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Abstract. Given are a directed edge-labelled graph G with a distinguished node
n0, and a regular expression P which may contain variables. We wish to compute
all substitutions φ (of symbols for variables), together with all nodes n such that all
paths n0 → n are in φ(P). We derive an algorithm for this problem using relational
algebra, and show how it may be implemented in Prolog. The motivation for the
problem derives from a declarative framework for specifying compiler optimisations.
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1. Bob Paige and IFIP WG 2.1

Bob Paige was a long-standing member of IFIP Working Group 2.1 on
Algorithmic Languages and Calculi. In recent years, the main aim of
this group has been to investigate the derivation of algorithms from
specifications by program transformation. Already in the mid-eighties,
Bob was way ahead of the pack: instead of applying transformational
techniques to well-worn examples, he was applying his theories of pro-
gram transformation to new problems, and discovering new algorithms
(Paige et al., 1985; Paige, 1989; Bloom and Paige, 1995). The secret of
his success lay partly in his insistence on the study of general algorithm
design strategies (in particular finite differencing (Paige and Koenig,
1982; Paige, 1986) and data structure selection (Cai et al., 1991)) rather
than the study of tiny derivational steps that some of the working group
had focussed on.

His success in the systematic discovery of new algorithms was in
itself remarkable, but perhaps even more impressive was the fact that
he succeeded in automating his derivations in the APTS system (Cai
and Paige, 1993; Paige, 1991). This provided the ultimate proof that
he had succeeded in identifying deep principles in algorithm design:
an automated derivation leaves no room for cheating. The mechanism
for applying transformations in the APTS system was that of rewrite
rules, and a fast pattern matching algorithm (invented, naturally, by
Bob himself (Cai et al., 1992)) provided the basic engine. The rules
could have side conditions expressed as queries on a ‘database’ of facts
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2 de Moor et al

about the program under consideration. The facts in the database could
be any result of program analyses.

A major difficulty, which we repeatedly discussed with Bob, was to
express the queries in a declarative meta-language, and to maintain the
database incrementally as the rules are applied (Paige, 1996). These re-
main major problems in the field of automated program transformation,
and the present paper is a small contribution towards solving them. We
follow Bob’s example in our attempt to derive the relevant algorithm
itself in a transformational fashion.

Bob’s influence on working group 2.1 has been immense, and he
provided much inspiration for its members. He will be much missed.
His work, however, lives on in the current research of the group, and
this paper is but a small example of that.

1.1. Specifying compiler optimisations

Several of the phases of a compiler can be generated from declarative
specifications: for instance, there are commonly used tools for syntax
analysis (lex and yacc), for semantic analysis (attribute grammar sys-
tems such as FNC-2 and the SG (Jourdan et al., 1990; Reps and Teitel-
baum, 1989)) and also for instruction selection (IBURG (Hanson et al.,
1992)). There is however no such widely accepted tool for the declar-
ative specification of optimising transformations, although there have
been many proposals, e.g. (Boyle et al., 1987; Bik et al., 1998; Visser
et al., 1998; Assmann, 1996; Tjiang and Hennessy, 1992; Klein et al.,
1996; Lipps et al., 1988; Faith et al., 1997; Cordy et al., 1995; Whitfield
and Soffa, 1997).

In a traditional compiler, the optimising transformations are typi-
cally performed as rewrites on the flow graph (Aho et al., 1985; Appel,
1998; Muchnick, 1997). The difficulty lies in the specification of the
necessary side conditions. For example, consider constant propagation.
In essence, it is simply the rewrite rule

x := y ⇒ x := c

where y is a program variable, and c a constant. The rule is applica-
ble only if on all execution paths to the assignment x := y , the last
modification to y was an assignment of the form y := c. How can one
conveniently express this condition?

Let us assume that edges in the flow graph are labelled with atomic
propositions about their target statement. For example, each edge to
a node that is of the form y := E (or otherwise modifies y) would be
labelled with the proposition def (y). We can think of a path in the flow
graph as a sequence of edges, or alternatively as a sequence of edge-
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// entry n0

if p > 3
then q := 0;

r := 1
else r := 2;

q := 0;
s := q ; // node n1

if q > 3
then t := q // node n2

else t := r

entry

q := 0

p > 3

r := 2

q := 0 r := 1

s := q

t := q

q > 3

t := r 2

n1

n0

n

Figure 1. An example flow graph

labelling propositions. The side condition of constant propagation then
becomes the requirement that all paths from program entry to x := y
are in the regular language

P = ( )∗ ; y := c ; (¬def (y))∗ ; x := y

Here ( ) denotes a wildcard, (; ) is sequential composition and ( )∗
is the usual closure operation. The symbols y , c and x are pattern
variables: we seek to compute substitutions φ that instantiate these
variables, coupled with nodes n such that all paths to n are in the
regular language φ(P). In Figure 1, an example is shown that has two
solutions, namely ({y → q , c → 0, x → s},n1) and ({y → q , c →
0, x → t},n2). Note the difference between pattern variables (x , y , c)
which appear in the regular expression and program variables (p, q , r)
which appear in the flow graph. Also notice that one of the paths in
the solution, from n0 to n2, cannot occur in actual program runs.

As another example consider common sub-expression elimination.
Here the rewrite is equally simple, we replace an assignment to a
complex expression with an assignment to a variable

x := y + z ⇒ x := w

The side condition must say that every path to the assignment x :=
y + z passes through the assignment w := y + z and nothing must
interfere between these two assignments. The pattern that all paths
from the entry to the x := y + z node must match is

Pcse = ( )∗;w := y + z ; (¬def (w) ∧ ¬def (y) ∧ ¬def (z ))∗; x := y + z

Furthermore, the variable w should not be equal to y or z . That addi-
tional requirement could have been encoded in the above formula, but
we prefer to treat it separately for expository reasons.
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t := 5 * q

skip

p:=5 * q

entry

t := 3

r > 4

n5

4n

n

1n

3

0n

2

n

Edge Proposition
n0 → n1 p := 5 ∗ q ∧ def (p) ∧ use(q)
n1 → n2 r > 4 ∧ use(r)
n2 → n3 skip

n2 → n4 t := 3 ∧ def (t)
n3 → n5 t := 5 ∗ q ∧ def (t) ∧ use(q)
n4 → n5 t := 5 ∗ q ∧ def (t) ∧ use(q)

Figure 2. A program annotated with composite propositions

It is now apparent that our initial description of the problem was
somewhat over-simplified, because in general we are interested in many
different facts about edges in the flow graph, not just the atomic propo-
sitions such as def (x ). We therefore need to consider edges to be la-
belled by composite propositions that are true of the target node.
Composite propositions are built from atomic propositions, and the
usual logical connectives (¬,∧,∨). A path in the flow graph thus cor-
responds to a sequence [p0, p1, . . . , pn−1], where each pi is a compos-
ite proposition. Similarly, the alphabet in the regular expression is
that of composite propositions. We seek to compute all (substitution,
node) pairs (φ,n) that satisfy the following condition. For every path
to n in the flow graph (say [p0, p1, . . . , pm−1]) there exists a word
[q0, q1, . . . , qm−1] in the language of the pattern φ(P) such that pi ⇒ qi

for each 0 ≤ i < m.
To illustrate, the program in Figure 2 is annotated with composite

propositions about the use and definition of different program variables.
Consider the pattern Pcse that we introduced above. One solution is
(φ,n5), where φ = {x → t ,w → p, y → 5, z → q}. For example, one of
the paths from the entry to n5 is through n1,n2 and n4. This path is
labelled by the propositions

[ p := 5 ∗ q ∧ def (p) ∧ use(q),
r > 4 ∧ use(r),
t := 3 ∧ def (t),
t := 5 ∗ q ∧ def (t) ∧ use(q) ]

Each element of this path implies an associated element in a path in
φ(Pcse), namely:

[ p := 5 ∗ q ,
¬def (p) ∧ ¬def (5) ∧ ¬def (q),
¬def (p) ∧ ¬def (5) ∧ ¬def (q),
t := 5 ∗ q ]
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In this paper, we shall initially ignore the propositional structure
of the alphabet, and solve a (seemingly) simpler problem first, as a
stepping stone towards the above application. We aim to develop an
algorithm for solving universal regular path queries of the following
form. Given a regular expression P that contains a number of variables,
an edge-labelled directed graph G and a distinguished node n0 of G , it
is required to compute all (substitution, node) pairs (φ,n) so that all
paths n0 → n are in the regular language φ(P). Naturally we are only
interested in those pairs where n is actually reachable, so that there
exists at least one path n0 → n in φ(P).

The structure of this paper is as follows. First we derive an algo-
rithm for the case that P does not contain variables. Our purpose in
presenting this derivation is to promote the use of universal algebra
in reasoning about problems in automata theory; using a number of
well-understood concepts from universal algebra, the derivation is a
calculation of merely six steps. Next, we encode that algorithm as a
Prolog program.

This paper is an exploratory step towards a tool for programming
optimising transformations in a declarative style, and we conclude with
a discussion of the further work required. We also briefly discuss some
intriguing connections with other fields, in particular that of query
languages for semi-structured data.

2. Specification and derivation

2.1. Specification

2.1.0.1. Relations We write R : X ← Y to indicate that R is a sub-
set of X × Y . This slightly unusual notation (with arrows pointing
backwards from source Y to target X ) makes it a little easier to read
formulae involving composition, defined below. The predicate xRy is
shorthand for (x , y) ∈ R. Two relations R : X ←Y and S : Y ←Z can
be composed to form R · S :

x (R · S )z ≡ ∃y ∈ Y : xRy ∧ ySz .

A relation R : X ←Y is said to be a function if it relates each y ∈ Y
to exactly one x ∈ X . A particular example of a function is the identity
relation idX : X ← X , which maps each element of X to itself.

2.1.0.2. Automata and folds To formulate the specification of our
problem as a relation, we shall first need to cast the familiar notion
of an automaton in relational calculus. Functional programmers know
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that automata are very similar to the fold-left function ([init , step]),
which takes a constant init , a transition function step. When applied
to a list, it sums the elements from left to right using step, starting
with the constant init :

([init , step])[a0, a1, . . . , an−1]
=
((init ‘step‘ a0) ‘step‘ a1) . . . ‘step‘ an−1 .

Indeed, fold-left exactly operates like a deterministic state machine,
with initial state init and transition relation step. In a pioneering paper
on algebra and automata theory, Eilenberg and Wright (Eilenberg and
Wright, 1967) have shown that fold-left can be generalised to take rela-
tional arguments. This has the obvious intuitive interpretation, where
each application of step makes a nondeterministic choice among the
possible transitions. All the familiar identities of functional program-
ming generalise to the relational setting. We shall see several examples
of such identities shortly.

For convenience, we shall think of init and step as relations with
types:

init : S ← 1 , and
step : S ← S × A .

Here 1 denotes a set that has only one element, which we denote
as •. If init is a function, it picks out exactly one element in S . In
general, init corresponds to a subset of S , the set of all initial states
of a nondeterministic state machine. That is, s(init)• if s is an initial
state. In what follows, we shall refer to a pair (init , step) (that has the
above signature for some sets S and A) as a machine.

In our problem, both the flow graph and the pattern can be modelled
as machines. To wit, the flow graph is a machine

G = (G0 : N ← 1,G1 : N ← N × A) .

Here G0 is the distinguished start node of the flow graph, and G1

specifies the edges. Thus ([G ]):N ← A∗. The pattern is a machine

P = (P0 : S ← 1,S1 : S ← S × A) ,

corresponding to the regular expression, and thus we have ([P ]):S←A∗.
In addition to this machine for the pattern, we also need a specification
of its final states. This we chose to model as a relation

F : 1 ← S .
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Note that (as in the case of initial states) we can identify such a relation
F with a subset of S . That is, •(F )s if s is a final state. The advantage
of defining the final states in this way is the following concise definition
of the language of the pattern:

F · ([P ]) : 1 ← A∗ .

In words, a string x (a list with elements drawn from A) is in the
language of the pattern if ([P ]) relates some final state to x . Below we
shall sometimes write L(F ,P) for the subset of A∗ defined in this way.

To complete the specification of our problem, we need an operator
that encodes universal quantification in the relational calculus. Given
two relations R : X ← Z and S : Y ← Z that share the same source
type, the division of R/S : X ← Y is defined by

x (R/S )y ≡ ∀z : ySz ⇒ xRz .

That is, R/S is the largest relation T such that T · S ⊆ R. Expressed
as an equivalence, that means

T ⊆ R/S ≡ T · S ⊆ R , for all T : X ← Y .

Readers familiar with relational semantics of imperative programs will
recognise the weakest prespecification (Hoare and He, 1986a; Hoare and
He, 1986b) in this formula.

2.1.0.3. Specification Here is the problem that we wish to solve: com-
pute each node n of the flow graph such that

∀xs ∈ A∗ : n([G ])xs ⇒ xs ∈ L(F ,P) .

We could also have formulated that requirement thus:

∀xs ∈ A∗ : n([G ])xs ⇒ •(F · ([P ]))xs .

Hardened veterans of the relational calculus will spot that this formula
can be expressed more concisely with division, thus obtaining

• (F · ([P ]))/([G ])n .

Now we have arrived at the official specification from which we wish to
derive an algorithm:

(F · ([P ]))/([G ]) : 1 ← N .

The conciseness of this expression may appear somewhat forbidding. As
we shall see, however, it allows us to give a very compact presentation
of the algorithm that solves our problem.
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2.2. Derivation

2.2.0.4. From infinite to finite universal quantification It is worth
noting that our starting point is non-executable. To see why, consider
the universal quantification

∀xs ∈ A∗ : n([G ])xs ⇒ xs ∈ L(F ,P) .

Here we quantify over an infinite range, namely all strings with elements
drawn from A. It stands to reason, therefore, that our first step towards
an algorithm is to try and reduce that infinite quantification to a finite
one. In terms of the official specification

(F · ([P ]))/([G ]) ,

we aim to achieve that by shunting ([P ]) from the numerator to the
denominator.

This is the purpose of the so-called shunting law:

(R · f )/S = R/(S · f ◦) . (1)

Here f is required to be a function, and f ◦ stands for the converse of f
(the relation f with all pairs flipped round). In the left hand side the
quantification is over the source type of f , whereas one the right hand
side, the quantification is over the source type of R. Unfortunately the
shunting law is not applicable here, because the relation ([P ]) that we
wish to shunt is not necessarily a function.

There is hope, however, because every relation of R : X ←Y can be
represented as a function ΛR : PX ← Y that maps Y to the powerset
of X (PX ):

ΛR y = { x | xRy } .

We call ΛR the power transpose of R. The function (Λ) is a bijec-
tion, and the original relation can be retrieved by composing with the
membership relation mem : X ← PX :

mem · ΛR = R . (2)

Let us now return to our original goal, namely to reduce the universal
quantification in the specification from finite to infinite. We calculate:

(F · ([P ]))/([G ])
= {Equation (2)}

(F · mem · Λ([P ]))/([G ])
= {Equation (1)}

(F · mem)/(([G ]) · (Λ([P ]))◦)
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This has achieved the desired reduction, because instead of universally
quantifying over all strings, we are now quantifying over all sets of
states. As the set of states is finite, so is the collection of all its subsets.
It may be helpful to spell out the details of this reduction from an
infinite to a finite quantification. Consider the types in the division
(F · mem)/(([G ]) · (Λ([P ]))◦). The right hand side operand has type
1←PS and the left hand operator has type N ←PS . The division thus
quantifies over the elements of PS , which is a finite set. By contrast,
in the original specification we quantified over the source type of ([P ]),
which is the infinite set of words A∗.

2.2.0.5. Eliminating converse Unfortunately it appears that we have
created a new obstacle to executability in the denominator, however.
The composition ([G ]) · (Λ([P ]))◦ now involves an existential quantifi-
cation over all strings since composition (·) quantifies over the target
type of Λ([P ])◦ (the source of ([G ])) which is A∗. To get rid of this new
infinity, we first aim to massage the converse operator away. For that,
we shall need some auxiliary facts about splits, and the range of a
relation. Some readers will recognise that at this point we are heading
for the construction of a product automaton — the precise sense in
which that is true will become apparent shortly.

Given two relations R : X ←Y and S : Z ←Y , we can form a new
relation 〈X ,Y 〉 : (X × Z ) ← Y such that

(x , z )〈R,S 〉y = xRy ∧ zSy .

This is called the split of R and S . As an example, 〈([P ]), Λ([G ])〉 is a
relation of type

(N × PS ) ← A∗ .

The range of a relation T : U ←V is a subset of the identity relation
on U , defined by

u(ran(R))u ′ = u = u ′ ∧ ∃v : uRv .

Writing outl : X ← X × Z and outr : Z ← X × Z for the obvious
projection functions, we have

R · S ◦ = outl · ran〈R,S 〉 · outr◦ . (3)

Both sides of this equation are merely ways of formulating the familiar
predicate

x (R · S ◦)z = ∃y : xRy ∧ zSy = x (outl · ran〈R,S 〉 · outr◦)z .
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Applying Equation (3) to our programming problem, we obtain

(F · mem)/(([G ]) · (Λ([P ]))◦)
= (F · mem)/(outl · ran〈([G ]), Λ([P ])〉 · outr◦)

At first it might appear that little has been gained here. After all, the
range operator itself is not executable. However, we have now set the
scene for applying some well-known identities from functional program-
ming to the fold-left operators. In what follows, we shall exclusively
concentrate on obtaining an executable expression for the relation

ran〈([G ]), Λ([P ])〉 ,

which we can regard as a subset of (N × PS ).

2.2.0.6. Simplifying the fold-lefts, and range First, consider Λ([P ]).
This is the function corresponding to a non-deterministic machine. It
is well-known that this function can itself be expressed in terms of a
deterministic machine. That is, there exists a function P ′ such that

Λ([P ]) = ([P ′]) . (4)

In fact, the general proof of this equation was one of the main achieve-
ments of the paper by Eilenberg and Wright (Eilenberg and Wright,
1967) that we mentioned earlier. We refrain from spelling out the
detailed definition of P ′.

Using the above equation in our programming problem, we obtain a
subexpression of the form 〈([G ]), ([P ′])〉. As every functional programmer
knows, this is an inefficient program, because it makes two independent
traversals of its input list. That is, given xs ∈ A∗ we traverse the xs
list twice; once to compute ([G ])xs and once to compute ([P ′])xs. Using
the tupling transformation, the same result can be achieved in a single
pass over xs. Formally, there exists a composite machine G ⊗ P ′ such
that

〈([G ]), ([P ′])〉 = ([G ⊗ P ′]) . (5)

This identity is affectionately known as the banana-split law (Meijer
et al., 1991). It was not invented to reason about automata, but rather
to capture the tupling transformation (Chin, 1995; Pettorossi, 1984)
in a calculational style. Again we leave it to the interested reader to
work out the detailed definition of G ⊗ P ′. In formal language theory,
it is known as the product machine of G and P ′ (Hopcroft and Ullman,
1979, page 59). An example of a graph G , a pattern P , deterministic
pattern P ′ and the cross product G⊗P ′ is shown in Figure 3. The final
states of the pattern and cross product have thickly drawn edges.
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Figure 3. A graph, pattern, deterministic pattern, and cross product.

We have achieved our task if we can give an executable expression
for

ran([G ⊗ P ′]) .

Before continuing however, we need a closure operator on relations. The
closure of a relation R : X ←X is the smallest reflexive and transitive
relations that contains R. We write R∗ for the closure of R:

R∗ = id ∪ R ∪ (R · R) ∪ (R · R · R) ∪ . . .

In describing ran([G ⊗ P ′]) in terms of machines, we are asking for the
set of reachable states of the machine G ⊗ P ′. Given that reading, it
should not come as a surprise that

ran([M ]) = ran((M1 · outl◦)∗ · M0) . (6)

In words, to find the reachable states of a machine M , proceed as
follows. Start with the initial states M0. Then find all states reachable
via zero or more transitions in the step relation M1. Naturally this
reachability problem can be implemented through depth-first search.

Summarising the results of this section, we derived that

ran〈([G ]), Λ([P ])〉 = ran(((G ⊗ P ′)1 · outl◦)∗ · (G ⊗ P ′)0) .

This completes our derivation.

2.3. Summary and complexity analysis

The above exposition was leisurely, aimed at readers who are unfamiliar
with relational calculus. We now repeat the same calculation as an
expert would have written it in his notebook, and we analyse the result.
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First, the problem is reduced to computing the range of a relation:

(F · ([P ]))/([G ])
= {cancelling Λ (reverse)}

(F · mem · Λ([P ]))/([G ])
= {shunting}

(F · mem)/(([G ]) · (Λ([P ]))◦)
= {split and range}

(F · mem)/(outl · ran〈([G ]), Λ([P ])〉 · outr◦)

Next, we elaborate the range expression:

ran〈([G ]), Λ([P ])〉
= {Eilenberg-Wright}

ran〈([G ]), ([P ′])〉
= {banana split}

ran([G ⊗ P ′])
= {range of fold-left}

ran(((G ⊗ P ′)1 · outl◦)∗ · (G ⊗ P ′)0)

In words, we have derived an algorithm that proceeds in four steps:

1. Let P ′ be the deterministic equivalent of P .

2. Take product machine G ⊗ P ′.

3. Compute the reachable states of G ⊗ P ′.

4. Return the set

{ n |∀s : (n, s) reachable : s final in P ′ } .

What is the time complexity of this algorithm? There are a number of
characteristics of our application that simplify the analysis. First, the
pattern is very small compared to the flow graph, so we can regard its
size as a constant. Furthermore, in a typical flow graph all nodes have a
bounded out-degree, so the number of edges is linear in the number of
nodes. It thus stands to reason that we measure the complexity in terms
of the number of nodes in G . The crucial step is the third, where we
compute the reachable states of the product machine. The size of that
machine is linear in the size of G . Furthermore, the reachable states
can be computed by depth-first search, again linear in G . We conclude
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that the overall complexity of the algorithm is linear. It is also worth
noting that when using this algorithm in an optimising compiler, the
patterns for recognising optimisation opportunities are fixed. Its only
input is the program which is converted to the flowgraph G . Thus,
the computational expense imposed by the patterns can be considered
constant.

3. Implementing universal regular path queries

Let us now return to the original problem from the introduction, which
may have seemed slightly more general than the algorithm that we have
just derived.

First of all, our machines operate on predicates, not symbols that
are drawn from a finite set. That is only a seeming generalisation, for
we did not exploit the finiteness of the alphabet anywhere in our proofs.

The notion of acceptance of sequences of propositions is also a special
case of our earlier definitions. A transition a p→ b in the pattern is
possible on input q precisely when q ⇒ p. This is a slightly more
complicated way of mapping labelled edges to transitions, but there is
nothing special about the resulting transition relation.

All that remains, therefore, is to cater for the presence of free vari-
ables, and finding substitutions for those variables. This we can do by
regarding the pattern with variables as mere shorthand for a family
of ground patterns. By writing the algorithm we have derived above
in a logic programming language, with the pattern as a predicate that
takes the variables as explicit arguments, we get a program that exhibits
exactly the desired behaviour. However, as we shall see, the program
employs logical negation, which is logically sound only if all variables
have been instantiated to ground terms.

Astute readers will have noticed a subtle discrepancy between our
informal discussion of the problem in the introduction, and its formal-
isation in relational calculus. In the introduction, we stipulated that
there must exist a path v → w in the language of the pattern, as well
as requiring that all paths v → w are in that language. The difference
is only important, of course, if w is not reachable from v . Here we shall
take advantage of the insistence on the existence of a suitable path
(which is dictated by our application to program transformation), and
first run an existential path query to instantiate the variables appro-
priately. We can then run the ground universal query to check that the
instantiation is indeed a valid answer.

Below we shall show how a particular query can be compiled to a
Prolog program. Such compilation happens when the transformations
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and the associated path queries are known; the queries are then run
when we also have a flow graph to transform. The particular implemen-
tation of Prolog that we have chosen is called XSB (Saganos, 2001; Ra-
makrishnan et al., 1995). It is particularly suitable for experiments in
program transformation and analysis (Codish et al., 1996).

3.1. Common Subexpression Elimination

Common subexpression elimination is applicable at node N if all paths
from program entry to N can be split into four parts:

− First there is a part that we do not care about, consisting of zero
or more edges.

− Next, we encounter an edge whose target is an assignment W := A,
where A is a non-trivial expression and the set of variables used in
A is Vs. Also, the variable W should not occur in Vs.

− Then we have zero or more edges to nodes that do not define W ,
nor any of the variables in Vs.

− Finally, we have an edge target at N , where the statement is of
the form X := A.

If this condition is satisfied, and there exists at least one path of the
appropriate form, the statement at node N can be replaced by the
assignment X := W .

We could write the above condition as the following regular path
query.

{}*;
{tgt’(assign(W,A)),
not(triv(A)),
uses(A,Vs),
not(elem(V,Ws))} ;

{not(def’(W)), not(somedefs’(Vs))}* ;
{tgt’(assign(X,A))}

Here each of the goals in curly brackets matches a single edge. Each
predicate that is marked with an apostrophe takes the edge as an im-
plicit argument. Below we show how to map this query into Prolog, and
that mapping makes the implicit edge arguments explicit. To illustrate
the use of the query, an example program is shown in Figure 4, and the
results of running the query in Prolog are shown in Figure 5. Note that
it is a property of this query that it can succeed only by instantiating
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0: entry
1: w := a + g(b,c)
2: i := g(a,b)
3: if i < 10 then goto 4 else goto 6
4: x := a + g(b,c)
5: i := i + x; goto 3
6: a := g(a,b)
7: w := a + g(b,d)
8: i := g(a,b)
9: if i < 10 then goto 10 else goto 12
10: x := a + g(b,d)
11: i := i + x; goto 9
12: a := g(a,b)
13: exit

Figure 4. Example program

| ?- univpaths(subst(W,A,Vs,X),0,N).

W = w
A = plus(var(a),g(var(b),var(c)))
Vs = [a,b,c]
X = x
N = 4;

W = w
A = plus(var(a),g(var(b),var(d)))
Vs = [a,b,d]
X = x
N = 10;

no

Figure 5. Example run of query

all the free variables to ground terms. We shall rely on that property
in what follows.

The query will depend on its free variables (W,A,Vs,X). We can
represent these variables as free variables in XSB. We can also put them
in a term wrapper (subst) to give us a representation of substitution
Phi which can then be passed between predicates

Phi = subst(W,A,Vs,X)
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To define the flow graph itself in Prolog, we declare the nodes and edges
with clauses such as these:

node(0) .
node(1) .
edge(0,e0,1) .

The middle argument of the edge predicate is an identifier for the
relevant edge, so edge(N_0,E,M_0) and edge(N_1,E,M_1) implies that
N_0 = N_1 and M_0 = M_1.

The statements at each node are specified by the relevant clauses of
the stmt predicate:

stmt(assign(i,g(var(a),var(b))),2) .
stmt(if(less(var(i),const(10))),3) .

We can then check for the statement at the target of an edge as follows:

tgt(S,E) :- edge(_N,E,M), stmt(S,M) .

Note how the edge E has been made explicit. Similar definitions can be
made for all the constituents of the above regular path query, and a
summary can be found in Figure 6. Using these definitions, we can de-
fine the predicate goal, with a separate case for each of the constituents
of our query:

:- table goal/3 .

goal(0,subst(_W,_A,_Vs,_X),_E) .

goal(1,subst(W,A,Vs,_X),E) :- tgt(assign(W,A),E),
not(triv(A)),
not(elem(W,Vs)),
uses(A,Vs) .

goal(2,subst(W,_A,Vs,_X),E) :-
not(def(W,E)), not(somedefs(Vs,E)) .

goal(3,subst(_W,A,_Vs,X),E) :- tgt(assign(X,A),E) .

The tabling directive for goal is important for efficiency, as the same
goal may be evaluated many times at a particular edge.

With the definition of goal in hand, we can construct the nonde-
terministic automaton that corresponds to the pattern. We name the
states of the pattern {a,b,c}, with a the initial state, and c the final
state. One can now define the possible transitions thus:
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elem(A,[A|_As]) .
elem(A,[_B|As]) :- elem(A,As) .

src(S,E) :- edge(N,E,_M),stmt(S,N) .
tgt(S,E) :- edge(_N,E,M),stmt(S,M) .

def(V,E) :- tgt(assign(V,_X),E) .
somedefs(Vs,E) :- elem(V,Vs),def(V,E) .

triv(const(_C)) .
triv(var(_V)) .

append([],X,X) .
append([A|X],Y,[A|Z]) :- append(X,Y,Z) .

uses(const(_C),[]) .
uses(var(V),[V]) .
uses(plus(P,Q),Z) :- uses(P,X), uses(Q,Y), append(X,Y,Z) .
uses(g(P,Q),Z) :- uses(P,X), uses(Q,Y), append(X,Y,Z) .

Figure 6. Prolog preliminaries

npattern(Phi,a,a,E) :- goal(0,Phi,E) .
npattern(Phi,a,b,E) :- goal(1,Phi,E) .
npattern(Phi,b,b,E) :- goal(2,Phi,E) .
npattern(Phi,b,c,E) :- goal(3,Phi,E) .

3.2. Solving existential path queries

To solve an existential path query, we first construct the product of the
flow graph and the non-deterministic pattern:

nproduct(Phi,N1,A1,N2,A2) :- edge(N1,E,N2),
npattern(Phi,A1,A2,E) .

This definition says that there exists a transition from (N1,A1) to
(N2,A2) in the product if there exists corresponding transitions from
N1 to N2 and from A1 to A2.

We now need to compute what states are reachable in the product.
Using tabling, we can write this simply as the definition of reflexive
transitive closure in Prolog:

:- table nreach/5 .
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nreach(_Phi,N1,P1,N1,P1) .
nreach(Phi,N1,P1,N2,P2) :- nproduct(Phi,N1,P1,Na,Pa),

nreach(Phi,Na,Pa,N2,P2) .

There exists a path from N1 to N2 in the flow graph in the language
of the pattern if there exists a path from (N1,a) to (N2,c) in the
product. Accordingly, we define:

somepaths(Phi,N1,N2) :- nreach(Phi,N1,a,N2,c) .

Interested readers may find it an amusing exercise to formally derive
this program in relational calculus: the derivation for existential queries
is much simpler than that for universal ones.

3.3. Solving universal regular path queries

Our next task is to write a program for solving universal regular path
queries. For that, we need a deterministic version of the pattern au-
tomaton. The construction of that automaton is a little tricky, so we
defer its discussion till later. For now it suffices to know that it is given
by three predicates, namely state, final and pattern. The first of
these corresponds to node and it is true of all the states in the pattern
automaton. The second predicate singles out those states that are final.
The last predicate

pattern(Phi,P1,P2,E)

checks whether for a particular substitution Phi, the transition from
state P1 to P2 in the pattern automaton is implied by the edge E.

Recall that in our algorithm, we need to compute the product au-
tomaton of the flow graph and the pattern. The definition is analogous
to that in the nondeterministic case:

product(Phi,N1,P1,N2,P2) :- edge(N1,E,N2),
pattern(Phi,P1,P2,E) .

That is, we can make the transition from the product state (N1,P1)
to (N2,P2) if there are relevant edges in the flow graph, and in the
pattern.

The next step in the algorithm is to compute the reachable states
in the product automaton. Again we use tabling:

:- table reach/5 .

reach(_Phi,N1,P1,N1,P1) .
reach(Phi,N1,P1,N2,P2) :- product(Phi,N1,P1,Na,Pa),

reach(Phi,Na,Pa,N2,P2) .
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Finally, we need to ensure that all paths from N1 to N2 are in the
language of our pattern, that is

allpaths(Phi,N1,N2) :- bagof(P,
reach(Phi,N1,p1,N2,P),
Ps),

all(final)(Ps) .

The bagof primitive collects all P that can be reached (with the given
instantiations of the variables) in Ps. It then only remains to check that
all states in Ps are final. The higher-order predicate all is defined by

:- hilog all .

all(_P)([]).
all(P)([X|Xs]) :- P(X), all(P)(Xs) .

In the introduction of this section, we already indicated that the
determinization of the pattern requires negation, and that this imposes
the requirement that all variables in the substitution Phi are ground in
the predicate allpaths(Phi,N1,N2). To ensure that this requirement
is indeed satisfied, we define

univpaths(Phi,N1,N2) :- somepaths(Phi,N1,N2),
ground(Phi),
allpaths(Phi,N1,N2) .

The program given here is close to that we derived in Section 2.2.
Although we have not worked out the formal details, we believe the
transition from relational algebra to a Prolog program could be mech-
anised. Obviously the difficult point in such a mechanisation would be
the treatment of negation in association with non-ground queries.

3.4. Deterministic pattern automaton

It now remains to define the transition relation of the deterministic
pattern automaton, which we have called pattern(Phi,P1,P2,E). We
shall split its definition into two parts:

pattern(Phi,P1,P2,E) :- goals(P1,I,Phi,E), pat(I,P1,P2) .

The role of the two parts on the right hand side is as follows:

− The second part is a predicate pat(I,P1,P2). Here I is a 4-bit
number that we shall interpret as a bit vector: the least signif-
icant bit indicates whether goal(0,...) was proved at edge E,
the second bit indicates whether goal(1,...) was proved, and so
on. Based on the bitvector I, pat(I,P1,P2) gives the transition
relation between the states p0..p7.
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− The first part of pattern is goals(P1,I,Phi,E). It sets the bit
vector I according to the provability of the four goals.

As an example, let us consider the state p2, which corresponds to the
singleton set {b}. We can make transitions according to goal2 or goal3
from this state:

goals(p2,I,Phi,E) :- try(2,I2,Phi,E),
try(3,I3,Phi,E),
I is 4*I2 + 8*I3 .

The predicate try(K,B,Phi,E) attempts to prove goal number K,
setting bit B to 0 or 1 accordingly:

try(K,1,Phi,E) :- goal(K,Phi,E) .
try(K,0,Phi,E) :- tnot(goal(K,Phi,E)) .

Here tnot is the special version of negation necessary for the correct
handling of tabled predicates. Like its ordinary counterpart in logic
programming, in general we require that it is applied only to ground
arguments. This is the reason that we needed to resort to existen-
tial queries to do the variable binding before calling the algorithm we
derived earlier.

It is interesting to note that if we restrict our attention to variables
whose values are drawn from a finite domain, one could employ a
constraint logic programming language to implement the algorithm for
universal queries. The logical negation operator tnot could then be re-
placed by negation for constraints. We are currently investigating such
an implementation, and weighing its advantages against the restrictions
it places on the expressiveness of path queries.

4. Discussion

This paper is part of a larger effort to construct a toolkit for easy
experimentation with compiler optimisations. In previous work, we
have specified the side conditions of such transformations in a variant
of temporal logic (Lacey and de Moor, 2001), inspired by the work of
Steffen and his coworkers on specifying data flow analyses through tem-
poral logic (Steffen, 1991). The formulae in temporal logic are verified
using a model checker, which also finds instantiations of free variables.
We noticed that many of our examples do not use the full power of
temporal logic, and this motivated the exploration of universal regular
path queries. In hindsight it is a very obvious thing to do, given the
close connection between path problems, regular algebra and program

ur_path_queries.tex; 28/10/2002; 9:34; p.20



Universal Regular Path Queries 21

analysis (Backhouse and Carré, 1975; Tarjan, 1981; Tjiang and Hen-
nessy, 1992). It remains to be seen how the algorithm presented here
compares in practice with our use of a model checker.

Two of us (Van Wyk and Lacey) have been working on a method
of proving the correctness of program transformations whose side con-
ditions are stated in temporal logic, in collaboration with Neil Jones
(Lacey et al., 2002). It was a draft of their paper that prompted the
exploration of a simplified formalism for the side conditions. It appears
that the proof methods for the temporal formalism carry over without
much modification to regular expressions.

There are multiple ways in which the present algorithm could be
improved. In particular, it will pay to start out with a minimal deter-
ministic automaton for the pattern (Aho et al., 1985). It is still possible
for the composite automaton to become nondeterministic during the
processing of substitutions, but at least the nondeterminism will be
restricted to those places where it is actually necessary.

We did not set out to apply our previous work on relational algebra
to this problem, but the proof turned out to be so pretty that we
decided to include it in this paper. It would be interesting to see
a further exploration of automata and language theory in this style
(see also (Bird and De Moor, 1994; Backhouse, 2001; Partsch, 1986)).
The application of program transformation to algorithms involving au-
tomata was pioneered by Bob Paige (Bloom and Paige, 1995; Keller
and Paige, 1996; Chang and Paige, 1997).

Very recently we became aware that existential regular path queries
are a well studied subject in the database community. In particular, the
query language UnQL provides the possibility of querying hierarchically
structured data through the use of regular expressions that contain
variables (Buneman et al., 2000). The queries are existential in that
it suffices to find some path that is in the regular language, rather
than requiring that all paths (between the relevant vertices) are in
the regular language. It would be interesting to investigate whether
the techniques used to speed up existential regular path queries (Milo
and Suciu, 1999) can be adapted for universal queries as well. This
connection with database research also follows a lead of Bob Paige:
his own language for expressing side conditions of transformations in
APTS (Paige, 1991) was inspired by DataLog.
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