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ABSTRACT

Many classical compiler optimizations can be elegantly ex-
pressed using rewrite rules of form: I =⇒ I ′ ifφ, where I, I ′

are intermediate language instructions and φ is a property
expressed in a temporal logic suitable for describing program
data flow. Its reading: If the current program π contains an
instruction of form I at some control point p, and if flow
condition φ is satisfied at p, then replace I by I ′.

The purpose of this paper is to show how such transforma-
tions may be proven correct. Our methodology is illustrated
by three familiar optimizations, dead code elimination, con-
stant folding and code motion. The meaning of correctness
is that for any program π, if Rewrite(π, π′, p,I =⇒ I ′ ifφ)
then [[π]] =[[π′]], i.e. π and π′ have exactly the same seman-
tics.

1. INTRODUCTION

This paper shows that temporal logic can be used to validate
some classical compiler optimizations in a very strong sense.

First, typical optimizing transformations are shown to be
simply and elegantly expressible as conditional rewrite rules
on imperative programs, where the conditions are formulas
in a suitable temporal logic. In this paper the temporal logic
is an extension of CTL with free variables. The first trans-
formation example expresses dead code elimination, the sec-
ond expresses constant folding and the third expresses loop
invariant hoisting. The first involves computational futures,
the second, computational pasts and the third, involves both
the computational future and past.

Second, the optimizing transformations are proven to be
fully semantics preserving : in each case, if π is a program
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and π′ is the result of transforming it, a induction relation is
established between the computations of π and π′. A conse-
quence is that if π has a terminating computation with “final
answer” v, then π′ also has a terminating computation with
the same final answer; and vice versa.

1.1 Compiler optimizing transformations

A great many program transformations are done by opti-
mizing compilers; an exhaustive catalog may be found in
[20]. These have been a great success pragmatically, so it is
important that there be no serious doubt of their correct-
ness: that transformed programs are always semantically
equivalent to those from which they were derived.

Proof of transformation correctness must, by its very nature,
be a semantics-based endeavor.

1.2 Semantics-based program manipulation

Much has happened in this field since the path-breaking
1977 Cousot paper [5] and 1980 conference [11]. The field
of “abstract interpretation” [1, 5, 6, 13, 23, 25] arose as
a mainly European, theory-based counterpart to the well-
developed more pragmatic North American approach to pro-
gram analysis [2, 10, 21]. The goal of semantics-based pro-
gram manipulation ([12] and the PEPM conference series)
is to place program analysis and transformation on a solid
foundation in the semantics of programming languages, mak-
ing it possible to prove that analyses are sound and that
transformations do not change program behaviors.

This approach succeeded well in placing on solid semantic
foundations some program analyses used by optimizing com-
pilers, notable examples being sign analysis, constant prop-
agation, and strictness analysis. An embarrassing fact must
be admitted, though: Rather less success was achieved by
the semantics-based approach toward the goal of validating
correctness of program transformations, in particular, data-
flow analysis-based optimizations as used in actual compil-
ers.

One root of this problem: Semantic frameworks such as de-
notational and operational semantics describe program ex-
ecution in precise mathematical or operational terms; but
representation of data dependencies along computational fu-
tures and pasts is rather awkward, even when continuation
semantics is used. Worse, such dependency information lies



at the heart of the most widely used compiler optimizing
transformations.

1.3 Semantics-based transformation correct-
ness

Transformation correctness is somewhat complex to estab-
lish, as it involves proving a soundness relation among three
“actors”: the condition that enables applying the transfor-
mation and the semantics of the subject program both before
and after transformation. Denotational and operational se-
mantics (e.g., [33]) typically present many example proofs of
equivalences between program fragments. However most of
these are small (excepting the monumental and indigestible
[19]), and their purpose is mainly to illustrate proof method-
ology and subtle questions involving Scott domains or pro-
gram contexts, rather than to support applications.

A problem is that denotational and operational methods
seem ill-suited to validating transformations that involve
a program’s computational future or computational past.
Even more difficult are transformations that change pro-
gram control flow, notable examples being “code motion”
and “strength reduction.”

Few formal proofs have been made of correctness of such
transformations. Two works relating the semantics-based
approaches to transformation correctness: Nielson’s thesis
[24] has an unpublished chapter proving correctness of “con-
stant folding” perhaps omitted from the journal paper [23],
because of the complexity of its development and proof.
Havelund’s thesis [9] carefully explores semantic aspects of
transformations from a Pascal-like mini-language into typ-
ical stack-based imperative intermediate code, but correct-
ness proofs were out of its scope (and would have been im-
practically complex in a denotational framework, witness
[19]).

Another approach to verifying the correctness of compiler
optimizations is presented by Kozen and Patron [16]. Us-
ing an extension of Kleene algebra, Kleene algebra with
tests (KAT), an extensive collection of instances of pro-
gram transformations are proven correct, i.e. a concrete
optimization is proven correct given a concrete source pro-
gram and the transformed program. Programs are repre-
sented as algebraic terms in KAT and it is shown that the
original and transformed program are equal under the al-
gebraic laws of KAT. In many instances these KAT terms
are not ground, that is, they contain variables, and thus
the reasoning could be applied to general program trans-
formations. One has to note, however, that the paper sets
out with a different perspective on program transformation.
The paper is geared towards establishing a framework where
one can formally reason about program manipulations spec-
ified as KAT equalities that imply semantic equivalence. Al-
though the results in the paper are not directly applicable
to compilers since no automatic method is given for apply-
ing the optimizations described, they are however applicable
to proof carrying code (PCC) [22] and efficient code certifi-
cation (ECC) [15], as Kozen and Patron state. In ECC, an
optimized program contains a proof verifying that the trans-
formations applied to it were sound, in which case proofs
about specific instances are exactly what is needed.

In contrast, the present paper aims to formalize a framework
for describing and formally proving classical compiler opti-
mizations. We claim that these specifications (once proven
correct) can be directly and automatically utilized in opti-
mizing compliers. It is also worth noting that Kozen and
Patron study only well-structured programs, i.e. those with
while loops but no goto statements, whereas we do not make
this restriction.

Some transformation correctness proofs have been made for
functional languages, especially the work by Wand and col-
leagues, for example [31], using “logical relations.” These
methods are mathematically rather more sophisticated than
those of this paper, which seem more appropriate for tradi-
tional intermediate-code optimizations.

1.4 Model checking and program analysis

This situation has improved with the advent of model check-
ing approaches to program analysis [4, 27, 29, 30, 32, 28].
Work by Steffen and Schmidt [29, 30] showed that temporal
logic is well-suited to describing data dependencies and other
program properties exploited in classical compiler optimiza-
tions. In particular, work by Knoop, Steffen and Rüthing
[14] showed that new insights could be gained from using
temporal logic, enabling new and stronger code motion al-
gorithms, now part of several commercial compilers.

More relevant to this paper: The code motion transforma-
tions could be proven correct.

1.5 Model checking and program transforma-
tion

In this paper we give a formalism (essentially it is a subset
of [18]) for succinctly expressing program transformations,
making use of temporal logic; and use this formalism to
prove the universal correctness (semantics preservation for
all programs) of the three optimizing transformations: dead
code elimination, constant folding and loop invariant hoist-
ing. The thrust of the work is not just to prove these three
transformations correct, though, but rather to establish a
framework within which a wide spectrum of classical com-
piler optimizations can be validated. More instances of this
paper’s approach may be found in [7].

Many optimizing transformations can be elegantly expressed
using rewrite rules of form: I =⇒ I ′ ifφ, where I, I ′ are
intermediate language instructions and φ is a property ex-
pressed in a temporal logic suitable for describing program
data flow. Its reading [18]: If the current program π con-
tains an instruction of form I at some control point p, and
if flow condition φ is satisfied at p, then replace I by I ′.

The purpose of this paper is to show how such transforma-
tions may be proven correct. The meaning of correctness is
that for any program π, if Rewrite(π, π′, p,I =⇒ I ′ ifφ) then
[[π]] =[[π′]], i.e. π and π′ have exactly the same semantics.

2. PROGRAMS AND TRANSFORMATIONS

In this section we provide fundamental definitions used in
our representations of programs, analyses, transformations,



� �
�

-�

�

?

?

?

?

?

?

?

0

1

2

3

4

5

6

7

j

j

j

j

j

j

j

j

0: read N;

1: Five := 5

2: Sum := 0

3: C := Five

4: Sum := Sum + C * N

5: N := N-1

6: if N goto 4 else 7

7: write Sum

Figure 2.1: Example program and control flow.

and correctness proofs. In section 2.1 we introduce a simple
imperative programming language that we use to demon-
strate program transformations and their proofs of correct-
ness. In section 2.2 we describe the control flow graph rep-
resentation of programs that serves as the model over which
the temporal logic formulas in the rewrite rules are checked.
The temporal logic CTL with free variables is presented in
section 2.3. The rewriting rules are defined in section 2.4
and section 2.5 provides the specifications for the dead code
elimination and constant folding transformations.

2.1 A simple programming language

Definition 1 A program π has form:

π = read X; I1; I2; ... Im−1; write Y

where I1, . . . Im−1 are instructions, labeled by the program
labels of π in Nodesπ = {0, 1, 2, . . . ,m}. Further, let in-
struction I0 be the initial read X, and instruction Im be
the concluding write Y . The read and write instructions
must, and can only, appear respectively at the beginning
and end of a program. The syntax of all other instructions
in π is given by the following grammar:

Inst 3 I ::= skip | X := E |
if X goto n else n′

Expr 3 E ::= X | O E...E
Op 3 O ::= various unspecified operators o,

each with arity(o) ≥ 0
Var 3 X ::= X | Y | Z | ...
Label 3 n, n′ ::= 1 | 2 . . . | m

Semantics are as expected and are formally defined below
in Section 3. Figure 2.1 contains an example program. For
readability it has explicit instruction labels, and operators
are written in infix position.

In order to provide a simple framework for proving correct-
ness this language has no exceptions or procedures. We
expect the technique can be extended to include such fea-

tures and maintain its fundamental nature, but this is future
work.

2.2 Modeling program control flow

In order to reason about the program with a view to trans-
form it, we look at the control flow graph of the program.
This is a type of transition system. We introduce this con-
cept here and will further use it to describe the semantics of
a program:

Definition 2 A transition system is a pair T = (S,→),
where S is a set and →⊆ S × S. The elements of S are
referred to as states or nodes.

A path is a maximal sequence of nodes (finite1 or infinite)
n0 → n1 → . . . such that ∀i ≥ 0, ni → ni+1 . A backwards
path is a path over the inverse of → (written as →◦) and
written as n0 →

◦ n1 →
◦ . . . or n0 ← n1 ← . . ..

Closely related to transition systems are models (as used in
model checking). These are transition systems where each
state is labeled with certain information:

Definition 3 A model is a triple M = (S,→, L) where
(S,→) is a transition system, and labeling function L : S →
2P labels each state in S with a set of propositions in P .

The control flow transition system is a system where states
are program points and transitions are between pairs of pro-
gram points that could follow each other in the execution.

Definition 4 The control flow transition system for π is
Tcf (π) = (Nodesπ,→cf ) where the (total) relation →cf is
defined by n1 →cf n2 if and only if

(In1
∈ {X:=E, skip, read X} ∧ n2 = n1 + 1)

∨ (In1
= if X goto n else n′ ∧ (n2 = n ∨ n2 = n′) )

∨ (In1
= write Y ∧ n2 = n1)

We set up a control flow model by labeling the states of the
system (program points in this case) with propositions of
interest. These will include the instruction at that program
point plus information on which variables are defined or used
at that point. Figure 2.2 shows an example model in which
node 2, whose instruction Sum := 0 is labeled by the propo-
sitions node(2), stmt(Sum := 0) , def (Sum), and conlit(0).

Definition 5 The control flow model for program π is de-
fined as Mcf (π) = (Nodesπ,→cf , L) where (Nodesπ,→cf )
are as in Definition 4, and L(n) is defined as follows for
n ∈ Nodesπ:

1A finite path n0 → n1 → . . . → nm is maximal if
∀n,¬(nm → n). That is, nm has no successors.



S = {0, 1, 2, 3, 4, 5, 6, 7}
→ = {0→ 1, 1→ 2, 2→ 3, 3→ 4, 4→ 5, 5→ 6,

6→ 7, 6→ 4, 7→ 7}

L(0) ⊇ {node(0), stmt(read N), def (N)}
L(1) ⊇ {node(1), stmt(Five := 5), def (Five), conlit(5)}
L(2) ⊇ {node(2), stmt(Sum := 0), def (Sum), conlit(0)}
L(3) ⊇ {node(3), stmt(C := Five), def (C), use(Five)}
L(4) ⊇ {node(4), stmt(Sum := Sum + C ∗ I), def (Sum),

use(Sum), use(C), use(I)}
L(5) ⊇ {node(5), stmt(N := N− 1), def (N), use(N),

conlit(1)}
L(6) ⊇ {node(6), stmt(if N goto 4 else 7), use(N)}
L(7) ⊇ {node(7), stmt(write Sum), use(Sum)}

Figure 2.2: Control flow model for the example program.

L(n) = {stmt(In) | 0 ≤ n ≤ m}
∪ {node(N) | n = N}
∪ {def (X) | In has form X:=E or read X}
∪ {use(X) | In form: Y:=E with X in E, or

In = if X goto p else p′}
∪ {use(Y) | n = m and In = write Y}
∪ {conlit(O) | O is a constant in In

(operator with arity(O) = 0)}
∪ {trans(E) | E is an expression in π and

In is not of form: X:=E′ or
read X with X in vars(E) }

The predicates stmt(I), def(X), use(X), conlit(O), trans(E)
are the building blocks for the conditions that specify when
optimizing transformations can be safely applied. These
conditions are specified as CTL-FV formulas.

Definition 6 An expression E is transparent at a program
point if none of the variables in the expression are defined
at that point (i.e. assigned by := or read).

2.3 CTL with free variables

The temporal logic CTL-FV used in specifying transforma-
tion conditions is in two respects a generalization of CTL [3].
First, as is common, the temporal path quantifiers E and
A are extended to also quantify over backwards paths in the

obvious way. Our notation for this:
←−
E and

←−
A . These paths

may be finite and our quantifications over paths are thus
over infinite and maximal finite paths. That is, we consider
a branching notion of past which may be either finite, as
in CTLbp [17], or infinte, as in POTL [26, 34]. A branch-
ing past is more appropriate here than the linear past in
PCTL∗ [8] which can also be used to augement branching
time logics with past time operators.

Second, propositions are generalized to predicates over free
variables. (A traditional atomic proposition is simply a
predicate with no arguments.) For example, the formula
stmt(x := e) where stmt ∈ Pr, has free variables x and
e ranging over program variables and expressions, respec-
tively. These free variables will henceforth be called CTL-
variables to avoid confusion with variables or program points
appearing in the program being transformed or analyzed.

The effect of model checking will be to bind CTL-variables
to program points or bits of program syntax, e.g., dead vari-
ables or available expressions.

CTL-FV formulas are either state or path formulas gener-
ated by the grammar with non-terminals {φ, ψ}, terminals
true, false, pr ∈ Pr and free variables x1, . . . , xn, start sym-
bol φ and the productions:

φ ::= true φ ::= E ψ ψ ::= X φ
φ ::= false φ ::= A ψ ψ ::= φ U φ

φ ::= pr(x1, . . . , xn) φ ::=
←−
E ψ ψ ::= φ W φ

φ ::= φ ∧ φ φ ::=
←−
A ψ

φ ::= ¬φ

Operational interpretation: A model checker will not
simply find which nodes in a model satisfy a (state) for-
mula, but will instead find the instantiation substitutions
that satisfy the formula. Mathematically, we model this by
extending the satisfaction relation n |= φ to include a substi-
tution θ binding its free variables. The extended satisfaction
relation n |=θ φ will hold for any θ such that n |= θ(φ). This
relation is defined in Figure 2.3. All is as usual, except for
θ and the interpretation of W on maximal finite paths.

The job of the model checker is thus, given φ, to return the
set of all n and θ such that n |=θ φ. For the example program
in Figure 2.1 and formula def (x )∧use(x), the model checker
returns the following set of instantiation substitutions. (For
brevity, CTL-variable n is bound to the program point in
the substitutions.)

{θ1, θ2} = {[n 7→ 4, x 7→ Sum], [n 7→ 5, x 7→ N]}

Of particular interest when analysing the control flow model
is the universal weak until operator (A W ). This is due to
the following lemma:

Lemma 1 If n0 |= A(φ1 W φ2) then for any maximal finite
path n0 → . . . → nN , there exists an j such that nj |= φ2

and ∀0≤i<j ni |= φ1.

A similar result holds for backwards paths.

Proof Omitted.

We use this lemma in the correctness proofs since the max-
imal finite paths are exactly the set of terminating program
traces of the execution transition system of Definition 10.

2.4 Rewriting

Definition 7 A rewrite rule has the form I =⇒ I ′ ifφ, where
I, I ′ are instructions built from the program and CTL vari-
ables, and φ is a CTL-FV temporal logic formula. By defi-
nition Rewrite(π, π′, n,I =⇒ I ′ ifφ) is true if and only if for
some substitution θ, the following hold:



State Formulas:

n |=θ true iff true
n |=θ false iff false
n |=θ pr(x1, . . . , xn) iff pr(θx1, . . . , θxn) ∈ L(n)
n |=θ ¬φ iff not n |=θ φ
n |=θ φ1 ∧ φ2 iff n |=θ φ1 and n |=θ φ2

n |=θ E ψ iff ∃path p = n→ n1 → n2 . . ., [p |=θ ψ]
n |=θ A ψ iff ∀paths p = n→ n1 → n2 . . ., [p |=θ ψ]

n |=θ

←−
E ψ iff ∃path p = n→◦ n1 →

◦ n2 . . ., [p |=θ ψ]

n |=θ

←−
A ψ iff ∀paths p = n→◦ n1 →

◦ n2 . . ., [p |=θ ψ]

Path Formulas: (below →′ is → or →◦)

p |=θX φ iff p = n0 →
′ n1 →

′ . . . and n1 |=θ φ

p |=θ φ1 U φ2 iff p = n0 →
′ n1 →

′ . . . and
∃i ≥ 0 [ni |=θ φ2 ∧ ∀j[0 ≤ j < i implies nj |=θ φ1]]

p |=θ φ1 W φ2 iff p = n0 →
′ n1 →

′ . . . and
(∃k ≥ 0 [nk |=θ φ2 and ∀i, 0 ≤ i < k =⇒ ni |=θ φ1)]
or (∀k ≥ 0 [nk |=θ φ1 and nk+1 exists])

Figure 2.3: CTL-FV satisfaction relation

n |=θ stmt(I) ∧ φ
π = read X; I1; ...In;...Im−1; write Y,

where In = θ(I), and
π′ = read X; I1; ...θ(I ′); ...Im−1; write Y

Sometimes we may want to alter the program at more than
one point. In this case we specify several rewrites and side
conditions at once. For example, to transform two nodes
the form of the rewrite would be:

n : I1 =⇒ I ′1
m : I2 =⇒ I ′2

if
n |= φ1

m |= φ2

The operational interpretation of this is that we find a sub-
stitution θ that satisfies both of n |=θ stmt(I1) ∧ φ1 and
m |=θ stmt(I2) ∧ φ2 and then use this substitution to alter
the program in the two relevant places.

2.5 Sample transformations

Following are versions of three classical optimizations (sim-
plified in comparison to compiler practice, to make it easier
to follow the techniques used in the proofs).

For convenience we express code removal as replacement of
an instruction by skip, and code motion as simultaneous
replacement of an instruction I and skip by (respectively)
skip and instruction I. We assume the compiler will remove
useless occurrences of skip.

While most programmers do not write code that contains
dead code or opportunities for constant folding it often re-
sults from other transformations, especially automated ones.

Dead Code Elimination: Dead code elimination removes
assignment statements that assign a value that is never used.
In our model, the rewrite replaces the assignment with the
skip instruction:

x := e =⇒ skip

The side condition on the rewrite must specify that the value
assigned is never referenced again. This is exactly the kind
of condition that temporal logic can specify. The rewrite
rule with its side condition is thus written

x := e =⇒ skip if AX ¬E( true U use(x) ).

Since we do not care whether x is used at the current node,
we skip past it with the AX operator.

Constant Folding: Constant folding is a transformation
that replaces a variable reference with a constant value:

x := y =⇒ x := c.

One method of implementing constant folding for a variable
Y is to check whether all possible assignments to Y assign it
the same constant value. To check this condition we use the
past temporal operators, specifying the complete transfor-
mation as follows:2

x := y =⇒ x := c
if
←−
A (¬def (y) W stmt(y := c) ∧ conlit(c))

Code motion/loop invariant hoisting: A restricted ver-
sion of a “code motion” transformation (CM) that covers
the “loop invariant hoisting” transformation is defined as

p : skip =⇒ x :=e
q : x :=e =⇒ skip

if
p |= A(¬use(x) W node(q))
q |= ¬use(x) ∧

←−
A ((¬def (x) ∨ node(q)) ∧ trans(e) W node(p))

This transformation involves two (different) statements in
the subject program. The transformation moves an assign-
ment at label q to label p provided that two conditions are
met:

1. The assigned variable x is dead after p and remain
so until q is reached. If this requirement holds, then
introducing the assignment x:=e at label p will not
change the semantics of the program.

2. The second requirement (in combination with the first
rewrite rule) states that the expression e should be
available at q after the transformation.

2The conlit is introduced so that the modelchecker will not
match c with a non-constant expression.



This transformation could also be obtained by applying two
transformations: One that inserts the statement x:=e pro-
vided that x is dead between p and q , followed by the elimi-
nation of available expressions transformation. With the two
transformations one would need some mechanism of control-
ling where to insert which assignments. By formulating the
transformation as a single transformation, the two labels p
and q are explicitly linked.

Since all paths from p may not evelually reach q , it is possi-
ble to move assignments to labels such that e is still available
in q and x is dead in all paths not leading to q , which would
still be a semantics preserving transformation.

1 : skip;
2 : if . . . then 3 else 6;
3 : x := a + b;
4 : y := y− 1;
5 : if y then 3 else 6;
6 : x := 0;

In this program is is possible to lift the statement x:=a+b

from label 3 to label 1. In general the transformation by it-
self could slow down the computation, since there is no need
to compute the expression if the expression is not needed.

Note that we use the weak until (W ), this is so that the
transformation is not disabled by cycles in the control flow
graph that do not affect the correctness of the transforma-
tion.

2.6 Computational aspects

We discuss computational aspects only briefly; more can be
found in [18] and related papers.

Model checking with respect to I =⇒ I ′ ifφ yields a set
of pairs {(p1, θ1), . . . , (pk, θk)} satisfying φ. Consequence:
{p1, . . . , pk} is the set of all places where this rule can be
applied. For instance, all places where dead code elimination
can be done are found by a single model check.

The time to model check n |= p for transition system T
is a low-degree polynomial, near linear for many transition
systems, and |T |2 · |φ| in the worst case. Of course, in the
case of model checking CTL-FV formulas times could be
higher, since |T | depends on the size of labelling function
L : Nodesπ → 2AP as in Definition 5. For each node n, L(n)
can be found in time proportional at most to the size of the
instruction In, with one exception: propositions trans(E),
which can take time proportional to the size of π. For greater
efficiency these can be treated specially, maintaining a single
global table for the transparency relation.

Experience from [18] and related work indicates that their
algorithm for model checking CTL-FV is not too expensive
in practice, i.e. that the free variables do not impose an
unreasonable time cost.

3. PROGRAM SEMANTICS

In this section we define the semantics of the simple pro-
gramming language introduced in Definition 1. In Section 5

we use this semantics to show for a program π and its trans-
formed version π′ that their semantics are the same. That
is, [[π]] = [[π′]].

Definition 8 (Semantic framework) We assume the
following have been fixed in advance, and apply to all pro-
grams:

• A set Value of values (not specified here), containing
a designated element true.

• A fixed interpretation of every n-ary operator symbol
o as a function [[o]] : Valuen → Value. Note that [[o]] ∈
Value if n = 0.

Definition 9 (Expression evaluation) A store is a func-
tion σ ∈ Store = Var ⇀ Value. Expression evaluation
[[Expr ]] : Store → Value is defined by:

[[X]]σ = σ(X)
[[o E1 . . . En]]σ = [[o]]([[E1]]σ, . . . , [[En]]σ)

Define σ\X to be the store function σ restricted to its original
domain minus X. Further, σ[X 7→ v] is the same as σ except
that it maps X to v.

Definition 10 (Semantics) At any point in its compu-
tation, the program will be in a state of the form s =
(p, σ) ∈ State = Nodesπ × Store. The Initial state for input
v ∈ Value is In(v) = (0, σ) where σ(X) = v and σ(Z) = true
for all other variables appearing in program π.

The state transition relation →⊆ State × State is defined
by:

1. If Ip = skip or Ip = (read X) then (p, σ)→ (p+1, σ).

2. If Ip = (X := E) then (p, σ)→ (p+ 1, σ[X 7→ [[E]]σ]).

3. If Ip = (if X goto p′ else p′′) and σ(X) = true
then (p, σ)→ (p′, σ).

4. If Ip = (if X goto p′ else p′′) and σ(X) 6= true
then (p, σ)→ (p′′, σ).

5. (m,σ)→ (m,σ) for any store σ.

Note that the read X has no effect on the store σ since the
initial value v of X is set in the initial state.

The operational semantics of a program is given the form of
a transition system: the execution transition system Trun .

Definition 11 The execution transition system for program
π and input v ∈ Value is by definition

Trun(π, v) = (Nodesπ × Store,→)

where s1 → s2 is as in Definition 10.



Definition 12 The semantic function is the partial func-
tion [[ ]] : Value ⇀ Value defined by:

[[π]](v) = σ(Y)

if there exists a finite sequence

s0 → s1 → . . .→ st = (m,σ)

In order to reason about the computational history of pro-
gram executions we also introduce the notion of compu-
tational prefix, and a corresponding transition system Tpfx
(both defined below).

The control flow model defined above in Definition 5 is an
abstraction of each of these, see Lemma 3. These are used
in the correctness proofs to relate a program’s semantics to
its control flow model.

4. A METHOD FOR SHOWING SEMAN-
TIC EQUIVALENCE

For all rewrite rules I =⇒ I ′ ifφ we need to show that
Rewrite(π, π′, p,I =⇒ I ′ ifφ) implies [[π]] = [[π′]], i.e. for all
input v, In(v) →∗ (m,σ) is a terminating computation for
program π if and only if In(v)→∗ (m′, σ′) is a terminating
computation for program π′ with σ(Y) = σ′(Y). The problem
now is how to link the temporal property φ, which concerns
“futures” and “pasts”, to the transformation I =⇒ I ′.

For this it is not sufficient to regard states one at a time

due to operators, such as AU and
←−
AU , giving access to

information computed earlier or later. Our solution is to
enrich the semantics and its transition system by considering
computation prefixes of form:

C = π, v ` s0 → . . .→ st.

Now suppose p |= φ has been model checked. The resulting
substitutions (see Lemma 3 below) also describe the com-
putation prefix C. Conclusion: The results of the model
check, contain information about the state sequence in C,
thus relating past and present states.

What about futures? Our choice is to build a transition
system Tpfx (π, v) so C → C1 ∈ Tpfx (π, v) if and only if C1 is
identical to C, but with one additional state:

C1 = π, v ` s0 → . . .→ st → st+1.

Now reasoning that involves futures can be done by ordinary
induction: assuming CRC ′, show C → C1 implies C ′ → C′

1

for a C ′
1 with C1RC

′
1, and C ′ → C′

1 for C1 with C1RC
′
1.

Definition 13 For a program π and initial value v ∈ V alue,
a computation prefix is an sequence (finite or infinite)

π, v ` s0 → s1 → s2 → . . .

such that s0 = In(v) and si → si+1 for i = 0, 1, 2, . . .

Definition 14 The computation prefix transition system for
program π and input v ∈ Value is by definition

Tpfx (π, v) = (C,→)

where C is the set of all finite computation prefixes, and
C1 → C2 if and only if

C1 = π, v ` s0 → s1 → . . .→ st,
C2 = π, v ` s0 → s1 → . . .→ st → st+1.

where st → st+1 is the state transition relation from Defini-
tion 10. Note that we use the same symbol, →, to represent
both the transition relation for the execution transition sys-
tem Trun and the computation prefix transition system Tpfx

but that the relations can be distinguished by their context.

Goal: Show that if C, C ′ are computation prefixes of π, π′

on same input v then siRs
′
j for every corresponding pair of

states in C, C ′ where R is a relation on states that expresses
“correct simulation”.3

Consider two programs, π and π′ such that:

π = read X; I1; I2; . . . Im−1; write Y

and

π′ = read X; I ′1; I
′
2; . . . I

′
m′−1; write Y.

The aim is to show that π and π′ are semantically equivalent,
[[π]] = [[π′]]. That is, for any value v either both [[π]](v) and
[[π′]](v) are not defined or for any computation prefix

π, v ` In(v)→ (p1, σ1)→ . . .→ (m,σ)

there exists a computation prefix for the transformed pro-
gram

π′, v ` In(v)→ (p′1, σ
′
1)→ . . .→ (m′, σ′)

such that σ(Y) = σ′(Y), and conversely. We can naturally
prove this result by induction on the length of the prefixes.
In practice the induction hypothesis needs to be strength-
ened for the proof to work. The general form of the strength-
ened hypothesis is that a relation R holds between com-
putation prefixes of the original program and computation
prefixes of the transformed program.

Noting that the transitions between prefixes are determinis-
tic (since the language is), we can see that proving the step
case of induction is achieved by proving that the relation
between two prefixes is preserved by any one step in the
transition system. The following lemma details the work
that needs to be done to show semantic equivalence.

Lemma 2 (Program Equivalence/Induction)

Programs π and π′ are semantically equivalent: [[π]] = [[π′]]
if there exists a relation R, such that for all values v:

1. (Base Case) R holds between the initial computation
prefixes i.e.

((π, v ` In(v)), (π′, v ` In(v))) ∈ R

2. (Step Case) If C1RC
′
1, C1 → C2 and C ′

1 → C′
2 then

C2RC
′
2.

3This is actually closer to bi-simulation.



3. (Equivalence) If

CRC ′ and
C = π, v ` s0 → s1 . . .→ (pt, σ) and
C′ = π′, v ` s′0 → s′1 . . .→ (pt′ , σ

′)

then

(i) pt = m ⇐⇒ p′t′ = m and
(ii) pt = p′t′ = m =⇒ σt(Y) = σ′

t′(Y)

So proofs of equivalence are split into these three steps. Un-
surprising, it is the step case of induction that is the hardest
to prove.

If a flow condition in a rewrite rule holds then it states a
fact about the control flow graph. This relation between
this graph and the computational prefix system is captured
in the following lemma that follows from the definitions of
the two systems:

Lemma 3 Suppose C = π, v ` s0 → s1 → . . . → st is a
computation prefix in Tpfx (π, v), where si = (pi, σi). For
any 0 ≤ j ≤ t:

1. pj →cf pj+1 →cf . . .→cf pt is a path in Tcf (π)

2. pj →cf pj−1 →cf . . . →cf p0 is a maximal backwards
path in Tcf (π)

Here we can see that the flow graph is an abstraction of the
semantics of the program.

We know that if we are not at the program point specified
in the rewrite then the instruction in the original program
and the transformed program will coincide:

Lemma 4 Suppose π and π′ are programs that are related
by Rewrite(π, π′, p, R), then p 6= q ⇒ Iq = I ′q

We also know that if we are not at the transformed point in
the program then the original program and the new program
will behave identically:

Lemma 5 Suppose π and π′ are programs that only differ
by having a different instruction at program point p. Let
s1 = (p1, σ1) with p1 6= p, then for any s2:

Trun(π, v) ` s1 → s2 ⇒ Trun(π′, v) ` s1 → s2

5. THE THREE EXAMPLES

The following lemma states that if an expression E does not
contain the variable X and two stores σ and σ′ differ at most
in their value of X then the evaluation of E is the same under
both stores.

Lemma 6 For any program variable X, expression E, and
store σ, if X /∈ vars(E) and σ \ X = σ′ \ X then [[E]]σ = [[E]]σ′.

Given this lemma, we can see that if a variable is not used
in an instruction and two stores differ only by that variable
then the program will behave in the same way:

Lemma 7 Suppose we have program points p, p2, p
′
2 and

stores σ1, σ
′
1, σ2, σ

′
2 such that (σ1, p) → (σ2, p2), (σ′

1, p) →
(σ′

2, p
′
2) and σ1 \ X = σ′

1 \ X.

If p |= ¬use(X) then σ2 \ X = σ′
2 \ X and p2 = p′2

Proof If Ip = skip then trivially σ2 \ X = σ1 \ X = σ′
1 \ X =

σ′
2 \ X and p2 = p+ 1 = p′2.

If Ip = (Z := E) then p |= ¬use(X) implies that X /∈ vars(E).
So by Lemma 6: [[E]]σ1 = [[E]]σ′

1. So σ2 \ X = σ′
2 \ X as

required. Trivially p2 = p+ 1 = p′2.

If Ip = (if Z goto p′ else p′′) then p |= ¬use(X) implies
that X 6= Z. So σ1(Z) = (σ1 \ X)(Z) = (σ′

1 \ X)(Z) = σ′
1(Z),

therefore p′2 = p2. The statement does not affect the stores
so trivially σ2 \ X = σ′

2 \ X. 2

We also note the following lemma that states that if we have
a series of instructions that do not define a variable then
the value of the store with respect to that variable does not
change.

Lemma 8 Consider a state sequence (p0, σ0) . . . (pt, σt) in
Trun(π, v) such that (pi, σi) → (pi+1, σi+1) for 0 ≤ i < t. If
the instruction at each pi does not define a variable X then
σ0(X) = σt(X).

Lemma 9 Consider a state sequence (p0, σ0) . . . (pt, σt) in
Trun(π, v) such that (pi, σi) → (pi+1, σi+1) for 0 ≤ i < t. If
expression E is transparent at each pi, then [[E]]σi = [[E]]σt.

5.1 Dead Code Elimination

The dead code elimination rewrite rule described earlier was:

x := e =⇒ skip if AX ¬E[ true U use(x) ].

Following Definition 7 of rewriting, for this rewrite to ap-
ply the model checker must find a particular program point
p and a substitution that maps x to a particular program
variable X and e to a particular expression E. In this case we
need to prove that an original program π and transformed
program π′ are equivalent. Below, we assume that

Rewrite(π, π′, p, x:=e =⇒ skip ifAX¬E[ true U use(x) ] )

holds.

Definition 15 Consider C ∈ Tpfx (π, v) and C ′ ∈ Tpfx (π′, v)
such that:

C = π, v ` s0 → s1 → . . .→ st ,
C′ = π′, v ` s′0 → s′1 → . . .→ s′r

in which ∀i[0 ≤ i ≤ t =⇒ si = (pi, σi)] and ∀i[0 ≤ i ≤
r =⇒ s′i = (pi, σ

′
i)].

Then CRC ′ if and only if t = r and for any i, 0 ≤ i ≤ t:



1. pi = p′i

2. [∀j, j < i =⇒ p 6= pj ] =⇒ σi = σ′
i and

3. [∃j, j < i ∧ p = pj ] =⇒ σi\X = σ′
i\X

Base Case: Note that CRC for any C ∈ C, i.e. R is
reflexive. In particular it will hold for prefixes of length 1.

Step Case: Suppose C1RC
′
1. The language is deterministic

so C1 → C2 and C ′
1 → C′

2 for exactly one C2 and C ′
2. We

need to show that C2RC
′
2. By Definition 15:

C1 = π, v ` (p0, σ0)→ . . .→ (pt, σt)
C′

1 = π′, v ` (p0, σ
′
0)→ . . .→ (pt, σ

′
t)

Let Ip be the instruction in program π at p and I ′p be the
instruction in program π′ at p.

Suppose p 6= pi for 0 ≤ i ≤ t. Then by Definition 15 each
σi = σ′

i, so C1 = C′
1, implying C2 = C′

2 (by Lemma 5) and
so C2RC

′
2.

Alternatively, suppose p = pt. Then Ip = (X := E) and I ′p =
skip. So σt+1 = σt[X 7→ [[E]]σt] and σ′

t+1 \X = σ′
t \X = σt \X.

Therefore, σt+1 \ X = σ′
t+1 \ X and C2RC

′
2.

Finally, consider p 6= pt and p = pk for some k < t. By
Definition 15, σt \ X = σ′

t \ X. Thus, by Lemma 4, Ipt
= I ′pt

.

Now by Lemma 3, sequence pk →cf pk+1 →cf . . .→cf pt is
a path in flow chart Tcf and by condition

p |= AX¬E( true U use(X) )

we can conclude that pi |= ¬use(X) for all i with k < i ≤ t.
By Lemma 7 this implies σt+1\X = σ′

t+1\X and pt+1 = p′t+1.
So again we have C2RC

′
2.

Equivalence: By R, the program points of computation
prefixes of π and π′ are the same and thus π terminates
if and only if π′ terminates. We then need to show that
the variable Y written by π is the same as Y′ written by π′.
By the side condition of the rewrite we know that Y 6= X.
So given that both programs terminate at program point
pn with their prefixes related by R, we know that at least
σn \ X = σ′

n \ X. Therefore, σn(Y) = σ′
n(Y) and by Lemma 2

we can conclude that [[π]] = [[π′]].

5.2 Constant Folding

The constant folding rule is:

x := v =⇒ x := c
if
←−
A (¬def(v) W stmt(v := c) ∧ conlit(c))

Following Definition 7, for this rewrite to apply, the model
checker must find a particular program point p and a sub-
stitution that maps x to a particular program variable X,

v to a particular program variable V and c to a particular
constant C. In this case we need to prove that an original
program π and transformed program π′ are equivalent.

In this case the relation R is the identity relation. That is,
we wish to prove that for any length n, a computation prefix
of π of length n is equal to a computation prefix of π′ with
the same length.

Base case: (p0, σ0) = (p′0, σ
′
0) since vars(π) = vars(π′).

Step case: Suppose R (equality) holds between relations
C1 and C ′

1 where:

C1 = C′
1 = π, v ` (p0, σ0)→ . . .→ (pt, σt)

Also suppose that C1 → C2 (by the semantics of π) and
C′

1 → C′
2 (by the semantics of π′). We wish to prove that

C2 = C′
2. The proof is split depending on whether p = pt.

Suppose pt 6= p. Now by Lemma 5 it follows that C2 = C′
2.

Suppose pt = p then Ipt
= (X := V) and I ′pt

= (X := C). We
know from the side condition and Lemma 3 that the path
pt ← . . . ← p0 is a maximal finite backwards path in the
flow graph. The side condition states that

pt |=θ

←−
A (¬def(v) W stmt(v := c) ∧ conlit(c))

for a substitution θ that maps v to V and c to C. By Lemma 1
we know that there exists i such that i ≤ t and Ipi

= (V := C)
and we know pj does not define V for all i < j < t. Thus
σi+1(V) = C and by Lemma 8: σt(V) = σi+1(V) = C. So the
instruction X := V and X := C will set X to the same value.
Therefore C2 will be the same as C ′

2.

Equivalence: Since R is the identity, the program points
of computation prefixes of π and π′ are the same, and thus
π terminates if and only if π′ terminates. Clearly if two
terminating prefixes are equal they will have the same value
in their final stores. So [[π]] = [[π′]] by Lemma 2.

5.3 Code motion/loop invariant hoisting

The code motion/loop invariant hoisting rule is:

p : skip =⇒ x:=e
q : x:=e =⇒ skip

if
p |= A(¬use(x) W node(q))
q |= ¬use(x) ∧

←−
A ((¬def (x) ∨ node(q)) ∧ trans(e) W node(p))

Following Definition 7, for this rewrite to apply, the model
checker must find particular program points p and q and a
substitution that maps x to a particular program variable X

and e to a particular program expression E. In this case we
need to prove that an original program π and transformed
program π′ are equivalent.



Definition 16 Suppose C ∈ Tpfx (π, v) and C ′ ∈ Tpfx (π′, v)
for some v such that

C = π, v ` (p0, σ1)→ . . .→ (pt, σt)
C′ = π′, v ` (p′0, σ

′
1)→ . . .→ (p′t′ , σ

′
t′)

We then define the R relation on computation prefixes as:
CRC ′ if and only if t = t′, pi = p′i for all 0 ≤ i ≤ t and one
of the following cases holds:

1. σt = σ′
t ∧ ∀i [0 ≤ i < t =⇒ pi /∈ {p, q}]

2. σt = σ′
t ∧ ∃i [0 ≤ i < t ∧ pi = q ∧ σi = σ′

i ∧
∀j (i < j < t =⇒ pj /∈ {p, q})]

3. ∃i [0 ≤ i < t ∧ pi = p ∧ (σt \ X = σ′
t \ X) ∧

(σi \ X = σ′
i \ X) ∧ ∀j (i < j < t =⇒ pj /∈ {p, q})]

The notation CRkC
′ will be used to indicate that CRC ′

holds by case k, as defined above.

Base case: (p0, σ0) = (p′0, σ
′
0) since vars(π) = vars(π′).

Also, case 1 of the relation holds trivially.

Step case: Suppose C → C2 and C ′ → C′
2. Assuming that

CRC ′ we need to show that C2RC
′
2.

The proof is split up into cases depending on the label pt

and each of these is further split up, depending on the case
for which CRC ′ holds.

(A) Suppose pt /∈ {p, q}, then Ipt
= I ′pt

.

(i) Suppose CRkC
′ where k = 1 or 2. By assumption

σt = σ′
t, implying (pt+1, σt+1) = (p′t+1, σ

′
t+1) by Lemma 5.

Thus C2RkC
′
2 holds.

(ii) Otherwise let 0 ≤ i ≤ t be given such that CR3C
′

holds. The side condition for p must be satisfied at pi:

pi |= A(¬use(X) W node(q)).

Since the control flow model describes all possible computa-
tion prefixes (Lemma 3), the same must hold for the compu-
tation prefix C. By assumption (A) and (ii) we know that
∀j (i < j ≤ t =⇒ pj 6= q), so pj |= ¬use(X) must be
satisfied for all i < j ≤ t. In particular this holds for j = t.
By assumption σi \ X = σ′

i \ X so by Lemma 7 we conclude:
σt+1 \X = σ′

t+1 \X and pt+1 = p′t+1. Thus C2R3C
′
2 holds for

i unchanged.

(B) Suppose pt = p, then Ipt
= (skip) and I ′pt

= (X := E).
By the semantics and the induction assumption pt+1 = pt +
1 = p′t + 1 = p′t+1. Also, C1RC

′
1 implies that σt \ X = σ′

t \ X.
Since the instructions only alter X, we can conclude that
σt+1 \ X = σ′

t+1 \ X. So C2R3C
′
2 holds for i = t.

(C) Otherwise pt = q , so Ipt
= (X := E) and I ′pt

= skip.
By the semantics and the induction assumption pt+1 = pt +
1 = p′t + 1 = p′t+1.

(i) Suppose CR1C
′: By Lemma 1 the side condition

q |=
←−
A ((¬def (x) ∨ node(q)) ∧ trans(e) W node(p)) in the

rewrite rule implies that any maximal finite backwards path
eventually ends up in a state pk where pk = p. This contra-
dicts the assumption C1R1C

′
1.

(ii) Suppose CR2C
′: By assumption there exists an i such

that pi = q . The side condition of q implies, by Lemma 1:

∃g [g ≤ t ∧ pg |= node(p) ∧
∀h (g < h ≤ t =⇒ ph |= (¬def (X) ∨ node(q)) ∧ trans(E))]

Since by assumption pj 6= p for all i ≤ j ≤ t it follows that
g < i. Thus for all j with i ≤ j < t, pj |= ¬def (X) ∨
node(q). Now the induction assumption says that pj 6= q
for all j, i < j < t. This implies that pj |= ¬def (X) for all
j with i < j < t. By Lemma 8 σ′

t(X) = σ′
i+1(X). Further,

pj |= trans(E) for all j with i ≤ j < t, and by Lemma 9:
[[E]]σt = [[E]]σi. Therefore

σ′
t+1(X) = σ′

t(X) (semantics of I ′pt
= skip)

= σ′
i+1(X) (argument above)

= σi+1(X) (since CR2C
′ =⇒ σi+1 = σ′

i+1)
= [[E]]σi (semantics of Ipi

= (X := E))
= [[E]]σt (argument above)
= σt+1(X) (semantics of Ipt

= (X := E))

Since Ipt
only changes the variable X we can conclude that

σt+1 = σ′
t+1. Therefore C2R2C

′
2.

(iii) Otherwise there exists an i such that CR3C
′ holds:

We wish to show that C2RC
′
2 holds by case 2 of R for i = t,

i.e. σt+1 = σ′
t+1.

First note that since the statements Ipt
and I ′pt

affect at
most the variable X, we can see that σt+1 \ X = σ′

t+1 \ X.
Next we need to show that σt+1(X) = σ′

t+1(X).

By assumption there exists an i such that pi = p. The side
condition of q implies, by Lemma 1:

∃α ≤ t [pα |= node(p) ∧
∀β (α < β ≤ t =⇒ pβ |= (¬def (X) ∨ node(q)) ∧ trans(E)]

Since by assumption pj 6= p for all i ≤ j ≤ t it follows that
α ≤ i. Thus pj |= ¬def (X) ∨ node(q) for all i < j < t.
Now the induction assumption says that pj 6= q for all i <
j < t. This implies that pj |= ¬def (X) for all i < j < t.
By Lemma 8 σ′

t(X) = σ′
i+1(X). Also, pj |= trans(E) for all

i < j < t. By Lemma 9: [[E]]σt = [[E]]σi+1.

Using the above observations it can be shown that X maps
to the same value in σt+1 and σ′

t+1:

σt+1(X) = [[E]]σt (semantics of Ipt
= (X := E))

= [[E]]σi+1 (argument above)
= [[E]]σi (semantics of Ipi

= skip)
= [[E]](σi \ X) (since X /∈ vars(E))
= [[E]](σ′

i \ X) (by CR3C
′, σi \ X = σ′

i \ X)
= [[E]](σ′

i) (since X /∈ vars(E))
= σ′

i+1(X) (semantics of I ′pi
= (X:=E))

= σ′
t(X) (argument above)

= σ′
t+1(X) (semantics of I ′pt

= skip)

Thus σt+1 = σ′
t+1, so case 2 holds for i = t.

By induction we conclude that CRC ′ for any two compu-
tation prefixes C ∈ Tpfx (π) and C ′ ∈ Tpfx (π′) of the same
length on the same input v.



Equivalence: Again, by R the program points of compu-
tation prefixes of π and π′ are the same and thus π termi-
nates if and only if π′ terminates. Now suppose π and π′

both terminate on input v. Consider the store at the write

statement: Im = I ′m = (write Y). Suppose CRC ′ for t = m
by case 3, then by the side condition there exists an i > m
such that pi = q (since π terminates). But by the seman-
tics pi = m 6= q for all i > t leading to a contradiction.
Thus either case 1 or 2 must hold. In either case σt = σ′

t,
implying σt(Y) = σ′

t(Y). It follows by Lemma 2 that the
transformation is semantics preserving: [[π]] = [[π′]].

6. DISCUSSION AND FUTURE WORK

In this paper we have described a framework in which tem-
poral logic plays a crucial role in the proofs of correctness
of classical optimizing transformations performed by a com-
piler. In this framework transformations are specified as
rewrite rules with side conditions that are written as tem-
poral logic formulas.

To prove the correctness of the transformations we had to
show that if a transformation is applied it does not change
the semantics of the program – that is, [[π]] = [[π′]]. The
only creative part of the proof is finding the relation R, but
this relation is often closely related to the temporal logic
side conditions of the transformation. The remainder of
the proof is straightforward. It is either routine, as when
showing that the program states of computation prefixes of
π and π′ are the same before encountering the transformed
program point. Otherwise it deals directly with the program
transformation point. The proof of these cases is dramati-
cally simplified since we can assume that the temporal logic
side condition holds (otherwise the transformation would
not have happened), and this assumption leads almost im-
mediately to the proof of the case.

While the proofs presented here have been done by hand,
the nature of the proofs seems well suited to (semi-) auto-
mated theorem proving. The creative step in the proof is to
create the relation we wish to prove inductively. The rest
of the proofs tend to involve mechanically performing case
splits and applying a small set of lemmas. However, even
the “creative” step of providing the relation seems to be
closely related with the temporal logic side conditions. An
interesting direction of further work would be to discover
if the relation could be mechanically created from the side
conditions.

The programming language on which these transformations
have been applied is admittedly very simple. There are very
few types of statements and it does not include necessary
language features like exceptions and procedures. Limit-
ing the number of types of statements reduces the number
of cases in the proofs and this simplifies their presentation,
but adding additional statements does not affect the appli-
cability of our method. Exceptions and procedures would
however, require changes to the control flow model and the
transition systems used in the proof. The specification of
the transformations however does not dramatically change.
A follow-up paper describing the required adjustments is in
preparation.

The language we have treated is rather like a traditional
compiler’s “intermediate language”. We anticipate that our
method could be used to validate a great many traditional
optimizing compiler transformations, e.g., many found in [2]
and [20].

This work is part of a larger project to study declarative
methods of specifying optimizations and means of automat-
ically generating optimizers from these specifications. Here,
the specifications of optimizing transformations are rewrite
rules with temporal logic side conditions that are atomi-
cally implemented by a graph rewriting system and model
checker [18].

Acknowledgements
The Oxford authors would like to thank the Programming
Tools Group in Oxford and in particular Oege de Moor for
fruitful discussions about this work and Microsoft Research
for its support of this research as part of the Intentional
Programming project.

7. REFERENCES

[1] S. Abramsky and C. Hankin. Abstract Interpretation
of Declarative Languages. Ellis-Horwood, 1987.

[2] A.V. Aho and R. Sethi and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison Wesley,
1986.

[3] E.M. Clarke, E.A. Emerson, and A.P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244–263, 1986.

[4] R. Cleaveland and D. Jackson. Proceedings of First
ACM SIGPLAN Workshop on Automated Analysis of
Software. Paris, France, January 1997.

[5] P. Cousot and R. Cousot, Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fix-points. In Fourth
ACM Symposium on Principles of Programming
Languages, Los Angeles, California, January 1977, pp.
238–252, New York: ACM, 1977.

[6] P. Cousot, Semantic foundations of program analysis,
in S.S. Muchnick and N.D. Jones (eds.), Program Flow
Analysis: Theory and Applications, chapter 10, pp.
303–342, Englewood Cliffs, NJ: Prentice Hall, 1981.

[7] C.C. Frederiksen. Correctness of classical compiler
optimizations using CTL. Unpublished TOPPS
report, University of Copenhagen, 2001.
http://www.diku.dk/research-groups/

topps/bibliography/2001.html#D-443

[8] Th. Hafer and W. Thomas. Computation tree logic
CTL* and path quantifiers in the monadic theory of
the binary tree. In Automata, Languages and
Programming Proceedings, ICALP’87, volume 267 of
Lecture Notes in Computer Science, pages 267–279.
Springer-Verlag, 1987.



[9] K. Havelund. Stepwise Development of a Denotational
Stack Semantics. M.Sc. thesis, University of
Copenhagen, 1984.

[10] M. Hecht. Flow analysis of computer programs.
North-Holland, 1977.

[11] N.D. Jones (ed.), Semantics-Directed Compiler
Generation. volume 94 of Lecture Notes in Computer
Science, Springer-Verlag, 1980.

[12] N.D. Jones. Semantique: Semantic-Based Program
Manipulation Techniques. In Bulletin European
Association for Theoretical Computer Science
39:74-83, 1989.

[13] N.D. Jones and F. Nielson. Abstract Interpretation: a
Semantics-Based Tool for Program Analysis.. In
Handbook of Logic in Computer Science, edited by S.
Abramsky, D, Gabbay, T. Maibaum, pages 527–629,
Oxford University Press, 1994.
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