),

where similar results are obtained and we omit them here for

brevity. From all these results, the node betweenness centrality

ranking is overall more stable than link betweenness centrality

ranking, through the entire routing continuum, i.e., all θ ≥ 0.

3 DISCUSSION

In a broader context, the mixed L1/L2 optimization formu-

lation has been widely used, e.g., in the classical LASSO

problems [30], namely, the least square optimization problems

with a L1-norm penalty term, and more recently, in compres-

sive sensing [11], [31]. It is therefore well-known that the

L1-norm penalty forces the least-square solution, X∗, to meet

certain sparsity constraints, i.e., ||X∗||1 ≤ ǫ. Compared with

LASSO and compressive sensing settings, our setting has a

set of additional flow conservation constraints — these are

what makes the problem unique and leads to solutions that

have interesting interpretations and consequences, where the

solutions to the more general LASSO and compressive sensing

settings may not have, apart from the sparsity of the solutions.

Indeed, our routing continuum theory and the mixed L1-

and L2-norm flow optimiaztion can be interpreted in terms of

the “sparsity” of the solutions also: the optimal flow solution

X∗(θ) to the mixed L1/L2-norm flow optimization leads to a

sparser routing graph, where the path length of routes used for

routing the optimal flow from a source to a destination can not

be (1 + θ−1) longer than the shortest paths. More surprising

and interesting is that we can generate the entire routing

continuum from the mixed L1/L2-norm flow optimization.

The flow conservation constraints in fact play a key role

here: it leads to the duality of the optimal flows, X∗(θ), a
function defined on the edges of a network, and the optimal

(generalized) potential functions, U∗(θ), a function defined on

the nodes of a network. This allows us to solve U∗(θ) through
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TABLE 2

Edge ranking in mixed-flow betweenness in Abilene network (θ ≥ 0).

θ 0 0.0535 0.0617 0.0647 0.0839 0.0918 0.0964 0.1079 0.1335 0.2650 0.2874 0.3176
# 1 (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6) (5,6)

# 2 (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6) (3,6)

# 3 (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5) (2,5)

# 4 (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10) (7,10)

# 5 (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4) (1,4)

# 6 (2,8) (2,8) (2,8) (2,8) (2,8) (2,8) (2,8) (2,8) (2,8) (2,8) (3,10) (3,10)

# 7 (8,11) (8,11) (8,11) (8,11) (4,7) (4,7) (1,5) (1,5) (1,5) (3,10) (2,8) (1,5)

# 8 (4,7) (4,7) (4,7) (4,7) (8,11) (1,5) (4,7) (4,7) (3,10) (1,5) (1,5) (2,8)

# 9 (1,11) (1,5) (1,5) (1,5) (1,5) (8,11) (8,11) (3,10) (4,7) (4,7) (4,7) (4,7)

# 10 (1,5) (1,11) (1,11) (3,10) (3,10) (3,10) (3,10) (8,11) (8,11) (8,11) (8,11) (8,11)

# 11 (3,10) (3,10) (3,10) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11) (1,11)

TABLE 3

Node betweenness ranking in the Abilene network for all θ’s.

Rank # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11

Kansas City Indianapolis Denver Atlanta Sunnyvale Houston Chicago Los Angeles New York Washington Seattle

a set of linear equations, and yields an efficient process to

compute the entire routing continuum and the optimal flow

X∗(θ) for any θ ≥ 0. Last but not the least, we remark

that although we only focus on network routing in this paper,

we believe that our results can be applied to many other

applications where the problems can be cast in terms of flows

in a network.

Another line of works that is related to our study is

parametrized dissimilarity measure (or distance) between

nodes. Yen et al. [32] develop a family of link-based dissim-

ilarity measures, namely, the randomized shortest-path (RSP)

dissimilarity, which generalizes both the weighted shortest

path distance and the resistance distance. It is interpreted as

the path probability distribution that minimizes the expected

energy for transiting from a source node to a destination

node, constrained by a fixed relative entropy (Kullback-Leibler

divergence) with respect to the reference probability. Cheb-

otarev [12] introduces a similar parametric family of node

distance to [32] by matrix forest theorem and the transition

inequality, which possess a unique graph-geodetic property:

d(i, j) + d(j, k) = d(i, k) if and only if every path from i to
k passes through j. Different from our work, the constraints

exploited in these works are no longer flow conservation law,

thus the solutions obtained have different interpretations of the

underlying “flow”.

Various algorithms have been proposed to identify the

potential based “all-paths” and the shortest paths for a given

node pair in the literature. The former [21] requires solving

a linear equation system [29] with O(n3), where n is the

total number of nodes in the graph. On the other hand,

Dijkstras algorithm [15] and Bellman-Ford algorithm [7] were

introduced to compute shortest paths between a node pair in a

time complexity of O(n2) and O(nm) (roughly O(n3) when
the graph is dense), respectively, with m as the total number of

edges in the graph. These algorithms aim to extract a routing

graph (i.e., the flow distribution) for a particular θ, where our

routing continuum algorithm computes the complete set of

routing graphs between shortest path routing and “all-path”

routing by scanning all possible θ’s, thus taking at the worst

case O(n3m). However, in many applications with relatively

stable link status, the set of routing graphs do not need to be

computed frequently, e.g., in wireless sensor networks with

static link transmission delay and energy consumption, and in

intradomain administrative network with small chance of link

failure. It is interesting to develop more efficient algorithm that

can better deal with dynamic link weights, where we leave this

as part of our future work.
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