MULTIPLE SUBSPACE ULV ALGORITHM AND LMS TRACKING

S. HOSUR, A. H. TEWFIK, D. BOLEY
University of Minnesota

200 Union St. S.E.

Minneapolis, MN 55455

U.S. A

{hosur@ee,tewfik@ee,boley @cs}.umn. edu

ABSTRACT. The LMS adaptive algorithm is the most popular algorithm for adaptive
filtering because of its simplicity and robustness. However, its main drawback is slow
convergence whenever the adaptive filter input auto-correlation matrix is ill-conditioned
i.e. the eigenvalue spread of this matrix is large [2, 4].

Our goal in this paper is to develop an adaptive signal transformation which can be used
to speed up the convergence rate of the LMS algorithm, and at the same time provide a
way of adapting only to the strong signal modes, in order to decrease the excess Mean
Squared Error (MSE). It uses a data dependent signal transformation. The algorithm
tracks the subspaces corresponding to clusters of eigenvalues of the auto-correlation matrix
of the input to the adaptive filter, which have the same order of magnitude. The algorithm
up-dates the projection of the tap weights of the adaptive filter onto each subspace using
LMS algorithms with different step sizes. The technique also permits adaptation only in
those subspaces, which contain strong signal components leading to a lower excess Mean
Squared Error (MSE) as compared to traditional algorithms. The transform should also
be able to track the signal behavior in a non-stationary environment. We develop such a
data adaptive transform domain LMS algorithm, using a generalization of the rank reveal-
ing ULV decomposition, first introduced by Stewart [5]. We generalize the two-subspace
ULV updating procedure to track subspaces corresponding to three or more singular value
clusters.

KEYWORDS. Adaptive filtering, least mean squares, subspace tracking, singular value
decomposition.

1 INTRODUCTION

The LMS adaptive algorithm is the most popular algorithm for adaptive filtering because
of its simplicity and robustness. However, its main drawback is slow convergence whenever
the adaptive filter input auto-correlation matrix is ill-conditioned i.e. the eigenvalue spread
of this matrix is large [2, 4]. A class of adaptive filters known as the transform domain filters
have been developed for the purpose of convergence rate improvement [4]. All transform
domain adaptive filters try to approximately de-correlate and scale the input to the adaptive
filter in the transform domain, in order to obtain an autocorrelation matrix with zero eigen
value spread in that domain.

The convergence rate of the Least Mean Squares (LMS) algorithm is poor whenever the
adaptive filter input auto-correlation matrix is ill-conditioned. In this paper we propose a
new LMS algorithm to alleviate this problem. It uses a data dependent signal transforma-
tion. The algorithm tracks the subspaces corresponding to clusters of eigenvalues of the
auto-correlation matrix of the input to the adaptive filter, which have the same order of
magnitude. The algorithm up-dates the projection of the tap weights of the adaptive filter
onto each subspace using LMS algorithms with different step sizes. The technique also per-
mits adaptation only in those subspaces, which contain strong signal components leading
to a lower excess Mean Squared Error (MSE) as compared to traditional algorithms.

Our goal in this paper is to develop an adaptive signal transformation which can be used
to speed up the convergence rate of the LMS algorithm, and at the same time provide a
way of adapting only to the strong signal modes, in order to decrease the excess MSE. The
transform should also be able to track the signal behavior in a non-stationary environment.
We develop such a data adaptive transform domain LMS algorithm, using a generalization
of the rank revealing ULV decomposition, first introduced by Stewart [5].

The ULV updating procedure [5] maintains and updates only two groups of singular val-
ues: the large ones and the ”ones close to zero.” This is suitable if the input autocorrelation
matrix has eigenvalues which could be so classified.

In this paper, we generalize the two-subspace ULV updating procedure to track subspaces
corresponding to more than two singular value clusters. Each step of the generalized pro-
cedure may be viewed as a recursive application of the ULV decomposition on the upper
triangular matrix R computed at the previous stage within the same step.

2 THE ULV DECOMPOSITION

The SVD is typically used to isolate the smallest singular values, and the success of any
method based on the SVD depends critically on how that method decides which singular
values are “small” enough to be isolated. The decision as to how many singular values to
isolate may be based on a threshold value (find those values below the threshold), by a count
(find the last & values), or by other considerations depending on the application. However,
in extracting singular values one often wants to keep clusters of those values together as a
unit. For example, if all values in a cluster are below a given threshold except one, which is
slightly above the threshold, it is often preferable to change the threshold than split up the

cluster. In the SVD, this extraction is easy. Since all the singular values are “displayed”,
one can easily traverse the entire sequence of singular values to isolate whichever set is
desired. In this section we present a set of primitive procedures to provide these same
capabilities with the less computationally expensive ULV Decomposition.

2.1 DATA STRUCTURE

The ULV Decomposition of a real n x p matrix A (where n > p) is a triple of 3 matrices
U, L, V plus a rank index r, where A = ULV", V is p x p and orthogonal, L is p x p and
lower triangular, U has the same shape as A with orthonormal columns, and the leading
r X r part of L has a Frobenius norm approximately equal to the norm of a vector of the r
leading singular values of A. That is, A = ULV" with

C 0
r=(% #)
where ||C||% ~ 0?(A) + --- + 02(A) encapsulates the “large” singular values of L. This
implies that (E,F) (the trailing p — r rows of L) approximately encapsulate the p — r

smallest singular values, and the last p — r columns of V encapsulate the corresponding
trailing right singular vectors.

In the data structure actually used for computation, L is needed to determine the rank
index at each stage as new rows are appended, but the U is not needed to obtain the right
singular vectors. Therefore, a given ULV Decomposition can be represented just by the
triple [L, V,r].

2.2 PRIMITIVE PROCEDURES

We partition the ULV updating process into a five primitive procedures. The first three
procedures are designed to allow easy updating of the ULV Decomposition as new rows
are appended. Each basic procedure costs O(p?) operations and consists of a sequence of
plane (Givens) rotations [1]. By using a sequence of such rotations in a very special order,
we can annihilate desired entries while filling in as few zero entries as possible, and then
restoring the few zeroes that are filled in. We show the operations on L. partitioned as
in (2.1). Each rotation applied from the right is also accumulated in V', to maintain the
identity A = ULV, where the U is not saved. The last two procedures use the first three
to complete a ULV update.

e Absorb_One: Absorb a new row. The matrix A is augmented by one row, obtaining

(ar) = (o 1) (arv)V

a”) \0 1)\a"Vv '

Then the L, V are updated to restore the ULV structure, and the rank index r is
incremented by 1. No determination is made if the rank has really increased by 1; this
is done elsewhere. The process is sketched as follows, where C denotes large entries,
e,f denote small entries in the ULV partitioning, R denotes an entry of the new row,
+ a temporary fill, and . a zero entry:

C.... apply C+... apply C....
cC... rotations CC+.. rotations CcC...

CCC.. from CCC+. from CcC..
eeef . right eeef+ left cccce.
eceeff to get eceeff to get eeceef
RRRRR -———=> R.... -——=> ...

e Extract_Info: The following information is extracted from the ULV Decomposition:
(a) the Frobenius norm of (E, F) (i.e., the last p — r rows of L), (b) an approximation
of the last singular value of C (i.e., the leading r x r part of L), and (c) a left singular
vector of C' corresponding to this singular value. These are computed using a condition
number estimator [3].

e Deflate One: Deflate the ULV Decomposition by one (i.e., apply transformation and
decrement the rank index by one so that the smallest singular value in the leading
r X r part of L is "moved” to the trailing rows). Specifically, transformations are
applied to isolate the smallest singular value in the leading r x r part of L into the
last row of this leading part. The transformations are constructed using item (c)
from Extract_Info. Then the rank index is decremented by 1, effectively moving
that smallest singular value from the leading part to the trailing part of L. This
operation just moves the singular value without checking whether the singular value
moved is close to zero or any other singular value.

e Deflate _To_Gap: This procedure uses a heuristic to try to move the rank boundary,
represented by the rank index r, toward a gap among the singular values. Let s be
the smallest singular value of C' and let f be the Frobenius norm of [E, F|. Then
we use the heuristic that a gap exists if s > df, where d is a user chosen Spread. In
order to allow for round-off or other small noise, we pretend that the trailing part
has an extra p + 1-th singular value equal to a user chosen Zero_Tolerance b. Then
the heuristic actually used is s > d?(f? 4 b?). If this condition fails, Deflate_One
is called repeatedly until this condition is satisfied. Hence, any singular value that
is below b or within a cluster of b will be treated as part of the trailing part. The
only two user defined parameters needed for this heuristic are the Spread d and the
Zero_Tolerance b.

e Update: This procedure encompasses the entire process. It takes an old ULV Decom-
position and a new row to append, and incorporates the row into the ULV Decompo-
sition. The new row is absorbed, and the rank is deflated if necessary to find a gap
among the singular values.

3 GENERALIZED ULV UPDATE

The idea of a generalized ULV decomposition, which divides the singular values into more
than two clusters can be introduced with the simple example where there are three groups
of singular values. Now there are two singular value boundaries, r; & r2, which have to be
maintained and updated properly. We have the following primitive procedures which are
all implemented by calling the ordinary procedures discussed above with either the data
structure [L,V,r] or [L,V,rs], depending on which boundary must be updated.

e Generalized_Absorb_One. Add a new row and update the two boundaries. This pro-
cedure just calls Absorb_One using the second boundary, i.e. with the data structure
[L,V,r2]. This has the effect of incrementing ry, But the resulting rotations have the
effect of expanding the top group of singular values by one extra row, hence the first
boundary, r; is incremented by one.

e Generalized Deflate_One. This procedure deflates the lower singular value bound-
ary using Deflate_One applied to [L,V,r9]. But as in Generalized Absorb_One, the
upper boundary must be incremented by one. In order to restore the separation be-
tween the first and second groups of singular values that existed before application
of these update procedures, the upper boundary must be repeatedly deflated until a
gap is found. This process is accomplished using Deflate_To_Gap on [L, V,r], which
does not affect the boundary r9 at all.

Using the generalized ULV decomposition, we can group the singular values of any ma-
trix into an arbitrary number of groups. The number of groups or clusters is determined
automatically by the largest condition number that can be tolerated in each cluster. This
implies that if one chooses the clustering to be done in such a way that each cluster has
singular values of the same order of magnitude, the condition number in each cluster is im-
proved which in turn implies a faster convergence of the LMS filter applied to a projection
of weights in the corresponding subspace. The largest condition number is the maximum
of the ratio of the largest singular value in each cluster to its smallest singular value. This
value depends on the Spread and Zero_Tolerance, specified by the user.

4 THE ULV-LMS ALGORITHM

Let the input signal vector at time n be given as
x, = [z(n),z(n — 1), -, z(n — N + 1)]”

and let the weight vector at this time be h,. The corresponding filter output is
Zp = x;phn,

and the output error e, is given as the difference of the desired response d(n) and the
output z, of the adaptive filter at time n:

en =d(n) — zp.

The LMS algorithm tries to minimize the mean squared value of the output error with each
new data sample received as

h, 1 =hy, + 2uxpep,,
where 0 < p < 1 is the step size.

The convergence of the LMS algorithm depends on the condition number of the input
autocorrelation matrix

R, = XX 2 E[x,x"].

If the input vector x,, is transformed to u, = E’x,, where E is the unitary eigenvector
matrix of R,, then the output process z, would be de-correlated. However, this implies
that we need to perform an eigen decomposition of the autocorrelation matrix or a singular
value decomposition of the data matrix at every adaptation, implying a computational
computational complexity of O(N?) for every adaptation. One could replace E with V,
where V is any unitary matrix which block diagonalizes R, separating the signal subspaces
from the noise subspace, but this still takes O(N?) operations to compute.

Instead of transforming the input using the eigen matrix, we could transform the input
using the unitary matrix V obtained by the generalized ULV decomposition, which approz-
imately block diagonalizes R,. This would imply a savings in the computational costs as
the ULV decomposition can be updated with each new data at a relatively low computa-
tional cost. We note that V' almost block diagonalizes R, in the sense that it exactly block
diagonalizes a small perturbation of it. If X = ULV” with L defined by (2.1) so that

R, =VL'LVT,
then V exactly block diagonalizes R; — A as follows:
ctc 0 ETE E'F v
0 FTF FT'E 0 '
So ||Allp < f? is small, where f = ||[E, F]|| defined above. For a more detailed analysis
of the generalized ULV and the subspace tracking LMS algorithm refer to [6, 7].

VR, — AV =) where A = V7 (

The input data vector x,, is transformed into the vector
Yn = Vx,.

These transformed coefficients are then weighed using the subspace domain adaptive filter
coefficient vector g,. The output signal z, is given as

T
ZTZ - gnyTU

and the LMS weight update equation is given by
gn+1 = 8n + 2Meyyp,

where ¢, is the corresponding output error and M is a diagonal matrix of the step sizes
used. The diagonal elements of M can usually be clustered into values of equal step sizes,
corresponding to the subspaces isolated using the generalized ULV. This clustering is due to
the fact that each subspace is selected to minimize the condition number in that subspace.
Hence adaptation of all the projected tap weights within each subspace has nearly the
same convergence speed and one only needs to match the convergence speeds of the slow
converging subspace projections of the tap weights to those of the fast converging subspace
projections. This can be done by using larger step sizes for those subspace projections of the
tap weights which converge slowly, to increase their convergence speed. Also the clusters
obtained using the generalized ULV are very well organized, with the largest singular value
cluster first, making construction of M is very straightforward. The diagonal values of the
upper triangular matrix generated in the generalized ULV decomposition reflect the average
magnitude of the singular values in each cluster. This information can also be used in the
selection of the step sizes and hence in the construction of M

10log(M SE)
10log(M SE)
=

00 B0 20 20 30 B0 40 40 50 00 B0 20 20 30 B0 40 40 50
No. of Adaptations (n) No. of Adaptations (n)

Figure 1: Learning curves with two values of W for the LMS algorithm (left) and for the

ULV-LMS algorithm (right) (Curves are averages of 20 runs). (©1994 IEEE

An increase in step size usually implies an increase in the misadjustment error. The
subspaces which belong to small singular values are dominated by noise and would tend to
increase the noise in the solution. Thus by not adapting in those subspaces, we can reduce
the misadjustment error. This can be simply done by setting those diagonal entries of M,
which correspond to projections of the tap weights onto these subspaces, to zero.

5 SIMULATION RESULTS

We illustrate the performance of our procedure with a simple example in which a white noise
random sequence a(n) that can take the values £1 with equal probability is filtered with a 3
tap FIR filter whose impulse response is a raised cosine h(n) = (1+cos(2n(n—2)/W))/2, n =
1,2,3. White Gaussian noise is added to the output and an 11 tap equalizer is adaptively
constructed using the LMS and ULV-LMS algorithms (Fig. 1). Note that whereas the
speed of convergence of the traditional LMS algorithm depends heavily on the eigenvalue
spread of the input covariance matrix as determined by W, the ULV-LMS algorithm has no
problem adapting to the environment even when W is large (W = 3.5) and the condition
number of the input covariance matrix is correspondingly large (Amax/Amin = 47.4592).

An Adaptive Line Enhancer (ALE) experiment was also conducted to illustrate the per-
formance of the algorithm when the adaptation is done only in the signal subspaces. The
input to the ALE was chosen to be 0.1cos (Zn) + cos (22n) corrupted by white Gaussian
noise of variance 0.0001. The autocorrelation matrix of the input to the ALE has only four
significant eigenvalues, which could be grouped into two clusters. The ALE was adapted
using both the LMS and the ULV-LMS algorithms. The ULV-LMS algorithm was adapted
only in the subspaces corresponding to the two large singular value clusters. The superior
performance of the ULV-LMS algorithm can be seen from the learning curves are plotted

in Fig. 2.

~ ULV-LMS

10log(M SE)

9 10 150 a0 20 0 H0 40 50 50
No. of Adaptations (n)

Figure 2: Learning curves for the ALE experiment (both methods averaged over 20 runs).
©1994 IEEE

Acknowledgements

This work was supported in part by ONR under grant N00014-92-J-1678, AFOSR under
grant AF/F49620-93-1-0151DEF, DARPA under grant USDOC/60NANB2D1272, and NSF
under grant CCR-9405380. Figures 1, 2 from [6] are used by permission.

References
[1] G.H. Golub, C.F. Van Loan. Matriz computations. Johns Hopkins Univ. Press, 1988.
[2] S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice Hall, 1991.

[3] N. J. Higham, A survey of condition number estimators for triangular matrices, SITAM
Rev. 29:575-596, 1987.

[4] D.F. Marshall, W.K. Jenkins, J.J. Murphy, “The Use of Orthogonal Transforms for
Improving Performance of Adaptive Filters,” IEEE Trans. Circ. & Sys. 36:474-483,
1989.

[5] G.W. Stewart, “An Updating Algorithm for Subspace Tracking,” IEEE Trans. Signal
Proc. 40:1535-1541, 1992.

[6] S. Hosur, A. H. Tewfik and D. Boley, “Generalized URV Subspace Tracking LMS Algo-
rithm,” ICASSP-94 111:409-412, Adelaide, Australia, 1994.

[7] S. Hosur, A. H. Tewfik and D. Boley, “Generalized ULV Subspace Tracking LMS Algo-
rithm,” Under Preparation.

