
MULTIPLE SUBSPACE ULV ALGORITHM AND LMS TRACKINGS. HOSUR, A. H. TEWFIK, D. BOLEYUniversity of Minnesota200 Union St. S.E.Minneapolis, MN 55455U.S.Afhosur@ee,tew�k@ee,boley@csg.umn.edu
ABSTRACT. The LMS adaptive algorithm is the most popular algorithm for adaptive�ltering because of its simplicity and robustness. However, its main drawback is slowconvergence whenever the adaptive �lter input auto-correlation matrix is ill-conditionedi.e. the eigenvalue spread of this matrix is large [2, 4].Our goal in this paper is to develop an adaptive signal transformation which can be usedto speed up the convergence rate of the LMS algorithm, and at the same time provide away of adapting only to the strong signal modes, in order to decrease the excess MeanSquared Error (MSE). It uses a data dependent signal transformation. The algorithmtracks the subspaces corresponding to clusters of eigenvalues of the auto-correlation matrixof the input to the adaptive �lter, which have the same order of magnitude. The algorithmup-dates the projection of the tap weights of the adaptive �lter onto each subspace usingLMS algorithms with di�erent step sizes. The technique also permits adaptation only inthose subspaces, which contain strong signal components leading to a lower excess MeanSquared Error (MSE) as compared to traditional algorithms. The transform should alsobe able to track the signal behavior in a non-stationary environment. We develop such adata adaptive transform domain LMS algorithm, using a generalization of the rank reveal-ing ULV decomposition, �rst introduced by Stewart [5]. We generalize the two-subspaceULV updating procedure to track subspaces corresponding to three or more singular valueclusters.KEYWORDS. Adaptive �ltering, least mean squares, subspace tracking, singular valuedecomposition.



1 INTRODUCTIONThe LMS adaptive algorithm is the most popular algorithm for adaptive �ltering becauseof its simplicity and robustness. However, its main drawback is slow convergence wheneverthe adaptive �lter input auto-correlation matrix is ill-conditioned i.e. the eigenvalue spreadof this matrix is large [2, 4]. A class of adaptive �lters known as the transform domain �ltershave been developed for the purpose of convergence rate improvement [4]. All transformdomain adaptive �lters try to approximately de-correlate and scale the input to the adaptive�lter in the transform domain, in order to obtain an autocorrelation matrix with zero eigenvalue spread in that domain.The convergence rate of the Least Mean Squares (LMS) algorithm is poor whenever theadaptive �lter input auto-correlation matrix is ill-conditioned. In this paper we propose anew LMS algorithm to alleviate this problem. It uses a data dependent signal transforma-tion. The algorithm tracks the subspaces corresponding to clusters of eigenvalues of theauto-correlation matrix of the input to the adaptive �lter, which have the same order ofmagnitude. The algorithm up-dates the projection of the tap weights of the adaptive �lteronto each subspace using LMS algorithms with di�erent step sizes. The technique also per-mits adaptation only in those subspaces, which contain strong signal components leadingto a lower excess Mean Squared Error (MSE) as compared to traditional algorithms.Our goal in this paper is to develop an adaptive signal transformation which can be usedto speed up the convergence rate of the LMS algorithm, and at the same time provide away of adapting only to the strong signal modes, in order to decrease the excess MSE. Thetransform should also be able to track the signal behavior in a non-stationary environment.We develop such a data adaptive transform domain LMS algorithm, using a generalizationof the rank revealing ULV decomposition, �rst introduced by Stewart [5].The ULV updating procedure [5] maintains and updates only two groups of singular val-ues: the large ones and the "ones close to zero." This is suitable if the input autocorrelationmatrix has eigenvalues which could be so classi�ed.In this paper, we generalize the two-subspace ULV updating procedure to track subspacescorresponding to more than two singular value clusters. Each step of the generalized pro-cedure may be viewed as a recursive application of the ULV decomposition on the uppertriangular matrix R computed at the previous stage within the same step.2 THE ULV DECOMPOSITIONThe SVD is typically used to isolate the smallest singular values, and the success of anymethod based on the SVD depends critically on how that method decides which singularvalues are \small" enough to be isolated. The decision as to how many singular values toisolate may be based on a threshold value (�nd those values below the threshold), by a count(�nd the last k values), or by other considerations depending on the application. However,in extracting singular values one often wants to keep clusters of those values together as aunit. For example, if all values in a cluster are below a given threshold except one, which isslightly above the threshold, it is often preferable to change the threshold than split up the



cluster. In the SVD, this extraction is easy. Since all the singular values are \displayed",one can easily traverse the entire sequence of singular values to isolate whichever set isdesired. In this section we present a set of primitive procedures to provide these samecapabilities with the less computationally expensive ULV Decomposition.2.1 DATA STRUCTUREThe ULV Decomposition of a real n � p matrix A (where n � p) is a triple of 3 matricesU , L, V plus a rank index r, where A = ULV T , V is p� p and orthogonal, L is p� p andlower triangular, U has the same shape as A with orthonormal columns, and the leadingr� r part of L has a Frobenius norm approximately equal to the norm of a vector of the rleading singular values of A. That is, A = ULV T withL = �C 0E F �where kCk2F � �21(A) + � � � + �2r(A) encapsulates the \large" singular values of L. Thisimplies that (E;F ) (the trailing p � r rows of L) approximately encapsulate the p � rsmallest singular values, and the last p � r columns of V encapsulate the correspondingtrailing right singular vectors.In the data structure actually used for computation, L is needed to determine the rankindex at each stage as new rows are appended, but the U is not needed to obtain the rightsingular vectors. Therefore, a given ULV Decomposition can be represented just by thetriple [L; V; r].2.2 PRIMITIVE PROCEDURESWe partition the ULV updating process into a �ve primitive procedures. The �rst threeprocedures are designed to allow easy updating of the ULV Decomposition as new rowsare appended. Each basic procedure costs O(p2) operations and consists of a sequence ofplane (Givens) rotations [1]. By using a sequence of such rotations in a very special order,we can annihilate desired entries while �lling in as few zero entries as possible, and thenrestoring the few zeroes that are �lled in. We show the operations on L, partitioned asin (2.1). Each rotation applied from the right is also accumulated in V , to maintain theidentity A = ULV T , where the U is not saved. The last two procedures use the �rst threeto complete a ULV update.� Absorb One: Absorb a new row. The matrix A is augmented by one row, obtaining� AaT � = �U 00 1�� LaTV �V T :Then the L, V are updated to restore the ULV structure, and the rank index r isincremented by 1. No determination is made if the rank has really increased by 1; thisis done elsewhere. The process is sketched as follows, where C denotes large entries,e,f denote small entries in the ULV partitioning, R denotes an entry of the new row,+ a temporary �ll, and . a zero entry:



C.... apply C+... apply C....CC... rotations CC+.. rotations CC...CCC.. from CCC+. from CCC..eeef. right eeef+ left CCCC.eeeff to get eeeff to get eeeefRRRRR ----> R.... ----> .....� Extract Info: The following information is extracted from the ULV Decomposition:(a) the Frobenius norm of (E;F ) (i.e., the last p� r rows of L), (b) an approximationof the last singular value of C (i.e., the leading r� r part of L), and (c) a left singularvector of C corresponding to this singular value. These are computed using a conditionnumber estimator [3].� Deflate One: De
ate the ULV Decomposition by one (i.e., apply transformation anddecrement the rank index by one so that the smallest singular value in the leadingr � r part of L is "moved" to the trailing rows). Speci�cally, transformations areapplied to isolate the smallest singular value in the leading r � r part of L into thelast row of this leading part. The transformations are constructed using item (c)from Extract Info. Then the rank index is decremented by 1, e�ectively movingthat smallest singular value from the leading part to the trailing part of L. Thisoperation just moves the singular value without checking whether the singular valuemoved is close to zero or any other singular value.� Deflate To Gap: This procedure uses a heuristic to try to move the rank boundary,represented by the rank index r, toward a gap among the singular values. Let s bethe smallest singular value of C and let f be the Frobenius norm of [E;F ]. Thenwe use the heuristic that a gap exists if s > df , where d is a user chosen Spread. Inorder to allow for round-o� or other small noise, we pretend that the trailing parthas an extra p+ 1-th singular value equal to a user chosen Zero Tolerance b. Thenthe heuristic actually used is s2 > d2(f2 + b2). If this condition fails, Deflate Oneis called repeatedly until this condition is satis�ed. Hence, any singular value thatis below b or within a cluster of b will be treated as part of the trailing part. Theonly two user de�ned parameters needed for this heuristic are the Spread d and theZero Tolerance b.� Update: This procedure encompasses the entire process. It takes an old ULV Decom-position and a new row to append, and incorporates the row into the ULV Decompo-sition. The new row is absorbed, and the rank is de
ated if necessary to �nd a gapamong the singular values.3 GENERALIZED ULV UPDATEThe idea of a generalized ULV decomposition, which divides the singular values into morethan two clusters can be introduced with the simple example where there are three groupsof singular values. Now there are two singular value boundaries, r1 & r2, which have to bemaintained and updated properly. We have the following primitive procedures which areall implemented by calling the ordinary procedures discussed above with either the datastructure [L; V; r1] or [L; V; r2], depending on which boundary must be updated.



� Generalized Absorb One. Add a new row and update the two boundaries. This pro-cedure just calls Absorb One using the second boundary, i.e. with the data structure[L; V; r2]. This has the e�ect of incrementing r2, But the resulting rotations have thee�ect of expanding the top group of singular values by one extra row, hence the �rstboundary, r1 is incremented by one.� Generalized Deflate One. This procedure de
ates the lower singular value bound-ary using Deflate One applied to [L; V; r2]. But as in Generalized Absorb One, theupper boundary must be incremented by one. In order to restore the separation be-tween the �rst and second groups of singular values that existed before applicationof these update procedures, the upper boundary must be repeatedly de
ated until agap is found. This process is accomplished using Deflate To Gap on [L; V; r1], whichdoes not a�ect the boundary r2 at all.Using the generalized ULV decomposition, we can group the singular values of any ma-trix into an arbitrary number of groups. The number of groups or clusters is determinedautomatically by the largest condition number that can be tolerated in each cluster. Thisimplies that if one chooses the clustering to be done in such a way that each cluster hassingular values of the same order of magnitude, the condition number in each cluster is im-proved which in turn implies a faster convergence of the LMS �lter applied to a projectionof weights in the corresponding subspace. The largest condition number is the maximumof the ratio of the largest singular value in each cluster to its smallest singular value. Thisvalue depends on the Spread and Zero Tolerance, speci�ed by the user.4 THE ULV-LMS ALGORITHMLet the input signal vector at time n be given asxn = [x(n); x(n� 1); � � � ; x(n�N + 1)]Tand let the weight vector at this time be hn. The corresponding �lter output iszn = xTnhn;and the output error en is given as the di�erence of the desired response d(n) and theoutput zn of the adaptive �lter at time n:en = d(n)� zn:The LMS algorithm tries to minimize the mean squared value of the output error with eachnew data sample received ashn+1 = hn + 2�xnen;where 0 < � < 1 is the step size.The convergence of the LMS algorithm depends on the condition number of the inputautocorrelation matrixRx = XXT 4= E[xnxTn ]:



If the input vector xn is transformed to un = ETxn, where E is the unitary eigenvectormatrix of Rx, then the output process zn would be de-correlated. However, this impliesthat we need to perform an eigen decomposition of the autocorrelation matrix or a singularvalue decomposition of the data matrix at every adaptation, implying a computationalcomputational complexity of O(N3) for every adaptation. One could replace E with V,whereV is any unitary matrix which block diagonalizesRx, separating the signal subspacesfrom the noise subspace, but this still takes O(N3) operations to compute.Instead of transforming the input using the eigen matrix, we could transform the inputusing the unitary matrix V obtained by the generalized ULV decomposition, which approx-imately block diagonalizes Rx. This would imply a savings in the computational costs asthe ULV decomposition can be updated with each new data at a relatively low computa-tional cost. We note that V almost block diagonalizes Rx in the sense that it exactly blockdiagonalizes a small perturbation of it. If XT = ULV T with L de�ned by (2.1) so thatRx = V LTLV T ;then V exactly block diagonalizes Rx �� as follows:V (Rx ��)V T = �CTC 00 F TF � where � = V T �ETE ETFF TE 0 �V:So k�kF � f2 is small, where f = k[E;F ]kF de�ned above. For a more detailed analysisof the generalized ULV and the subspace tracking LMS algorithm refer to [6, 7].The input data vector xn is transformed into the vectoryn = V Txn:These transformed coe�cients are then weighed using the subspace domain adaptive �ltercoe�cient vector gn. The output signal zn is given aszn = gTnyn;and the LMS weight update equation is given bygn+1 = gn + 2Menyn;where en is the corresponding output error and M is a diagonal matrix of the step sizesused. The diagonal elements of M can usually be clustered into values of equal step sizes,corresponding to the subspaces isolated using the generalized ULV. This clustering is due tothe fact that each subspace is selected to minimize the condition number in that subspace.Hence adaptation of all the projected tap weights within each subspace has nearly thesame convergence speed and one only needs to match the convergence speeds of the slowconverging subspace projections of the tap weights to those of the fast converging subspaceprojections. This can be done by using larger step sizes for those subspace projections of thetap weights which converge slowly, to increase their convergence speed. Also the clustersobtained using the generalized ULV are very well organized, with the largest singular valuecluster �rst, making construction of M is very straightforward. The diagonal values of theupper triangular matrix generated in the generalized ULV decomposition re
ect the averagemagnitude of the singular values in each cluster. This information can also be used in theselection of the step sizes and hence in the construction of M



0 50 100 150 200 250 300 350 400 450 500
-30

-25

-20

-15

-10

-5

0

5

No. of Adaptations (n)

1
0
lo

g
(M

S
E

)

W=3.5

W=2.9

0 50 100 150 200 250 300 350 400 450 500
-30

-25

-20

-15

-10

-5

0

No. of Adaptations (n)

1
0
lo

g
(M

S
E

)

W = 3.5

W = 2.9

Figure 1: Learning curves with two values of W for the LMS algorithm (left) and for theULV-LMS algorithm (right) (Curves are averages of 20 runs). c
1994 IEEEAn increase in step size usually implies an increase in the misadjustment error. Thesubspaces which belong to small singular values are dominated by noise and would tend toincrease the noise in the solution. Thus by not adapting in those subspaces, we can reducethe misadjustment error. This can be simply done by setting those diagonal entries of M,which correspond to projections of the tap weights onto these subspaces, to zero.5 SIMULATION RESULTSWe illustrate the performance of our procedure with a simple example in which a white noiserandom sequence a(n) that can take the values �1 with equal probability is �ltered with a 3tap FIR �lter whose impulse response is a raised cosine h(n) = (1+cos(2�(n�2)=W ))=2, n =1; 2; 3. White Gaussian noise is added to the output and an 11 tap equalizer is adaptivelyconstructed using the LMS and ULV-LMS algorithms (Fig. 1). Note that whereas thespeed of convergence of the traditional LMS algorithm depends heavily on the eigenvaluespread of the input covariance matrix as determined byW , the ULV-LMS algorithm has noproblem adapting to the environment even when W is large (W = 3:5) and the conditionnumber of the input covariance matrix is correspondingly large (�max=�min = 47:4592).An Adaptive Line Enhancer (ALE) experiment was also conducted to illustrate the per-formance of the algorithm when the adaptation is done only in the signal subspaces. Theinput to the ALE was chosen to be 0:1 cos ( �15n) + cos (5�16n) corrupted by white Gaussiannoise of variance 0:0001. The autocorrelation matrix of the input to the ALE has only foursigni�cant eigenvalues, which could be grouped into two clusters. The ALE was adaptedusing both the LMS and the ULV-LMS algorithms. The ULV-LMS algorithm was adaptedonly in the subspaces corresponding to the two large singular value clusters. The superiorperformance of the ULV-LMS algorithm can be seen from the learning curves are plottedin Fig. 2.



0 50 100 150 200 250 300 350 400 450 500
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

No. of Adaptations (n)

1
0
lo

g
(M

S
E

)

ULV-LMS
LMS    

Figure 2: Learning curves for the ALE experiment (both methods averaged over 20 runs).c
1994 IEEEAcknowledgementsThis work was supported in part by ONR under grant N00014-92-J-1678, AFOSR undergrant AF/F49620-93-1-0151DEF, DARPA under grant USDOC/60NANB2D1272, and NSFunder grant CCR-9405380. Figures 1, 2 from [6] are used by permission.References[1] G.H. Golub, C.F. Van Loan. Matrix computations. Johns Hopkins Univ. Press, 1988.[2] S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice Hall, 1991.[3] N. J. Higham, A survey of condition number estimators for triangular matrices, SIAMRev. 29:575-596, 1987.[4] D.F. Marshall, W.K. Jenkins, J.J. Murphy, \The Use of Orthogonal Transforms forImproving Performance of Adaptive Filters," IEEE Trans. Circ. & Sys. 36:474-483,1989.[5] G.W. Stewart, \An Updating Algorithm for Subspace Tracking," IEEE Trans. SignalProc. 40:1535-1541, 1992.[6] S. Hosur, A. H. Tew�k and D. Boley, \Generalized URV Subspace Tracking LMS Algo-rithm," ICASSP-94 III:409-412, Adelaide, Australia, 1994.[7] S. Hosur, A. H. Tew�k and D. Boley, \Generalized ULV Subspace Tracking LMS Algo-rithm," Under Preparation.


