
Recursive Total Least Squares: An Alternative to theDiscrete Kalman FilterDaniel L. Boley and Karen T. SutherlandComputer Science DepartmentUniversity of MinnesotaMinneapolis, MN 55455AbstractThe discrete Kalman �lter, which is becoming a common tool for reducinguncertainty in robot navigation, su�ers from some basic limitations when used forsuch applications. In this paper, we describe a recursive total least squares estimator(RTLS) as an alternative to the Kalman �lter, and compare their performances in threesets of experiments involving problems in robot navigation. In all cases, the RTLS �lterconverged faster and to more accuracy than the Kalman �lter.1 IntroductionThe discrete Kalman �lter [14], commonly used for prediction and detection of signalsin communication and control problems, has more recently become a popular method ofreducing uncertainty in robot navigation. One of the main advantages of using the �lteris that it is recursive, eliminating the necessity for storing large amounts of data. The�lter is basically a recursive weighted least squares estimator of the state of a dynamicalsystem using a given transition rule. Suppose we have a discrete dynamical systemxi = Fi�1xi�1 + ei�1, where xi is the state vector, ei is the noise vector, and Fi�1 is thestate transition matrix at time step i. We are given a sequence of measurements bi obeyingthe model bi = Aixi + �i, where Ai is the given data matrix and �i is measurement noise.The Kalman �lter is used to �nd an estimate of the state vector xi from the measurementdata that minimizes the noise in a least squares sense. The Kalman �lter equations anda schematic diagram of the �lter are in Appendix I. A complete description of the �ltercan be found in [9]. It requires an initial estimate of the solution and assumes that noise isweighted white gaussian. The discrete Kalman �lter is guaranteed to be optimal in that itis guaranteed to �nd the best solution in the least squares sense.Although originally designed as an estimator for dynamical systems, the �lter is used inmany applications as a static state estimator [19]. In the static problem, the state transitionmatrix Fi�1 is the identity matrix I , so the problem is reduced to �nding the state vectorx minimizing the weighted Euclidean norm of the measurement noisekW�ik2 = kW (bi �Aixi)k2;where W is an optional weighting matrix (usually the inverse of the covariance matrix ofmeasurement noise).Also, due to the fact that functions are frequently non-linear, the extended Kalman�lter (EKF) is used [2, 15]. The EKF formalism linearizes the function by taking a �rstorder Taylor expansion around the current estimate of the state vector [9]. Assuming that1



2the function is represented by a set of non-linear equations of the form fi(yi;x) = 0 where xis the state vector and yi represents random parameters of fi of which estimated measures,ŷi, are taken, the �rst order Taylor expansion is given by:fi(yi;x) = 0 ' fi(ŷi; x̂i�1) + (yi � ŷi)@f̂i@y + (x� x̂i�1)@f̂i@xwhere x̂i is the i-th estimate of the state vector and the derivatives are estimated at(ŷi; x̂i�1). This equation can be rewritten as:bi = Aix+ �iwhere: bi = �fi(ŷi; x̂i�1) + (x̂i�1)@f̂i@xAi = @f̂i@x�i = (yi � ŷi)@f̂i@yThis linear approximation function is then used as the Kalman �lter equation.There are two basic problems which can occur when using either the Kalman or extendedKalman �lter in robot navigation applications:� The �lter was developed for applications such as those in signal processing in whichmany measurements are taken [14]. Sensing in robot navigation is often done usingcamera images. The gathering and processing of each image is a time consumingprocess so a successful method must make do with relatively few readings.� An underlying assumption in least squares estimation is that the entries in the datamatrix are error-free [10]. In many actual applications, the errors in the data matrixcan be at least as great as the measurement errors. In such cases, the Kalman �ltercan give poor results.Two additional problems occur when using the EKF:� The linearization process itself has the potential to introduce signi�cant error intothe problem.� The EKF is not guaranteed to be optimal or to even converge [20]. It can easily fallinto a local minimum when an initial estimate of the solution is poor, often the typeof situation faced by robot navigators.Our work in outdoor navigation [23], where measurements are expensive to obtain andhave very signi�cant error inherent to the system, motivated us to look for another �lteringmethod, preferably one which would not require numerous measurements to converge andwas not dependent on an error-free data matrix.As the interesting recent work by Mintz et al [11, 18] in robust estimation and modelingof sensor noise has demonstrated, the criterion of optimality depends critically on thespeci�c model being used. Given two methods, the �rst may produce optimality in onesense but not do as well as the second in another sense. When error exists in both themeasurement and the data matrix, the best solution in the least squares sense is often notas good as the best solution in the eigenvector sense, where the sum of the squares of the
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Fig. 1. (a) In an LS solution, the sum of the squared vertical distances to the line of best �tis minimized. (b) In a TLS solution, the sum of the squared perpendicular distances to the line ofbest �t is minimized.perpendicular distances from the points to the lines are minimized [8] (Fig. 1). This secondmethod is known in the statistical literature as orthogonal regression and in numericalanalysis as total least squares (TLS) [24].The TLS problem, in its simplest form, is to �nd a matrix E and vector f that minimizesk(E; f)k2 such that (A + E)x = b + f for some vector x. The vector x corresponding tothe optimal (E; f) is called the TLS solution. Figure 1 gives a graphical comparison ofthe two techniques when �tting a straight line. If v = (v1; : : : ; vp)T is a right singularvector corresponding to the smallest singular value of (A;b), then it is well known thatthe TLS solution can be obtained by setting x = �(v1; : : : ; vp�1)T=vp. If the smallestsingular value is multiple, then there are multiple TLS solutions, in which case one usuallyseeks the solution of smallest norm. If vp is too small or zero, then the TLS solution maybe too big or nonexistent, in which case an approximate solution of reasonable size canbe obtained by using the next smallest singular values(s) [24]. The TLS approach hasreceived a lot of attention in the numerical analysis literature, partly because it arises in somany applications (see e.g. [10, 24]). The most common algorithms to compute the TLSsolution are based on the Singular Value Decomposition (SVD), a non-recursive matrixdecomposition which is computationally expensive to update.Recently, some recursive TLS �lters have been developed for applications in signalprocessing [4, 5, 7, 27]. Davila [4] used a Kalman �lter to obtain a fast update forthe eigenvector corresponding to the smallest eigenvalue of the covariance matrix. Thiseigenvector was then used to solve a symmetric TLS problem for the �lter. It was notexplained how the algorithm might be modi�ed for the case where the smallest eigenvalueis multiple (i.e., corresponding to a noise subspace of dimension higher than one), or variable(i.e., of unknown multiplicity). In [27], Yu described a method for the fast update of anapproximate eigendecomposition of a covariance matrix. He replaced all the eigenvalues inthe noise subspace with their \average", and did the same for the eigenvalues in the signalsubspace, obtaining an approximation which would be accurate if the exact eigenvaluescould be grouped into two clusters of known dimensions. However, if the eigenproblem forthe covariance matrix is replaced by the singular value problem on the signals, the condition



4numbers involved in the least squares solution can be reduced to their square roots [10, 12],potentially doubling the number of digits of accuracy in the computed solutions. In [5, 7],DeGroat and Dowling used this approach combined with the averaging technique used in[27], again assuming that the singular values could be grouped into two clusters. Recently,Bose et al.[3] applied Davila's algorithm to reconstruct images from noisy, undersampledframes after converting complex-valued image data into equivalent real data. All of thesemethods made some assumptions that the singular values or eigenvalues could be wellapproximated by two tight clusters, one big and one small. In this paper, we present arecursive algorithm that makes very few assumptions about the distribution of the singularvalues.The paper is organized as follows: In section 2 we describe the ULV Decomposition, arecursive analog to the SVD which can be easily updated as new data arrives. In section 3 weshow how the ULV can be used to design a recursive total least squares (RTLS) estimator.In section 4, we present some experiments comparing this estimator with recursive leastsquares (i.e. the Kalman �lter in the static sense). In all the experiments we performed,the RTLS �lter converged faster and to greater accuracy than did the Kalman �lter.2 The ULV DecompositionIn this section, we describe the ULV Decomposition, �rst introduced by Stewart [21, 22].This is a method which reveals the noise subspace (i.e., the subspace corresponding tothe smaller singular values), and which is easily updated when new data arrives withoutmaking any a priori assumptions about the overall distribution of the singular values. Wedescribe how this method can be used to vary the cut between large and small singularvalues, and later show how this method may be applied to a TLS problem. We decomposethe algorithm into a new set of primitive operations, making it possible to easily adapt theULV Decomposition to new applications for which the SVD has been, until now, the onlyalternative.The SVD is, in most cases, the matrix decomposition used to isolate and extract thesmallest singular values and their associated singular vectors. The SVD is not easilyupdated when new data arrives; such updates generally require O(p3) operations (where pis the length of one row). The ULV Decomposition accomplishes the same task, at leastapproximately, but is designed so that when a new row is appended to the original matrix,it can be updated in O(p2) operations, much faster than the SVD.The SVD is typically used to isolate the smallest singular values, and the success of anymethod based on the SVD depends critically on how that method decides which singularvalues are \small" enough to be isolated. The decision as to how many singular valuesto isolate may be based on a threshold value (�nd those values below the threshold), bya count (�nd the last k values), or by other considerations depending on the application.However, in extracting singular values one often wants to keep clusters of those valuestogether as a unit. For example, if all values in a cluster are below a given threshold exceptone, which is slightly above the threshold, it is often preferable to change the thresholdthan split up the cluster. In the SVD, this extraction is easy. Since all the singular valuesare \displayed", one can easily traverse the entire sequence of singular values to isolatewhichever set is desired. In this paper, we propose a set of primitive procedures to providethese same capabilities with the less computationally expensive ULV Decomposition.As an example, in the Total Least Squares (TLS) problem it is necessary to deateand isolate the smaller singular values based not only on the magnitude of the singular



5values, but also on the size or existence of the computed TLS solution, determined bythe entries in the singular vectors. By isolating the deation procedure from the criterionselection procedure, it is possible to use criteria peculiar to the TLS problem while directlyintegrating the ULV procedures into the TLS computation.2.1 Data StructureThe ULV Decomposition of a real n � p matrix A (where n � p) is a triple of 3 matricesU , L, V plus a rank index r, where A = ULV T , V is p� p and orthogonal, L is p� p andlower triangular, U has the same shape as A with orthonormal columns, and the leadingr� r part of L has a Frobenius norm approximately equal to the norm of a vector of the rleading singular values of A. That is, A = ULV T withL = �C 0E F � (1)where kCk2F � �21(A) + � � � + �2r(A) encapsulates the \large" singular values of L. Thisimplies that (E; F ) (the trailing p � r rows of L) approximately encapsulate the p � rsmallest singular values, and the last p � r columns of V encapsulate the correspondingtrailing right singular vectors.In the data structure actually used for computation, L is needed to determine the rankindex at each stage as new rows are appended, but the U is not needed to obtain the rightsingular vectors. Therefore, a given ULV Decomposition can be represented just by thetriple [L; V; r].2.2 Primitive ProceduresWe have developed �ve primitive procedures to use in updating the ULV Decomposition.Three of them, the basic procedures, do not use any tolerances, fudge factors orapproximations of zero that might have to be supplied by the user. All of these are isolatedin the two outer procedures. None of the basic procedures involve any heuristic operations,except that Extract Info requires the use of a condition number estimator, which is byits nature a heuristic procedure, albeit a classical, well-tested one.2.2.1 Basic Procedures The basic procedures are designed to allow easy updating ofthe ULV Decomposition as new rows are appended. Each basic procedure costs O(p2)operations. The basic procedures consist of a series of simple annihilation operations. Eachannihilation operation is accomplished with a sequence of plane (Givens) rotations [10],which are orthogonal matrices of the formQ = 0BB@ I 0 0 00 c s 00 �s c 00 0 0 I 1CCAwhere c2 + s2 = 1 and the I 's represent identity matrices of appropriate dimensions. If lijdenotes an entry of L to be annihilated, and li;j�1 denotes the neighboring entry in thesame row absorbing the length lost, then Q is constructed just so that when applied to Lfrom the right, we expose the zero in the i; j position:(i-th row of L) �Q = (: : : ; li;j�1; lij; : : :) �Q = (: : : ;�; 0; : : :):



6C . . . . C + . . . C . . . . C . . . .C C . . . rotate C C + . . rotate C C . . . rotate C C . . .C C C . . from => C C C + . from => C C C . . once => C C C . .e e e f . right e e e f + left E E E F . from E E E F .e e e f f e e e f f e e e f f left e e e f fR R R R R R . . . . R . . . . . . . . .chop away row of zeroes and increment rank index:C . . . .C C . . .=> C C C . .C C C C .e e e e fFig. 2. Sketch of Absorb One procedure. Upper case letters denote large entries, lower caseletters small entries in the ULV partitioning, R denotes an entry of the new row, + a temporary �ll,and . a zero entry.Analogously, if the entry absorbing the length lost lies in the same column, then the Q isconstructed similarly, but applied from the left. By using a sequence of such rotations ina very special order, we can annihilate desired entries while �lling in as few zero entries aspossible, and then restoring the few zeroes that are �lled in. In the diagrams (�gures 2 &3), upper case letters denote larger values to be treated as part of the leading r � r part,and lower case letters denote smaller values to be treated as part of the trailing part. Weshow the operations on L, partitioned as in (1). Each rotation applied from the right isalso accumulated in V , to maintain the identity A = ULV T , where the U is not saved.� Absorb One:Absorb a new row. The matrix A is augmented by one row, obtaining� AaT � = �U 00 1�� LaTV �V T :Then the L, V are updated to restore the ULV structure, and the rank index r isincremented by 1. No determination is made if the rank has really increased by 1;this is done elsewhere.The process begins by applying p Givens rotations [10] from the right to rotate all thenonzeroes in the new row all the way to the left. Then p rotations are applied fromthe left to restore L to lower triangular. Finally, a single rotation from the right isused to completely annihilate the last nonzero remaining in the extra row. Once theextra row is all zero, it can be chopped away. Since each rotation modi�es at most 2pentries of L plus (for the right rotations) 2p entries of V , the total cost is O(p2). InFigure 2, we illustrate the process on a 5� 5 example going from rank 3 to rank 4.� Extract Info:The following information is extracted from the ULV Decomposition: (a) theFrobenius norm of (E; F ) (i.e., the last p � r rows of L), (b) an approximation ofthe last singular value of C (i.e., the leading r � r part of L), and (c) a left singularvector of C corresponding to this singular value. If the rank index were to be reduced



7v v v v . . . vC . . . . C + . . . C . . . . C . . . .C C . . . rotate C C + . . rotate C C . . . decrement C C . . .C C C . . from => C C C + . from => C C C . . rank => C C C . .C C C C . left c c c c . right c c c c . index e e e f .e e e e f e e e e f e e e e f e e e f fFig. 3. Sketch of Deflate One procedure. The lower case c's denote entries of C of smallnorm exposed by the rotations constructed to annihilate the entries v of the left singular vector v.by 1, the singular value (item (b)) would be moved to the trailing part, and item (c) isneeded to accomplish that. This operation does not change the ULV Decomposition.Items (b) and (c) are obtained by using a condition number estimator essentiallya method designed to estimate the norm of the inverse of a matrix and to yield avector that exhibits that norm, with a cost comparable to that of back-substitution,O(p2). There have been many condition number estimators proposed in the literature,di�ering on their accuracy and on which matrix norm they are based, and a largebody of computational experience exists [13]. In our implementation we chose theone of Van Loan [26], which is based on the Euclidean norm and usually yields goodaccuracy especially for well separated singular values. But one could also use the onesin LINPACK [6], LAPACK [1], or any in Higham's excellent survey [13].� Deflate One:Deate the ULV Decomposition by one (i.e., apply transformation and decrementthe rank index by one so that the smallest singular value in the leading r � r partof L is "moved" to the trailing rows). Speci�cally, transformations are applied toisolate the smallest singular value in the leading r � r part of L into the last row ofthis leading part. Then the rank index is decremented by 1, e�ectively moving thatsmallest singular value from the leading part to the trailing part of L. This operationdoes not check whether the singular value moved is close to zero or any other singularvalue.The process begins by applying r rotations to C from the left to expose a small rowat the bottom. These rotations are constructed by annihilating all but the leftmostentry of an approximate left singular vector corresponding to a small singular value,previously supplied by Extract Info. Then r rotations are applied from the rightto restore the lower triangular form of L, and the rank index is decremented. As inAbsorb One, each rotation modi�es at most 2p entries of L and (just for the rightrotations) 2p entries of V , so the total cost is O(rp) � O(p2). In Figure 3, weillustrate this with a 5� 5 example going from rank 4 to rank 3. The �rst reductionis to transform the C so as to expose a row of small norm at the bottom which canthen be \moved" to the trailing part. The v's denote the elements of the trailing leftsingular vector of C. The rotations (call them Q's) are determined by maintainingthe invariance of the expression vTQQTC, while annihilating the r�1 leading entriesof vT .2.2.2 Outer Procedures



8� Deflate To Gap: This procedure uses a heuristic to decide whether or not the rankboundary, represented by the rank index r is in the middle of a cluster of singularvalues. That is, is the smallest singular value of the leading part of L well separatedfrom the singular values in the trailing part? If the heuristic says no, this proceduredeates repeatedly until the heuristic �nds a gap in the singular values marking theend of the cluster. The cost of this procedure is O(p2k), where k is the number ofdeations needed, which is limited by the dimension of the largest cluster.Let s be the smallest singular value of the leading r rows of L, and let f be theFrobenius norm of the trailing part. Then the heuristic is simply that a gap exists ifs > df , where d is a user chosen Spread. In order to allow for round-o� or other smallnoise, we pretend that the trailing part has an extra p+ 1-th singular value equal toa user chosen Zero Tolerance b. Then the heuristic actually used iss2 > d2(f2 + b2):Hence, any singular value that is below b or within a cluster of b will be treated as partof the trailing part. The only two user de�ned parameters needed for this heuristicare the Spread d and the Zero Tolerance b.� UpdateThis procedure encompasses the entire process. It takes an old ULV Decompositionand a new row to append, and incorporates the row into the ULV Decomposition.The new row is absorbed, and the rank is deated if necessary to �nd a gap amongthe singular values. The smallest singular value is always isolated, so the trailing partis never empty (i.e. we always have r < p). The absorption of the new row implicitlyincrements the rank index, so this procedure allows the rank to either go up by one,or be deated to its original value, or be deated to any smaller value. This processcalls Absorb One and Deflate To Gap once. If the rank index r = n after the newrow has been absorbed, it is also necessary to call Deflate One once to isolate at leastone singular value. Hence the cost will be bounded by O(p2k), as in Deflate To Gap.We remark that one could optimize the method by a constant by incorporating intoAbsorb One a check to see if the rank has really increased, by supplying Absorb Onewith the user de�ned tolerances.3 The RTLS AlgorithmWe can adapt the ULV Decomposition to solve the Total Least Squares (TLS) problemAx � b, where new measurements b are continually being added. The adaptation of theULV to the TLS problem has also been analyzed independently in great detail in [25], thoughthe recursive updating process was not discussed at length. For our speci�c purposes, letA be an n � (p � 1) matrix and b be an n-vector, where p is �xed and n is growing asnew measurements arrive. Then given a ULV Decomposition of the matrix (A;b) and anapproximate TLS solution to Ax � b, our task is to �nd a TLS solution bx to the augmentedsystem bAbx � bb, where bA = ��AaT � and bb = ��b� � ;and � is an optional exponential forgetting factor [12].The algorithm presented here is derived from the SVD-based TLS algorithm (Algorithm3.1 of [24]), but simpli�ed for a single right hand side for the sake of clarity. Multiple right



9hand sides can be handled in a similar fashion. The main computation cost of that algorithmoccurs in the computation of the SVD. That cost is O(p3) for each update. We replace thatwith a updating ULV computation, so the total cost is reduced to only O(p2) per input.The RTLS Algorithm:� Start with [L; V; r], the ULV Decomposition of (A;b), and the coe�cients aT ; � forthe new incoming equation aTx = �.� Call Update with the old ULV Decomposition [�L; V; r] and the new row (aT ; �) tocompute the updated ULV Decomposition for the augmented matrix( bA; bb ) = ��A �baT � � = bU bL bV ;The new ULV Decomposition is [bL; bV ; br] (note that the new bU is thrown away).� Partition bV = � bV11 bV12bV21 bV22� ;where bV22 is 1� (p� br).If k bV22k is too close to zero (according to a user supplied tolerance), then callDeflate To Gap to obtain a new ULV Decomposition with a smaller rank index.Denote the new ULV Decomposition [bL; bV ; br] and repeat this step until k bV22k is largeenough.� Find an orthogonal matrix Q such that bV22Q = (0; : : : ; 0; �), and let v be the lastcolumn of bV12Q. Then compute the new approximate TLS solution according to theformula bx = �v=�.This RTLS Algorithm makes very few assumptions about the underlying system, thoughthe user must supply a zero tolerance for k bV22k, plus a Spread and Zero Tolerance for thedeations by Deflate To Gap. The method depends on the use of the primitive operationsUpdate and Deflate To Gap in a way very analogous to the use of the SVD in the standardalgorithm in [24]. For our application of robot navigation, it su�ced to set both zerotolerances to zero and the Spread to 1.5.4 Experimental ResultsIn our �rst set of experiments, we compared performance of the Kalman, EKF, and RTLSusing a very simple line �tting problem. We �t straight lines to groups of 20 points takenfrom lines of varying slopes. Random noise was added to both x and y coordinates of thepoints. Since all point coordinates were integer, error was introduced with a discretizednormal distribution of variance 4. The linear equation used for both the Kalman and RTLS�lters was: y = mx+ cwith m the slope and c the y intercept of the line. We formulated the problem so that thei-th measurement consisted of Ai = h xi 1 i ; bi = yi



10where Ai is the data matrix and bi is the measurement vector. The estimated state vectorxi = " mc # ;is updated. The non-linear equation used for the EKF was:f(y;x) = y1cos� + y2sin� � �where y = h y1 y2 iT is the measurement vector and x = h � � iT is the state vector.This equation was linearized and formulated as outlined in section 1.
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Fig. 4. Lines �t to noisy points. Solid line is the true line. Dark grey line is the �t withRTLS. Light grey line is the �t with the Kalman �lter. Slopes of lines shown are 0, 1, and 5.Figure 4 shows the results of three trials with the Kalman and RTLS �lters. TheEKF often failed to converge to the global minimum, even for this simple problem. Initialestimate for the Kalman �lter was the line passing through the �rst two data points. TheRTLS �lter does not require an initial estimate. To account for the fact that the rightmostcolumn of the data matrix has no error, we took advantage of the unique exibility of theRTLS approach to scale that column by a factor of � so that the errors modeled by RTLSwere reduced by 1=�. After trying several larger values of �, and comparing with the mixedLS-TLS method [10, 24], a nonrecursive algorithm capable of treating certain columns asexact, we found it su�ced to use � = 100 for all experiments.The RTLS �lter performs better as the lines become more vertical. This is to beexpected since the vertical distance to the line, minimized by the Kalman �lter, approachesthe perpendicular distance to the line, minimized by RTLS, as the slope of the lineapproaches zero. Ten trials were run with each algorithm with lines of di�erent slopes.Figure 5 shows the resulting slope and y intercepts of all ten trials for lines of actual slope0, 1 and 5.In our second set of experiments, we simulated a simple robot navigation problemtypical of that faced by an actual mobile robot [2, 15, 16, 17]. The robot has identi�ed asingle landmark in a two-dimensional environment and knows landmark location on a map.It does not know its own position. It moves in a straight line and with a known uniformvelocity. Its goal is to estimate its own start position relative to the landmark by measuring
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Fig. 5. Slope and y intercept in all ten trial runs with lines of slopes 0, 1 and 5 and yintercepts of 50, 0 and -200, respectively. The *'s represent results of the RTLS �lter. The O'srepresent results of the Kalman �lter. The +'s represent results of the EKF. The +'s are missingat values where the EKF result was o� the graph or failed to converge.the visual angle � between its direction of heading and the landmark. Measurements aretaken periodically as it moves. Figure 6 shows a diagram of the problem. For simpli�cation,it is assumed that the landmark is located at (0,0), that the y coordinate of the robot'sstart position does not change as the robot moves, and that the robot knows what side ofthe landmark it is on. Although these assumptions may seem restrictive, it can easily beshown that knowing the actual location of two landmarks on the map and �nding robotstart position relative to both of them in this way will allow one to uniquely determineactual robot start position on the map.11This process can, of course, be extended to estimate intermediate and current robot position.
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(x,y)Fig. 6. Diagram of simulated robot navigation problem. The robot moves along the horizontalline. Landmark location and velocity are known. Angle �i is the angle from robot heading to thelandmark at time i. Goal is to estimate initial robot location (x,y).In our experiments, it was assumed that the y coordinate of the robot path was negative(i.e., the path, as shown in Figure 6, was on the side below the landmark), that robotvelocity was 20 per unit of time and that measurements of � were taken at unit timeintervals. At any time ti: cot(�i) = x + ti � velocityywhere (x; y) is robot start position and �i is the angle from robot heading to the landmark.We are not assuming any particular sensing device for this set of experiments, only thatmeasurements of the angles �i are made. Random error with a uniform distribution wasadded to the angle measures and a normally distributed random error was added to thetime measurement. We again formulated the problem so that the data matrix, as well asthe measurement vector contained error:Ai = h 1 �cot(�i) i ; xi = " xy # ; bi = �ti � velocitywhere, at time ti, Ai is the data matrix, bi is the measurement vector, and xi is theestimated state vector consisting of the coordinates (x; y) of robot start position. TheKalman �lter was given an estimated start of (0,0). The RTLS algorithm had no estimatedstart position provided. As in the previous RTLS experiment, the leading column of thedata matrix was scaled by � = 100 to reduce the allowed errors. Results are summarized inFigure 7. The mean deviations d (of 10 trials) of the estimates from the actual start locationof (-460, -455) are compared for six di�erent error amounts. The top three graphs haveuniformly distributed error in � of �2� and normally distributed error in t with standarddeviation sd=0, .05, and .1. The bottom three graphs have uniformly distributed error in� of �4� and normally distributed error in t with sd=0, .05 and .1. The jump in the RTLSdistance at the second measure is due to the fact that RTLS does not require, and is notgiven, an initial estimate of location. The velocity/time interval used, combined with the



13error distribution used, produced error on some runs that gave readings of �2 < �1 (seeFigure 6). Since there were only two measurements taken at this point, the system wasnot yet overdetermined, and the erroneous measures were given signi�cant weight. Thisdemonstrates how quickly the RTLS �lter can recover from such errors. Table 1 gives meandeviation from actual location after 15 measurements. For all six groups of experiments,the RTLS �lter converged more quickly than the Kalman �lter. After 15 measurements,the RTLS estimate was closer to the actual location than was the Kalman in �ve of the sixgroups.
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Fig. 7. Comparison of mean deviations from estimated to actual start position. Measurementswere taken at unit time intervals (horizontal axis). Vertical axis gives mean deviation d. Top threegraphs have uniformly distributed error in � of �2� and normally distributed error in t with sd=0, .05and .1. Bottom three graphs have uniformly distributed error in � of �4� and normally distributederror in t with sd=0, .05 and .1. Results using the RTLS algorithm are shown in black. Resultsusing the Kalman �lter are shown in grey.Error in � Error in t 0 .05 .1�2� Kalman 32.47 20.27 24.54RTLS 20.24 15.90 24.81�4� Kalman 21.01 31.80 34.63RTLS 10.11 24.97 32.13Table 1Mean deviation of estimate from actual location after 15 measurements.The third set of experiments consisted of a sequence of indoor robot runs with ourTRC Labmate robot. As in the second set of experiments, the robot did not know its ownposition on the map, but did know the location of a single landmark. Its task was to takean image, �nd the landmark in the image, and use the result to determine its start positionrelative to the landmark.A Panasonic WV-BL202 camera with a 6mm lens was mounted at an angle of 90�to robot bearing. Horizontal �eld of view was 56�470. Images were grabbed on a Sun
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Fig. 8. TRC Labmate with camera mounted at 90� to bearing and diagram showing how anglesto landmark are measured. Angle measure is bound by �25�220 for the given �eld of view.SPARCstation IPX using Sun's VideoPix. In order to avoid the distortion caused by Sun'sconversion of the 480 vertical by 720 horizontal pixels grabbed to the 480 vertical by 640pixels stored, the initial 480 by 720 image was processed. Forty pixels were cropped o�each end of the image, resulting in a 480 by 640 pixel image with a horizontal �eld of viewof 50�440. \Landmarks" were mini Maglite high intensity ashlight candles.The angular position of the landmark was measured in a sequence of images taken whilethe robot moved across the room at a constant velocity. Not only was there error in anglemeasure, but error occurred in velocity, robot bearing and in the times at which the imageswere taken. It is not possible to predict and model these errors. For example, velocity wasset at 20mm/second, but average true velocity across runs ranged from 21.4mm/second to22.5mm/second. In addition, the supposed constant velocity was not constant throughouta single run, varying in an unpredictable manner. It would be unrealistic to assume anyof these errors or their combined result to have a gaussian distribution. Thus, it should benoted that the assumption of gaussian distribution of noise cannot be made in this set ofexperiments. Figure 8 shows the Labmate with camera and a diagram of how the anglesare measured. When the landmark is in the left of the camera image, the angle (�1 in thediagram) is negative. When the landmark is in the right of the camera image, the angle(�2 in the diagram) is positive. Angle measure is thus bound by �25�220 for the given �eldof view.It is again assumed that the landmark is located at (0,0), that the y coordinate of therobot's position does not change as the robot moves, and that the robot knows which sideof the landmark it is on. At any step i:tan(�i) = x+ (t0 + i � interval) � velocityywhere (x; y) is robot start position, �i is the measured angle, t0 is robot start time, intervalis the interval at which images are grabbed and velocity is robot velocity. The problem
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Fig. 9. Comparison of �lters with actual robot runs: Images were grabbed at time intervalst (horizontal axis) 12 seconds apart. Vertical axis gives deviation of estimated start position fromactual start position in millimeters. Landmark was placed at a di�erent location for each run.Results using the RTLS algorithm are shown in black. Results using the Kalman �lter are shown ingrey.was expressed as a linear function so that no accuracy was lost by linearizing. However,the data matrix as well as the measurement vector contained error:Ai = h 1 �tan(�i) i ; xi = " xy # ; bi = �(t0 + i � interval) � velocitywhere at any step i, Ai is the data matrix, bi is the measurement vector and xi is theestimated state vector consisting of the coordinates (x; y) of robot start position. As inthe previous set of experiments, the Kalman �lter was given an estimated start position of(0,0) and the leading column of the data matrix was weighted by � = 100.Figure 9 shows a comparison of four of the robot runs. Robot velocity was set to20mm/sec. Five images were grabbed 12 seconds apart. Robot start position relativeto the landmark used for localization was di�erent in each run. The deviations d of theestimate of start location from actual start location at each 12 second time interval t arecompared. As in the simulated runs, the RTLS �lter converges faster and to more accuracythan does the Kalman.5 ConclusionIn this paper, we have presented the Recursive Total Least Squares (RTLS) �lter. This�lter is easily updated as new data arrives, yet makes very few assumptions about the data



16or the problem being solved. The method was based on a new reorganization of the ULVDecomposition. We suggested its use as an alternative to the Kalman �lter in reducinguncertainty in robot navigation. In this context RTLS does not require an initial stateestimate, avoids modeling errors introduced by the extended Kalman �lter, does not su�erthe traps of local minima, and converges quickly. We have illustrated the method usingthree di�erent sets of experiments. It has been seen that even on a simple line �ttingexample, the RTLS can be a much more e�ective recursive algorithm. It is demonstratedthat in the domain of robot navigation the RTLS can easily provide more accurate estimatesthan the Kalman �lter, and in fewer time steps, especially when errors are present in boththe measurement vector and the data matrix.Appendix IKalman �lter equations:System Model xi = Fi�1xi�1 + ei�1Measurement Model bi = Aixi + �iInitial Conditions x0 = (AT0 V �10 A0)�1AT0 V �10 b0P0 = (AT0 V �10 A0)�1State Estimate Extrapolation xi(�) = Fi�1xi�1(+)Error Covariance Extrapolation Pi(�) = Fi�1Pi�1(+)FTi�1 + Ui�1State Estimate Update xi(+) = xi(�) +Ki[bi � Aixi(�)]Error Covariance Update P�1i (+) = P�1i (�) + ATi V �1i AiKalman Gain Matrix Ki = Pi(+)ATi V �1iTable 2Discrete Kalman Filter Equations where B is the measurement vector, A is the data matrix, Fis the state transition matrix, x is the state vector, and ei � N (0; Ui), �i � N (0; Vi)
Measurement 

vector

K

A F

+

+

+

-

x

B

x
i-1

i

i-1i

ii

Sensor model
State 

transition 

matrix

Kalman gain 

matrix

Output

Fig. 10. Schematic diagram of Kalman �lterReferences[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling,A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK User's Guide, SIAM,Philadelphia, 1992.



17[2] N. Ayache and O. D. Faugeras, Maintaining representations of the environment of a mobilerobot, IEEE Transactions on Robotics and Automation, 5 (1989), pp. 804{819.[3] N. K. Bose, H. C. Kim, and H. M. Valenzuela, Recursive implementation of total least squaresalgorithm for image reconstruction from noisy, undersampled multiframes, in Proceedings of1993 International Conference on Acoustics, Speech and Signal Processing, IEEE, May 1993,pp. V{269{V{272.[4] C. E. Davila, Recursive total least squares algorithms for adaptive �ltering, in Proceedings of1991 International Conference on Acoustics, Speech and Signal Processing, IEEE, May 1991,pp. 1853{1856.[5] R. D. DeGroat, Noniterative subspace tracking, IEEE Transactions on Signal Processing, 40(1992), pp. 571{577.[6] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's Guide, SIAM,Philadelphia, 1979.[7] E. M. Dowling and R. D. DeGroat, Recursive total least squares adaptive �ltering, in SPIEProceedings on Adaptive Signal Processing, vol. 1565, SPIE, July 1991, pp. 35{46.[8] R. O. Duda and P. E. Hart, Pattern Classi�cation and Scene Analysis, John Wiley and Sons,Inc., 1st ed., 1973.[9] A. Gelb, Applied Optimal Estimation, The M. I. T. Press, 1st ed., 1974.[10] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins, 2nd ed., 1989.[11] G. Hager and M. Mintz, Computational methods for task-directed sensor data fusion and sensorplanning, The International Journal of Robotics Research, 10 (1991), pp. 285{313.[12] S. Haykin, Adaptive Filter Theory, Prentice Hall, 2nd ed., 1991.[13] N. J. Higham, A survey of condition number estimators for triangular matrices, SIAM Rev.,29 (1987), pp. 575{596.[14] R. E. Kalman, A new approach to linear �ltering and prediction problems, Journal of BasicEngineering, (1960), pp. 35{45.[15] A. Kosaka and A. C. Kak, Fast vision-guided mobile robot navigation using model- basedreasoning and prediction of uncertainties, CVGIP: Image Understanding, 56 (1992), pp. 271{329.[16] D. J. Kriegman, E. Trendl, and T. O. Binford, Stereo vision and navigation in buildings formobile robots, IEEE Transactions on Robotics and Automation, 5 (1989), pp. 792{803.[17] L. Matthies and S. A. Shafer, Error modeling in stereo navigation, IEEE Journal of Roboticsand Automation, RA-3 (1987), pp. 239{248.[18] R. McKendall and M. Mintz, Sensor-fusion with statistical decision theory: A prospectus ofresearch in the grasp lab, Tech. Rep. MS-CIS-90-68, University of Pennsylvania, September1990.[19] R. C. Smith and P. Cheeseman, On the representation and estimation of spatial uncertainty,The International Journal of Robotics Research, 5 (1986), pp. 56{68.[20] H. W. Sorenson, Least-squares estimation: from gauss to kalman, IEEE Spectrum, (1970),pp. 63{68.[21] G. W. Stewart, Updating a rank-revealing ULV decomposition, Technical Report CS-TR 2627,Department of Computer Science, University of Maryland, 1991.[22] , An updating algorithm for subspace tracking, IEEE Trans. Signal Proc., 40 (1992),pp. 1535{1541.[23] K. T. Sutherland and W. B. Thompson, Inexact navigation, in Proceedings 1993 InternationalConference on Robotics and Automation, IEEE, May 1993.[24] S. Van Hu�el and J. Vandewalle, The Total Least Squares Problem - Computational Aspectsand Analysis, SIAM, Philadelphia, 1991.[25] S. Van Hu�el and H. Zha, An e�cient total least squares algorithm based on a rank-revealingtwo-sided orthogonal decomposition, Numerical Algorithms, 4 (1993), pp. 101{133.[26] C. F. Van Loan, On estimating the condition of eigenvalues and eigenvectors, Lin. Alg. &Appl., 88/89 (1987), pp. 715{732.[27] K.-B. Yu, Recursive updating the eigenvalue decomposition of a covariance matrix, IEEETransactions on Signal Processing, 39 (1991), pp. 1136{1145.


