
Robot Localization from Landmarks usingRecursive Total Least Squares�Daniel L. Boley and Erik S. Steinmetz Karen T. SutherlandDepartment of Computer Science Department of Computer ScienceUniversity of Minnesota University of Wisconsin { La CrosseMinneapolis, MN 55455 La Crosse, WI 54601AbstractIn the robot navigation problem, noisy sensor datamust be �ltered to obtain the best estimate of the robotposition. We propose using a Recursive Total LeastSquares algorithm to obtain estimates of the robot posi-tion. We avoid several weaknesses inherent in the useof the Kalman and extended Kalman �lters, achievingmuch faster convergence without good initial (a pri-ori) estimates of the position. The performance of themethod is illustrated both by simulation and on an ac-tual mobile robot with a camera.1 IntroductionThe purpose of this paper is to propose a simplescheme for estimating the position of a robot from rel-atively few sensor readings measuring some aspect ofthe environment. Our algorithms are intended for ap-plications where sensor readings are expensive or oth-erwise limited so that only relatively few can obtained,and the readings that are taken are subject to consid-erable errors or noise. We propose a method capableof converging to a position estimate with greater ac-curacy using fewer measurments than other methodsoften used for this application, such as the Kalmanand extended Kalman �lter. Our approach is vali-dated using a mobile robot on which a camera is usedto obtain bearing information with respect to one ormore landmarks in the environment.The Kalman �lter is often used when estimatingthe values of some dynamic quantity from noisy data[8], and also when trying to estimate a static quan-tity [12]. Its application to the robot navigation prob-lem addressed in this paper was also discussed in [2].�This work was supported jointly by Minnesota Departmentof Transportation grant 71789-72996-173 and National ScienceFoundation grant CCR-9405380.

Given the nonlinearity of the relationships between thebearings and the robot positions, often the extendedKalman �lter is used [1, 10], by using a Taylor ex-pansion to obtain a local linear approximation to thetrue relation. But the extended Kalman �lter su�ersfrom lack of robustness. It can often fail to convergeentirely [13]. This led us to develop a linear formu-lation of the estimation problem that is not a localapproximation, but holds through the entire range ofparameter values.Although limited modi�cations can be made to theKalman approach to improve robustness to noise [11],our work in outdoor navigation [16], where measure-ments are expensive to obtain and have signi�cant er-ror inherent to the system, motivated us to look foranother �ltering method, preferably one which wouldnot require numerous measurements to converge anddid not assume an error-free data matrix. As demon-strated by Mintz et al. [7], the sense in which a methodis said to be \optimal" depends critically on the spe-ci�c model being used. When error exists in both themeasurement and the data matrices, the best solutionin the least squares sense is often not as good as thebest solution in the eigenvector sense. This secondmethod is known in the statistical literature as or-thogonal regression and in numerical analysis as totalleast squares (TLS) [17].To demonstrate the algorithms, we use a mobilerobot platform on which is mounted a camera. Thesensor readings are obtained by viewing one or morelandmarks in the visual images obtained as the robotmoves. The images yield several bearings to the land-marks, which are then used to estimate the positionof the robot. The bearings are subject to considerablenoise, both from the coarseness of the image resolu-tion and from odometry error in �xing the base line.In spite of the noise in the data, location of the robotcould be �xed with relatively high accuracy.In this paper, we show how the task of estimating



robot positions from bearing data can be formulateddirectly as a simple, linear matrix problem, which isnot a local linearized approximation, but is valid glob-ally. We propose using a Total Least Squares ap-proach, which has the advantage over the Kalman�lter of admitting errors anywhere in the equations.This paper is organized as follows. After this intro-duction, we discuss the Recursive TLS algorithm insection 2, our experimental results in section 3, andsome concluding remarks in section 4.2 Recursive Total Least Squares Algo-rithmGiven an overdetermined system of equations Ax =b, the TLS problem, in its simplest form, is to �nd thesmallest perturbation to A and b to make the systemof equations compatible. Speci�cally, we seek a ma-trix E and vector f that minimizes k(E; f)k2 such that(A + E)x = b + f for some vector x. The vector xcorresponding to the optimal (E; f) is called the TLSsolution. Recently, some recursive TLS �lters havebeen developed for applications in signal processing[4, 5, 19]. Davila [4] used a Kalman �lter to obtain afast update for the eigenvector corresponding to thesmallest eigenvalue of the covariance matrix. Thiseigenvector was then used to solve a symmetric TLSproblem for the �lter. It was not explained how thealgorithm might be modi�ed for the case where thesmallest eigenvalue is multiple (i.e., corresponding toa noise subspace of dimension higher than one), orvariable (i.e., of unknown multiplicity). In [19], Yudescribed a method for the fast update of an approx-imate eigendecomposition of a covariance matrix. Hereplaced all the eigenvalues in the noise subspace withtheir \average", and did the same for the eigenval-ues in the signal subspace, obtaining an approxima-tion which would be accurate if the exact eigenvaluescould be grouped into two clusters of known dimen-sions. In [5], DeGroat used this approach combinedwith the averaging technique used in [19], again as-suming that the singular values could be grouped intotwo clusters. Recently, Bose et al.[3] applied Davila'salgorithm to reconstruct images from noisy, under-sampled frames after converting complex-valued im-age data into equivalent real data. All of these meth-ods made some assumptions that the singular values oreigenvalues could be well approximated by two tightclusters, one big and one small. In this paper, wepresent a recursive algorithm that makes very few as-sumptions about the distribution of the singular val-

ues.The most common algorithms to compute the TLSsolution are based on the Singular Value Decompo-sition (SVD), a non-recursive matrix decompositionwhich is computationally expensive to update. TheTLS problem can be solved by the SVD using Al-gorithm 3.1 of [17]. The main computation cost ofthat algorithm occurs in the computation of the SVD.That cost is O(p3) for each update. The basic solutionmethod is sketched as follows. If v = (v1; : : : ; vp)Tis a right singular vector corresponding to the small-est singular value of (A;b), then it is well knownthat the TLS solution can be obtained by settingx = �(v1; : : : ; vp�1)T =vp. If the smallest singularvalue is multiple, then there are multiple TLS solu-tions, in which case one usually seeks the solution ofsmallest norm. If vp is too small or zero, then theTLS solution may be too big or nonexistent, in whichcase an approximate solution of reasonable size can beobtained by using the next smallest singular values(s)[17].In cases such as the applications considered in thispaper where the exact TLS solution is still corruptedby external e�ects such as noise, it su�ces to obtainan approximate TLS solution at much less cost. Weseek a method that can obtain a good approximationto the TLS solution, but which admits rapid updat-ing as new data samples arrive. One such methodis the so-called ULV Decomposition, �rst introducedby Stewart [14] as a means to obtain an approximateSVD which can be easily updated as new data arrives,without making any a priori assumptions about theoverall distribution of the singular values. The ULVDecomposition of a real n�p matrix A (where n � p)is a triple of 3 matrices U , L, V plus a rank index r,where A = ULV T , V is p � p and orthogonal, L isp�p and lower triangular, U has the same shape as Awith orthonormal columns, and where L has the formL = �C 0E F �where C (r� r) encapsulates the \large" singular val-ues of A, (E;F ) ((p� r)� p) approximately encapsu-late the p � r smallest singular values of A, and thelast p� r columns of V encapsulate the correspondingtrailing right singular vectors. To solve the TLS prob-lem, the U matrix is not required, hence we need tocarry only L, V , and the e�ective rank r. Therefore, agiven ULV Decomposition can be represented just bythe triple [L; V; r].The feature that makes this decomposition of in-terest is the fact that, when a new row of coe�cients



is appended to the A matrix, the L, V and r canbe updated in only O(p2) operations, with L restoredto the standard form above, as opposed to the O(p3)cost for an SVD. In this way, it is possible to trackthe leading r-dimensional \signal subspace" or the re-maining \noise subspace" relatively cheaply. Detailson the updating process can be found in [14, 9].We can adapt the ULV Decomposition to solve theTotal Least Squares (TLS) problem Ax � b, wherenew measurements b are continually being added, asproposed in [2]. The adaptation of the ULV to theTLS problem has also been analyzed independentlyin great detail in [18], though the recursive updatingprocess was not discussed at length. For our speci�cpurposes, let A be an n � (p � 1) matrix and b bean n-vector, where p is �xed and n is growing as newmeasurements arrive. Then given a ULV Decompo-sition of the matrix (A;b) and an approximate TLSsolution to Ax � b, our task is to �nd a TLS solutionbx to the augmented system bAbx � bb, wherebA = ��AaT � and bb = ��b� � ;and � is an optional exponential forgetting factor [8].The RTLS Algorithm:� Start with [L; V; r], the ULV Decomposition of(A;b), and the coe�cients aT ; � for the new in-coming equation aTx = �.� Compute the updated ULV Decomposition for thesystem augmented with the new incoming equa-tion. Denote the new decomposition by [bL; bV ; br].� Partition bV = � bV11 bV12bV21 bV22 � ;where bV22 is 1� (p� br).If kbV22k is too close to zero (according to a usersupplied tolerance), then we can adjust the rankboundary br down to obtain a more robust, butapproximate solution [2, 9].� Find an orthogonal matrix Q such that bV22Q =(0; : : : ; 0; �), and let v be the last column of bV12Q.Then compute the new approximate TLS solutionaccording to the formula bx = �v=�.This RTLS Algorithm makes very few assumptionsabout the underlying system, though the user mustsupply a zero tolerance and a gap tolerance for kbV22k.For the application here, it su�ced to set the zerotolerance to zero and depend on just the gap toleranceof 1.5.

3 Experimental ResultsTo compare the performance of the Kalman �lterand RTLS in practice, we ran two sets of experiments,the �rst with a physical mobile robot and camera anda single landmark, and the second in simulation withtwo landmarks. The setup in the �rst set was modeledafter the problems faced by an actual mobile robot[1, 6, 10]. The robot did not know its own positionon the map, but did know the location of a singlelandmark. The robot moved in a straight line takinga series of images. Its task was to �nd the landmark ineach image, and use the results to determine its startposition relative to the landmark.
Landmark

(x,y) α α

β β

2

2

1

1

1 2 3 4Figure 1: Diagram illustrating angles to landmark. TRCLabmate had camera mounted at 90�, yielding bearing �,which was bounded by �25�220 for the given �eld of view.A Panasonic WV-BL202 camera was mounted ona TRC Labmate at an angle of 90� to robot bearing,so that each image yields an angle �i, as shown inFigure 1. Horizontal �eld of view was 50�440, limit-ing the angles � to the range �25�220. \Landmarks"were mini Maglite high intensity 
ashlight candles.The angular position of the landmark was measuredin a sequence of images taken while the robot movedacross the room at a constant velocity. In additionto the error in angle measure, error also occurred invelocity, robot bearing and in the times at which theimages were taken. It is not possible to predict andmodel these errors. For example, velocity was set at20mm/second, but average true velocity across runsranged from 21.4mm/second to 22.5mm/second. Inaddition, the supposed constant velocity was not con-stant throughout a single run, varying in an unpre-dictable manner. It would be unrealistic to assumeany of these errors or their combined result to have agaussian distribution.It is assumed that the landmark is located at (0,0),
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Figure 2: Performance of RTLS (black) and Kalman �lter(grey) on runs using the TRC Labmate starting with 4di�erent landmark locations. Images were grabbed at timeintervals t (horizontal axis) 12 seconds apart. The verticalaxis gives the deviation of the estimated start position fromthe actual start position in millimeters.that the y coordinate of the robot's position does notchange as the robot moves, and that the robot knowswhich side of the landmark it is on. At any step i:tan(�i) = x+ (t0 + i � interval) � velocityywhere (x; y) is the robot start position, �i is the mea-sured angle, t0 is robot start time, interval is the in-terval at which images are grabbed and velocity is therobot velocity. The problem was expressed as a linearfunction so that no accuracy was lost by linearizing.However, the data matrix as well as the measurementvector contained error:Ai = � 1 �tan(�i) � ; xi = � xy � ;bi = �(t0 + i � interval) � velocitywhere at any step i, Ai is the data matrix, bi is themeasurement vector and xi is the estimated state vec-tor consisting of the coordinates (x; y) of the robotstart position. The Kalman �lter was given an esti-mated start position of (0,0), so that the deviation attime 0 for the Kalman �lter is just the initial distancefrom the robot to the landmark. The leading columnof the data matrix was weighted by � = 100 (to ac-count for the fact that this column has no error).Figure 2 shows a comparison of four of the robotruns. The robot velocity was set to 20mm/sec. Fiveimages were grabbed 12 seconds apart. The robotstart position relative to the landmark used for local-ization was di�erent in each run. The deviations d of

the estimate of start location from actual start loca-tion at each 12 second time interval t are compared.The RTLS �lter converged faster and to more accu-racy than did the Kalman, often requiring only 2 or 3steps to achieve full accuracy.The second set of experiments was run in simula-tion, but used two landmarks without assuming anyprior knowledge of the robot's heading. We assumethat the robot has no instrument such as a compasswhich could be used to register its compass heading.Such instruments can give varying, incorrect readingsin outdoor, unstructured environments [16], so thatit is useful to design and evaluate methods to ob-tain heading information from external sources. Suchheading information could be used independently oras corrections to estimates from internal sources. Therobot knows the location of the two landmarks on amap (ground coordinate system). A coordinate sys-tem is arbitrarily centered at one landmark. The goalis to determine the robot start position plus the loca-tion of the second landmark. Knowing which land-mark is which in the view will allow the robot touniquely determine its starting position from multiplereadings along a baseline of unknown direction, ex-cept for certain degenerate con�gurations. Even if therobot does not know the order of the two landmarksin its view, it can limit its start position to only twopossible locations in the ground coordinate system,symmetrically located on either side of the line join-ing the landmarks, without any a priori knowledge ofdirection.The robot coordinate system is de�ned by placinglandmark 1 at (0; 0) and landmark 2 at coordinates(l;m) to be determined by the �lter. The x-axis isde�ned by the direction of the robot heading. Thecomputed coordinates (l;m) permit mapping this co-ordinate system to the ground coordinate system. Welet �1i, �2i be the angles from the robot heading toeach of the landmarks at time ti. This is illustratedfor each individual landmark in Fig. 1. We have thefollowing relationships:�sin(�1i) � x+ cos(�1i) � y= ti � velocity � sin(�1i)�sin(�2i) � (x� l) + cos(�2i) � (y �m)= ti � velocity � sin(�2i)where (x; y) is the robot start position. Random er-ror with a uniform distribution was added to the anglemeasures and a normally distributed random error wasadded to the time measurement. As in the previousexperiments, the problem was expressed as a linearfunction with the data matrix as well as the measure-ment vector containing error:
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Figure 3: Mean deviations (d on vertical axis) between estimated and actual start positions, versus time steps (t onhorizontal axis). Each row of plots shows the results with uniform errors in the angles of 0;�2�;�4�, respectively, andeach column shows the results with normally distributed errors in t with standard deviations 0; 5%; 10%, respectively.Ai = � �sin(�1i) cos(�1i) 0 0�sin(�2i) cos(�2i) sin(�2i) �cos(�2i) � ;xi = 264 xylm 375 ; bi = � ti � velocity � sin(�1i)ti � velocity � sin(�2i) �where at any step i, Ai is the data matrix, bi is themeasurement vector and xi is the estimated state vec-tor consisting of the coordinates (x; y) of the robotstart position and the coordinates (l;m) of the sec-ond landmark. Figure 3 summarizes the results in anexample where the two landmarks and the robot wereplaced at positions (�200; 0), (0; 0), and (�200;�200),respectively, in the ground coordinate system. Whenthe angle error is negligible, the TLS method provides

uniformly good estimates. When the angle error ismoderate, the error from TLS method su�ers from aninitial jump, but quickly recovers because it needs noinitial estimate. Furthermore, in the regions wherethe RTLS error exceeds the Kalman �lter error, nei-ther �lter yields any accuracy at all, since both errorsare larger than the values being estimated.4 ConclusionIn this paper, we have proposed a Recursive To-tal Least Squares (RTLS) �lter. This �lter is easilyupdated as new data arrives, yet makes very few as-sumptions about the data or the problem being solved.The method was based on the ULV Decomposition.We have suggested its use as an alternative to the
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