
Building Extensible Specifications and
Implementations of Promela with AbleP

Yogesh Mali and Eric Van Wyk?

Department of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455, USA

yomali@cs.umn.edu, evw@cs.umn.edu

Abstract. This paper describes how new language features can be seam-
lessly added to an extensible specification of Promela to provide new
(domain-specific) notations and analyses to the engineer. This is accom-
plished using ableP, an extensible specification and implementation of
Promela, the modeling language used by the spin model checker. Lan-
guage extensions described here include an enhanced select-statement,
a convenient tabular notation for boolean expressions, a notion of dis-
crete time, and extended type checking. ableP and the extensions are
developed using the Silver attribute grammar system and the Copper
parser and scanner generator. These tools support the modular devel-
opment and composition of language extensions so that independently
developed extensions can be imported into ableP by an engineer with
little knowledge of language design and implementation issues.

1 Introduction and Motivation

Modeling languages such as Promela, Lustre, Esterel, and others, allow engineers
to specify problem solutions in an abstract high-level declarative language that
more closely matches the problem domain than low-level programming languages
such as C. These languages are typically designed to enable some sort of analysis
of the specifications written in them. The Promela model checker spin [10, 9]
takes advantage of the high-level constructs, such as processes and guarded-
statements, and the restrictions in Promela, such as the absence of floating point
numbers, to efficiently analyze and verify properties on Promela programs.

Yet, modeling languages often lack linguistic support for some commonly-
used general purpose and less commonly-used domain-specific concepts; this
leaves the engineer to encode them as idioms, a time-consuming and error-prone
process. This is not necessarily the fault of the language designers. It is a prob-
lem for them as well as they must try to strike a balance in determining which
features to include in the language, weighing the benefits of the feature against
the cost of implementing, maintaining, and documenting a larger language.

? This material is based on work partially supported by NSF Awards No. 0905581 and
No. 1047961 and DARPA and the United States Air Force (Air Force Research Lab)
under Contract No. FA8650-10-C-7076.

A few examples may illustrate these points. Consider the select statement
added to Promela in spin version 6 that non-deterministically assigns a value
within a specified range to a variable. For example, select (v : 1..10) will as-
sign a value between 1 and 10 to the variable v. In previous versions of Promela,
engineers had to “code this up” using an idiom of several (non-guarded) assign-
ments as options in an if statement. Presumably the perceived need of this
features outweighed the costs of adding it to the language. This feature and
the new for loop are added in the Promela parser and expanded into Promela
do-loops a the idioms engineers have typically used previously to express them.

As an domain-specific example, consider the discrete-time features introduced
in DTspin [1]. A new timer datatype and operations on values of this type are
provided. These features can be implemented as simple C pre-processor macros,
a very lightweight approach to language extension. Another approach modifies
the spin source code to provide a more efficient implementation of an underlying
clock-tick operation, a rather heavyweight solution. Domain-specific extensions
like this are often very useful, but to a smaller group of users than may justify
their direct inclusion in the language.

A third example is the type analysis provided by etch [4]. This tool pro-
vides a constraint based type inference system to detect type errors in Promela
specifications that have not always been detected by spin. Finding such errors
statically saves engineers time. This tool implements its own scanner and parser
for Promela, using SableCC [7], to build an abstract specification on which type
checking is performed. Developing a new scanner and parser for Promela is a
non-trivial task that detracts from the developer’s main aim of type checking.

This paper describes a middle-weight solution to these language evolution
and extensions problems. ableP (Attribute grammar-Based Language Exten-
sions for Promela) is an extensible language framework that lies between the
lightweight solution of simple macros and the heavyweight solutions of mod-
ifying the spin code base or building an entirely separate system for parsing
and analysing Promela specifications. ableP allows new language features to be
specified in a highly modular manner so that engineers can easily select the lan-
guage extensions that they desire for a particular problem and seamlessly import
them into ableP. These features may be new language constructs that add new
syntax to the host language Promela. They may also be new semantic analyses
of these new constructs or new semantic analyses to the Promela constructs.
For frameworks such as ableP to be useful to a wide audience we believe that
new features, packaged as language extensions, must be easily imported by an
engineer or programmer without requiring significant knowledge of language de-
sign and implementation techniques. Thus, while extension developers need this
sort of knowledge, extension users need not; users simply direct the framework
to import the desired set of extensions. This is not unlike importing libraries in
traditional programming languages. In such frameworks, the engineer imports a
set of extensions to create a customized language, and its supporting analysis
and translation tools, that address the specific programming or modeling task
at hand.

Section 2 of this paper describes several language extensions in ableP and
shows how an engineer uses ableP and imports extensions into it. These exten-
sions include aspects of those described above as well an extension that provides
a tabular representation for complex boolean expressions. Section 3 shows how
ableP and these modular extensions are implemented using the Silver at-
tribute grammar system [14] and the Copper parser and context-aware scanner
generator [16]. It also describes how these tools support the seamless and au-
tomatic composition of extensions designed by independent parties. Section 3.3
describes how these tools handle some challenging aspects of the Promela lan-
guage including inlining and embedded C code. Section 4 describes related work
and section 5 discusses the challenges faced by, and merits of, ableP.

2 Use of AbleP and its language extensions

In Section 2.1 we describe some sample language extensions to Promela and show
how they are used in the ableP extensible language framework in which Promela
plays the role as the host language. In Section 2.2 we show how an engineer can
import a chosen set of extensions into ableP and generate a processor for the
custom language with the features that suit his or her specific needs.

2.1 Using an AbleP extended language framework

In this section we describe a set of ableP extensions that add an enhanced
select statement, tabular boolean expressions, type-checking analysis in the
spirit of etch, and features for discrete time based on DTspin. A model that
uses these features is shown in Fig. 1. This extended language model is based on
a sample altitude switch for an aircraft that computes an altitude status value
of Unknown, Above, or Below from a simulated altitude reading, an indication of
confidence in the altitude readings, an altitude threshold, and a hysteresis value.

An instantiation of ableP, the framework extended with a specific set of
extensions, is used by the engineer to analyze a model and translate it down to
its semantically equivalent model in pure Promela to be used by the spin model
checker. Thus, ableP instantiations are essentially sophisticated pre-processors
that go beyond the capabilities of simple macro pre-processors by performing
syntactic and semantic analysis on the model to detect certain (domain-specific)
errors and direct the translation down to pure Promela. ableP processors are
generated by the Silver [14] and Copper [16] tools from the specifications
of the host language and chosen extensions. These tools are Java-based and
the generated instantiation is realized as a Java .jar file. In Section 2.2 we
show how the engineer creates these, but here we assume that this has been
done, resulting in a instantiation stored in ableJ.aviation.jar. The engineer
need only provide the name of extended-language model to the processor, in
this case AltSwitch.xpml, which checks for semantic errors and generates the
translation down to pure Promela stored in a file with a .pml extension, here
AltSwitch.pml. This can be processed by spin as the engineer would normally.

mtype = {Unknown, Above, Below } ; /* altitude status values */

mtype = {High, Med, Low} ; /* quality of instrument readings */

chan startup = [0] of {int, int} ;

chan monitor = [0] of {mtype, mtype} ;

timer trouble_t, above_t ; /* expands to "int trouble_t = -1;" */

active proctype determineStatus ()

{

int altitude, threshold, hyst ;

mtype altQuality, altStatus = Unknown ;

startup ? threshold, hyst; /* receive threshold and hysteresis values */

run monitorStatus (); /* start monitoring process */

check:

/* select, non-deterministically, values for altitude and altQuality */

select (altitude: 1000 .. 10000 step 100) ;

select (altQuality: High, Med, Low) ;

/* use condition tables to assign a value to altStatus */

if :: tbl altStatus == Unknown : T *

altQuality == High : T T

altitude > threshold : T T

altitude > threshold + hyst : * T

lbt -> altStatus = Above ;

:: tbl altQuality == High : T

altitude > threshold : F

lbt -> altStatus = Below ;

:: else; altStatus = (altQuality == High -> Unknown : altStatus) ;

fi ;

if :: altStatus == Above -> goto above;

:: altStatus == Below || altStatus == Unknown -> goto trouble;

fi ;

above:

delay(above_t,1); /* delay until next "tick" */

goto check ;

trouble:

monitor!altStatus,altitude ; /* send msg to monitor */

trouble_t = 1; expire(trouble_t); /* what delay expands to */

goto check ;

}

Fig. 1. The extended-Promela program AltSwitch.xpml processed by ableP.

The primary goal of the model in Fig. 1 is to compute a value for the
altStatus variable and assign to it a value from the mtype values of Unknown,
Above, and Below specified on the first line. The quality of the instrument read-
ings is represented by the second mtype declaration of the values High, Med,
and Low. Next, a startup channel is declared and used to receive the integer
threshold and hysteresis values. A monitor channel is declared; it is used to send
the status and altitude values to a monitoring process monitorStatus (whose
definition is not shown here). Skipping for now the declarations of variables of
type timer, the determineStatus process declares its local variables altitude,
threshold, hyst, altQuality (which takes values of High, Med, and Low), and
altStatus (which takes values of Unknown, Above, and Below). The process
determineStatus first receives values for the threshold and hysteresis variables
and starts the monitorStatus process.

Enhanced select statements: The first use of a language extension follows the
check label. This enhanced select statement is an extended version of the one
introduced to Promela in spin version 6. Here, we’ve added a step value of
100. This statement non-deterministically selects an altitude value in the range
beginning at 1000, increasing by values of 100, and ending at 10000. The second
example non-deterministically picks a value for altitude quality from one of the
three valid mtype values of High, Med, or Low.

ableP supports language extensions that have the same look-and-feel as
built-in constructs. Thus, their syntax should be natural and they should report
error messages based on analysis of the extension, not on its translation to pure
Promela. While at least the first extended-select could easily be specified as
a CPP macro, as is commonly done in Promela models, we choose not to do
this in order to support this semantic analysis. Consider changing the second
expression Med in the second select statement to startup, which has type
chan. The language extension will report the following error message:

Error: select statement requires all possible choices to have the

same type as variable assigned to, which is "mtype": line 17.

This ableP extension translates this second select statement to a seman-
tically equivalent construct in pure Promela; in this case that phrase is

if ::altQuality=High; ::altQuality=Med; ::altQuality=Low; fi;

The first select statement can be translated to a do loop in which the vari-
able altitude is initially set to the lower bound of 1000 and is incremented
by the step value of 100 until the upper bound is reached or the loop non-
deterministically exits, which is shown in Fig. 2(a). The extension, however,
inspects the lower bound, upper bound, and step expressions. If they are all
constants (known statically), then a (possibly large) non-deterministic if state-
ment can be generated instead. Part of the translation that is generated for the
first select statement is shown in Fig. 2(b). An advantage of this translation
is that during interactive simulation with spin of the generated Promela model,

altitude = 1000 ; | if :: altitude = 1000 ;

do :: goto l30 ; | :: altitude = 1100 ;

:: (altitude < 10000) ; | :: altitude = 1200 ;

altitude = (altitude + 100) ; | :: altitude = 1300 ;

od ; | ...
l30: skip ; | fi ;

(a) (b)

Fig. 2. Two translations of select to pure Promela.

the user is asked to pick a transition that will select the desired value without
having to step through the loop the appropriate number of times.

These extensions are straightforward and primarily introduced as an initial
example. The first could be specified as a do-loop-generating CPP macro, but
the second requires a bit more processing. We see how this is done in Section 3.

Boolean Table Expressions: In Fig. 1, after values for altitude and altQuality

have been selected a guarded if statement assigns a value to altStatus. The
guards on the first two options are boolean expressions represented in a tabular
form. Due to the complexity of these conditions, the engineer may decide to use
condition tables, such as those found in RSML−e. These are sometimes useful
when reviewing the models with domain experts. These tables, indicated with
keywords tbl and lbt, consist of rows with leading boolean expressions followed
by a list of “truth values”: T for true, F for false, and * for “don’t care”. These
specify the required truthfulness of the expression at the beginning of the row.
All rows must have the same number of truth values. The value of a table is
determined by taking the disjunction of the boolean value computed for each
column. This column value is the conjunction of checking that each expression
has the required truth value. For example, the first column in the table is true
if all expression are true except for the last one, which can take any value. The
first table is translated to the following pure Promela expression.

(((altStatus == Unknown) && ((altQuality == High) &&

((altitude > threshold) && true))) ||

(true && ((altQuality == High) &&

((altitude > threshold) && (altitude > (threshold + hyst))))))

Besides generating this translation, the extension also checks that each ex-
pression has an appropriate boolean type and that the rows have the same num-
ber of truth values, something not easily done on the generated expression. This
extension is based on an extension that we originally developed for Lustre [8].

Extended Type Checking: Donaldson and Gay created a tool to perform ex-
tended type checking of Promela models called etch [4]. It adds no syntactic
constructs to Promela but adds a sophisticated typing analysis. If we modify
the run monitorStatus() statement in the determineStatus process to pass

in some number of arguments we would create a semantic error that spin would
detect. If we made additional use of channels, specifically passing them as pa-
rameters to processes, their types become more difficult to check. This is because
channel types are specified simply as chan which does not indicate the types of
values to be passed along it. spin does not detect these types of errors statically,
only at simulation or verification time. etch, however, includes an static type
inference and checking analysis to find type errors such as those that spin does
not. When etch was developed it detected the simple typing errors, such as
incorrect number of arguments, that spin has now been extended to detect.

etch implements its own scanner and parser for Promela, using the SableCC
compiler toolkit, in order to generate the representation on which its typing anal-
ysis can be performed. This effort of implementing the scanner and parser can
be avoided in ableP. Instead one can specify the typing analysis as a semantic
extension to ableP that works over the abstract syntax tree of the Promela
model that is generated by the scanner and parser in ableP. Such an exten-
sion can then contribute messages describing any errors that it detects to the
error-reporting facility in ableP. In Section 3 we will show this is done.

The language extension described here is also, in a sense, separate from the
host language implementation of Promela in ableP, and it illustrates how anal-
ysis of this sort can be done as a composable language extension. It does not,
however, implement the sophisticated type inference and checking algorithms of
etch, but instead provides a simpler type checking facility.

Discrete Time in spin: With DTspin, Bosnacki and Dams introduce the notion
of discrete time into Promela [1]. Discrete time occurs in many domains and
the correctness of the system may include timing aspects. This is often the case
in communication protocols. DTspin introduces a timer type and operations
on values of this type. These include a set(t,v) operation to set timer t to
integer value v, an expire(t) operation that waits until timer t counts down to
0, and a delay(t,v) operation that is syntactic sugar for set(t,v); expire(t).
Bosnacki and Dams define these using simple macros as follows:

#define timer int

#define set(tmr,val) (tmr=val)

#define expire(tmr) (tmr==0)

#define delay(tmr,val) set(tmr,val); expire(tmr)

#define tick(tmr) if :: tmr>=0 -> tmr=tmr-1 :: else fi

proctype Timers() {do ::timeout -> atomic{tick(t1); tick(t2)} od}

Note that the Timers process must be modified in each model to apply the tick

operation to all timers on a timeout.
We’ve implemented similar constructs as a modular language extension to

ableP to address some of the shortcoming of simple macros. Fig. 1 makes use
of a few of these. The model declares two timers, above t and trouble t, and
uses them after the above and trouble labels respectively. In the first, delay is
used to wait for the timer to proceed one tick of the clock and in the second the
set/expire pair is used instead, but set is done using a type-safe assignment.

The extension overloads assignment to allow for the case of a timer variable on
the left and an integer value on the right. Otherwise the extension treats timers as
separate types from numeric ones and does not allow coercions between them.
The timer values are represented by integers in the generated pure Promela
model, but only after this type checking has been done to prevent timers from
mistakenly being used as integers.

The extension also initializes timer values to -1 (as done in DTspin). Global
declarations and local declarations in the initial declaration section of a pro-
cess are translated into initializing integer declarations (e.g. int trouble t =

-1 in Fig. 1). Local declarations after this section are translated to declara-
tion/assignment statement pairs (e.g. int t; t = -1).

It is straightforward for the extension to generate the Timers process to
“tick” the globally-declared timers; note that it is not present in Fig. 1. For
locally declared timers it is not so simple and the current extension assumes
that engineers will handle them explicitly. A possible solution, however, is to
represent local timers differently, essentially lifting them a global array of timers
and overloading references to them to access this global array. We are currently
investigating this possibility.

Our extension does not, however, address the efficiency issues that are solved
by modifying the spin source code to implement the clock tick operator directly.
But as it stands the extension does provide some benefits over a plain macro
based implementation and may be sufficient for some purposes. Extensions of
the type possible in ableP may provide a good “proving grounds” for ideas
before taking on the larger effort of moving them into the host language. For
discrete time, the best solution may be to do what DTspin has done and modify
the spin source code.

Extension utility: Note that we are not making claims about the utility of these
specific extensions. The papers that introduced these features do a fine job at
that. Our goal here is to demonstrate that such features can be specified in a
modular and composable manner in ableP and then easily imported and used
by the engineer.

2.2 Extending AbleP with independently developed extensions

A distinguishing feature of extensible language frameworks such as ableP is
that it is quite straightforward to create new language processors and translators
by combining the host language specifications with those of the chosen language
extensions. The underlying tools, Silver and Copper, have a number of features
which enable this high degree of modularity and ensure that compositions will
be well-defined. Fig. 3 shows the complete specification that an engineer would
need to write to compose the host language with the four extensions described
above and used in the example in Fig. 1.

The first line of this specification names the grammar and indicates that
this instantiation is in the artifacts directory in ableP and has the name
aviation, to indicate, perhaps, that this combination of features is suitable for

grammar edu:umn:cs:melt:ableP:artifacts:aviation ;

import edu:umn:cs:melt:ableP:host ;

import edu:umn:cs:melt:ableP:extensions:tables ;

import edu:umn:cs:melt:ableP:extensions:enhancedSelect ;

import edu:umn:cs:melt:ableP:extensions:typeChecking ;

import edu:umn:cs:melt:ableP:extensions:discreteTime ;

parser aviationParser :: Program_c {

edu:umn:cs:melt:ableP:host ;

edu:umn:cs:melt:ableP:extensions:tables ;

edu:umn:cs:melt:ableP:extensions:enhancedSelect ;

edu:umn:cs:melt:ableP:extensions:discreteTime ; }

function main IOVal<Integer> ::= args::[String] mainIO::IO

{ return driver (args, aviationParser, mainIO) ; }

Fig. 3. Silver specification of the avionics-inspired ableP instantiation.

avionics applications. Below this import statements indicate the host language
and the set of extensions that are to be combined by Silver to form the se-
mantic analysis and translation of the extended language. Below this, a parser
(aviationParser) is defined and includes the host grammar and extensions that
add new language constructs (new concrete syntax) to the extended language.
Since the type-checking extension does not add new constructs it need not be
listed, though doing so causes no problems. Finally, a main function is provided
that calls the driver function that controls the ableP translation process. To
generate the ableP.aviation.jar file used above the engineer needs to run the
following on the command line.

% silver -o ableP.aviation.jar \

edu:umn:cs:melt:ableP:artifacts:aviation

Similar files for other instantiations have the same simple, boiler-plate for-
mat. There is little here except the naming of the host language and the desired
language extensions. We have considered extensions to Silver that would sim-
plify this so that the start nonterminal in the grammar (Program c), the parser
name, and the main function need not be specified but can easily be generated.
We choose not to use them here in order to show, in a plain Silver specifica-
tion, that there is no needed glue code or other specifications that require any
language processing skills on the part of the engineer.

3 Implementing AbleP and its language extensions

In our approach to extensible language frameworks, the instantiations are gen-
erated by composing the specifications of the host language (Promela) and the

the user-chosen language extension specifications. The two primary challenges
are composing concrete syntax specifications in order to generate a scanner and
parser for the extended language, and composing semantic specifications to gen-
erate the part of the instantiation the performs semantics analysis of the model
and that generates the translation of the extended model down to pure Promela.
To address these challenges we developed Copper [16], a parser and context-
aware scanner generator, and Silver [14], an extensible attribute grammar sys-
tem.1 As we saw above, Silver reads a file containing a specification, follows
the import statements to collect all the grammars that are to be included, and
generates the files needed by Copper to create the scanner and parser.

3.1 Specification and composition of syntax

Copper specifications are context free grammars in which the terminal symbols
have associated regular expressions; from these the parser and scanner are gen-
erated. The generated parser is slightly modified LALR(1) parser that uses the
context-aware scanner [16] that is generated from the regular expressions. These
specifications, in essence, contain the same information as found in specifications
to popular parser generators such as Yacc or Bison and scanner generators such
as Lex — though the information is processed in a slightly different manner to
address challenges in parsing extensible languages.

Consider first the concrete syntax specification for the select-from construct
used to assign to altQuality in Fig. 1:

s::Special_c ::= sl::’select’ ’(’ v::Varref_c ’:’ es::Exprs_c ’)’

{ s.ast = selectFrom (sl, v.ast, es.ast) ; }

This production’s left-hand-side nonterminal, Special c, is a type of statement.
On the right are the select keyword, some punctuation, and the variable refer-
ence and expression list from which the value is chosen. In Silver productions
the symbols are named; the names precede the :: operator (read “has type”)
which precedes the type assigned to the name. The types are the terminal and
nonterminal symbols found in the grammar. The name sl is used for the se-
lect keyword terminal defined in the ableP host language grammar and es

is used for the comma-separated list of expressions that are derived from the
host language nonterminal Exprs c. This production is defined in the extension
grammar edu:umn:cs:melt:ableP:extensions:enhancedSelect but uses only
terminals and nonterminals defined in the host language grammar.

The semantics associated with the production build the abstract syntax
tree (AST) for the construct using the extension-introduced abstract produc-
tion selectFrom and attribute ast. The selectFrom parameters are the select-
keyword terminal and the ASTs taken from the variable reference v and the list
of expressions es. Below we will see how this abstract production detects errors
on the construct and translates it down to a pure Promela guarded-if statement.

1 Both are licensed under the LGPL open source license and distributed in both source
and executable formats (as Java .jar files). See http://melt.cs.umn.edu.

To see where context-aware scanning has an impact consider the following
terminal declarations and concrete productions for the for loop defined in the
host language grammar (the semantics are elided).

terminal IN ’in’ ;

terminal FOR ’for’ lexer classes {promela_kwd} ;

fp::ForPre_c ::= f::FOR ’(’ v::Varref_c { ... }

fp::ForPost_c ::= ’{’ s::Sequence_c os::OS_c ’}’ { ... }

s::Special_c ::= fpre::ForPre_c ’:’ low::Expr_c ’..’ upp::Expr_c ’)’

fpost::ForPost_c { ... }

s::Special_c ::= fpre::ForPre_c in::IN v::Varref_c ’)’

fpost::ForPost_c { ... }

These productions are the same as the ones that appear in the Yacc grammar
spin.y in the spin distribution. Of special interest is the reserved keyword in

shown in the last production above. As of spin version 6, in may not be allowed
as an identifier. This is because the (hand-coded) spin scanner does not take
context into account when processing the string “in ...” and thus simply always
treats in as a keyword. Context-aware scanning lets us specify a scanner and
parser in which the phrase in can be treated as the keyword in the context of a
for-loop and as an identifier in other contexts. (Since ableP generates Promela
we need to rename identifiers named in for spin to properly handle them.)

In Copper this notion of context comes from the LR parser state. Each state
associates an action (shift, reduce, accept, or error) with each terminal symbol of
the (composed) grammar. When the context-aware scanner is called to retrieve
the next token it is passed the set of terminals which are valid in the current state
(those with action shift, reduce, or accept, but not error). The scanner will only
return tokens for terminals in this set. If the parser is in a state where it has so
far matched input derivable from the nonterminal ForPre c then, as seen from
the last production above, the terminal IN is valid. Since the identifier terminal
(ID) is not valid in this state the scanner will return the keyword IN token and
not the identifier ID token. On the other hand, the terminal FOR is specified
as being a keyword and thus has lexical precedence (in the usual sense) over
identifiers. Since both identifiers and the keyword FOR are valid at the beginning
of a statement we must reserve FOR as a keyword to prevent lexical ambiguities.

This use of context in the scanner means that there are fewer lexical conflicts
and we can use different terminals for overlapping regular expressions. In our
experience this makes it easier to write a grammar that stays within the class
of LALR(1). This leads to the modular determinism analysis [11] that allows
extension developers to “certify” the concrete syntax of their extensions against
the host language grammar to determine if the extension can be safely com-
bined with any other “certified” extensions (those that also pass this analysis).
Thus, when the engineer selects only extensions whose concrete syntax passes
this analysis he or she has a guarantee that the composed grammar containing
the host language grammar and the extension grammar fragments will have no
conflicts (so that an LALR(1) parser can be generated from it) and no lexical
ambiguities (so that a deterministic scanner can be generated from it).

The concrete syntax for the enhanced select statement and the discrete time
extensions are syntactically quite simple. The boolean tables example provides a
more interesting example. The productions themselves are straightforward, and
thus not shown, but it shows how non-trivial new sub-languages can be embedded
into the host language. The enhanced-select does not pass this analysis, since
it uses the same keyword at the beginning of the production as others in the
host language. The other two do pass the analysis, however. Previous papers on
context-aware scanning [16] and the modular determinism analysis [11] provide
a more detailed description of context-aware scanning as used by Copper.

3.2 Specification and composition of semantics

Silver [14] is an extensible attribute grammar system with features that enable
the composition of semantic analysis and translation specifications when they
are specified as attribute grammars. It has many modern attribute grammar
features (higher order, reference, and collection attributes, forwarding and as-
pect productions) borrowed from the attribute grammar literature, see [14] for
details. It also has features from functional programming languages (parametric
polymorphism and pattern matching).

In an attribute grammar (AG) a context-free grammar is used to define the
abstract syntax. The nonterminals of the grammar are decorated with attributes
(not unlike fields in records or objects) that are computed to store some semantic
information for the AST. For example, a nonterminal may be decorated with an
errors attribute, for example, that contains a list of semantic errors detected on
a node (of that nonterminal type) or its descendants in the AST. Productions
are seen as tree-constructing functions that specify equations for computing the
values of the attributes defined on the constructed tree’s root node and the nodes
of its immediate children.

Consider the assignment production in the host language as shown below:

abstract production defaultAssign

s::Stmt ::= lhs::Expr rhs::Expr

{ s.pp = lhs.pp ++ " = " ++ rhs.pp ++ " ;\n" ;

lhs.env = s.env; rhs.env = s.env; s.defs = emptyDefs();

s.errors := lhs.errors ++ rhs.errors ; }

The abstract production, named defaultAssign, has a statement nontermi-
nal (Stmt) on the left and on the right has two expression nonterminals (Expr)
for the left and right hand side of the assignment operator, which is abstracted
away here. The pretty-print string attribute pp is defined on an assignment as the
concatenation (++) of the pp attribute values on the children with the expected
punctuation. This is a synthesized attribute as its value is synthesized from val-
ues on child nodes. The environment attribute env plays the role of a symbol
table and passes bindings on names to their declarations down the tree; such at-
tributes are called inherited. Since assignments do not alter the environment the
value passed to the statement (s.env) is copied to its children. A corresponding
synthesized attribute, defs, collects declarations to populate the env attribute,

but since assignments do not declare names this attribute is the empty set of
definitions. Any errors that occur on the children (such as an undeclared vari-
able) are passed up the tree in the synthesized attribute errors. Recall the type
checking is done in the typeChecking extension (described below) so no type
errors are added here. The operator := is used for collection attributes and is
described below; for now it can be seen as the same as =. Attribute evaluation
is the process of computing the values for attributes from these equations.

The abstract syntax for the host language in ableP is defined in Silver using
productions similar to the one shown above. It implements the scope rules as
found in spin version 6 to bind variable uses to their declarations using reference
attributes. These can be seen as pointers to remote nodes in the tree. The env

attribute maps names to references to variable declarations; variable references
look up their name in the env attribute to get the reference, if it exists, to their
declaration. If it is not found an error is placed into the errors attribute and
propagated up the tree to be reported by ableP.

The attribute grammar specifications of the extensions are easily composed
with the host language specification since the specifications are seen as sets: sets
of nonterminals, sets of terminals, sets of productions, sets of attribute equations
on productions, etc. Thus, simple set union over these sets from the host and
extension creates the composed language. In the case of the enhanced-select
extension, it defines new productions for the concrete and abstract syntax of the
new statements. These are then composed with those in the host language to
create an extended grammar. These productions do basic type checking on the
new constructs and thus extend both the host language and the type checking
extension, which we thus discuss first.

Type Checking: The type checking extension performs basic type checking of
Promela models and makes use of the variable-use-to-declaration binding that is
done in the host language. It is certainly more natural, and common, to consider
this as part of the host language. Here we have pulled it out as an extension to
illustrate that tools such as etch can be implemented as extensions in ableP.

This extension adds no new concrete syntax. Instead it adds new attributes
that decorate existing host language nonterminals and new attribute equations
to provide values for these attributes. Specifically, a typerep attribute deco-
rates expressions and declarations to represent the type of the expression and
the type of the variable declared on the declaration. In Fig. 4 aspect productions
are provided for the abstract productions varRef and defaultAssign that ex-
ist in the host language. These allow new attributes to be defined on existing
productions. On the varRef production, the typerep of the variable is found by
looking up its declaration in the environment and getting its type from it. This
code is elided for space reasons, but is straightforward. On defaultAssign, the
typerep attribute on the child expressions is used to determine if the types are
compatible. If they are not, it adds a new error to the list of those in the errors

attribute, defined in the host language. In the host language, errors is defined
as follows:

synthesized attribute errors :: [Error] with ++ ;

grammar edu:umn:cs:melt:ableP:extensions:typeChecking ;

synthesized attribute typerep::TypeRep occurs on Expr, Decls ;

aspect production varRef

e::Expr ::= id::ID

{ e.typerep = ... retrieve from declaration found in e.env ... ; }

aspect production defaultAssign

s::Stmt ::= lhs::Expr rhs::Expr

{ s.errors <- if isCompatible(lhs.typerep, rhs.typerep) then []

else [mkError ("Incompatible types on assigment ...")]; }

Fig. 4. Partial Silver specification of simplified etch-like error checking.

This attribute is a list of Error values that are constructed uses in mkError

function, the details of which are not important here. What matters is that this
is a collection attribute [2], as indicated by the with ++ clause. This specifies
that when aspect productions contribute additional values, using the <- assign-
ment operator, they are combined with the base value for errors, specified using
the := operator that we saw above. These different values are then folded to-
gether using the ++ operator, which is both string and list concatenation. Any
errors that this aspect production finds will be folded into the errors defined in
the host language. Thus, it is important that the host language define errors

as a collection attribute so that the extensions can “plug into it” to provide
additional or improved semantic analysis on the model.

While this extension does not perform the same sophisticated analysis that
is done by etch, it demonstrates how such analyses can be implemented as
modular and composable language extensions. By doing so, such analyses do
not need to be implemented as stand alone tools that require building their own
scanner and parser, as etch has done.

Enhanced select and boolean tables: The enhanced-select extension provides two
new versions of select, but we discuss just the select-from version that was used
to assign to altQuality. Its concrete syntax specification was shown above; its
abstract syntax production is given in Fig. 5. This (new) production defines
its pretty print attribute pp as expected and computes type errors based on
the typerep attributes introduced in the type-checking extension. This check is
straightforward and more verbose than interesting, and thus elided here. Since
this is a new production, not an aspect, we see that the definition of errors

uses the := operator to assign the base value for errors, consisting of errors on
the children v and es and errors detected on the select statement itself.

What is of specific interest here is the “forwards to” clause. This clause
specifies a tree (of the same nonterminal type as on the left hand side of the
production) that is defined as being semantically equivalent to the “forwarding”
tree. When the forwarding tree (node s, here) is queried for an attribute for
which the production does not have a defining equation, that query is passed to

grammar edu:umn:cs:melt:ableP:extensions:enhancedSelect ;

abstract production selectFrom

s::Stmt ::= sl::’select’ v::Expr es::Exprs

{ s.pp = "select (" ++ v.pp ++ ":" ++ es.pp ++ "); \n" ;

s.errors := v.errors ++ es.errors ++

if ... check that all expressions in ’es’ have same type as ’v’ ...

then [mkError ("Error: select statement requires ... ")]

else [] ;

forwards to ifStmt(mkOptions (v, es)) ; }

Fig. 5. Silver specification of the semantics of the select-from extension.

the forwards-to tree. In the case of the assignment to altQuality from above,
the forwards-to tree is the if statement with three options, one for each possible
assignment, that was shown above in Section 2.1. The mkOptions function builds
the options for the if statement from the variable reference and expressions.

Consider removing the equation defining errors from the selectFrom pro-
duction. If this were done, the query for the errors attribute would be forwarded
to the semantically equivalent if statement. This means that the user gets error
messages from code that he or she did not write, even though they would be
semantically correct. The boolean tables extension follows this same pattern.
Abstract productions for tables and the component rows perform type checking
and compute the less-readable semantically equivalent boolean expression of &&
and || operators that the table will forward to. In this case however, providing
a definition of the errors attribute is more critical since from the translation
down to the equivalent boolean expression it may not be able to detect when the
rows in the table are of different lengths. Forwarding provides a mechanism for
implicitly specifying the semantics (attributes) for a new construct when explicit
specifications for them are not provided by the production.

Discrete Time: Collection attributes and forwarding as described above play
important roles in defining the discrete-time language extensions and we need
not introduce any additional Silver features. Because of this, and space limita-
tions, we only describe the implementation of this extension. The new constructs
(set, expire, and delay) are defined as one would expect. The use of the exist-
ing assignment operator for assignments to timers, however, is more interesting.
Overloading on assignment is accomplished by defining an abstract assign pro-
duction that is used by the concrete syntax in building the abstract syntax tree.
This production has an overloads collection attribute of type [Stmt] that is
initialized to the empty list and which extensions can write aspects for that add
new trees into this list. The discrete-time extension defines an aspect on assign

that checks if the expression on the right hand side of the assignment is of type
timer. If it is, it adds a Stmt tree to this overloads list that is built using a
new production for assignments to timers that is defined by the extension. The
“dispatching” assign production can then inspect this list in overloads and if

it contains a tree, it takes it from the list and forwards to it. If this list is empty,
the assign forwards to a tree constructed using the defaultAssign production
shown above. (If the list contains more than one tree, then two extensions are
trying to overload the same syntax and an internal error is raised.) This provides
a “hook” in the host language that extensions can exploit to overload existing
syntax. Here the timer-specific assignment is used to allow assignment between
integer and timer types, which would otherwise not be allowed since the timer
type is specified as being incompatible with numeric types in the host language.
A similar mechanism is used to generate the Timers process and init clause
which will run it. The root-level production for Promela models has a collection
attribute to which extensions can add new global declarations that they want
inserted at the end of the Promela program.

3.3 Solutions to some challenges in Promela

An interesting feature of Promela is that it allows C code to be embedded inside
Promela specifications, as in, for example, c code { ... C code ... } phrases.
In spin this is accomplished by recognizing the C code as a single token, not
by parsing the embedded C code. spin reports syntax errors in the C code not
when spin runs but when the generated verifier program, pan.c, is compiled.
In ableP, however, we can parse the embedded C code directly and report a
syntax error in the C code just as a syntax error in the Promela code is reported.
Context-aware scanning makes this possible. We create a single grammar that
includes the Promela concrete syntax and a separate specification of ANSI C
concrete syntax. Even though many terminal symbols overlap in their regular
expressions this does not cause a problem. For example, the composed grammar
has two terminals for recognizing the keyword int. But because the parser is
in a different LR-state when parsing the C code than it is in when parsing
Promela, none of these overlapping terminal symbols occur in the same set of
valid terminals that are passed to the scanner. Thus the scanner is never asked
to return, for example, a Promela int keyword or a C int keyword - even though
these two distinct terminals exist in the combined language specification. This
fact is verified by Copper when the scanner and parser are generated. Besides
allowing syntax errors in the embedded C code to be detected and reported in
a natural way, it also means that the language specification for Promela with
embedded C code is declarative and easy to understand.

Forwarding is used to handle inlining as specified by the inline keyword in
Promela. The declaration of an statement to be inlined is parsed and added to
the environment env attribute. A inlining use then looks up this statement in
the environment, instantiates the statement with the arguments provided at the
call site and the forwards to this instantiated statement.

4 Related Work

The extensible language framework is based on the same principles that our
colleagues and we have used to build ableJ, an extensible framework for Java

1.4 [15], a framework for a subset of Lustre [8] and a ongoing effort to do the
same for C. There have been many investigations into the modular specification
of languages in the attribute grammar community. Of particular interest is the
JastAdd system [6] that adds a attribute grammar layer on top of Java. It
has been used to build an extensible specification of Java 1.5 [5]. Other recent
attribute grammar systems aimed at language extensibility have been specified
as embedded DSLs: UUAG [13] in Haskell and Kiama [12] in Scala. MetaBorg [3],
an language embedding framework based on term rewriting, has been used to
develop JavaBorg - an extensible specification of Java.

There have been many efforts to extend Promela, with with new features or
to provide tools that do additional analysis. In fact, the CPP macro processor
is commonly used for these purposes. We discuss etch [4] and DTspin [1] as
examples here because the cover much of the spectrum from light- to heavy-
weight approaches and from ones that add new syntax to others that add only
semantic analysis. Other examples can be found in the literature, primarily in
past editions of the Spin Workshop, see [9].

5 Conclusion

One challenge with ableP is that spin, when simulating or verifying the ableP-
generated Promela model, will report errors or issues on the pure Promela model
written in the host language, not the extended language. We do not have a gen-
eral solution for this problem, but spin itself suffers from this with its parser-
based implementation of the for and select constructs. Still, sometimes a ver-
bose but direct translation to spin works rather well, as is the case with the
select statement that may generate many if options since, as described in
Section 2, this may provide a more intuitive interaction with the user than the
translation to a do loop. Our longer range goals are to investigate this problem
in a general setting and we anticipate that ableP will be a good testbed for this
effort. Another challenge arises if engineers introduce many different unfamiliar
extensions as this may make it more difficult to read the specification. But the
same thing happens if too many libraries are used in traditional programs. A bit
of discretion on the engineer’s part may be sufficient to address this concern.

Overall, we believe that extensible language frameworks such as ableP pro-
vide a good solution to the challenges of extending and evolving languages.
ableP is middle-weight solution that enables more static analysis and syntactic
expressiveness than is possible with simple macros, but at the cost of requiring
an explicit pre-processing step to analyze the extended specification and gener-
ate the pure Promela version. It also does not provide the capabilities that one
has in modifying the spin source code, but this is a significant effort that many
will want avoid. An extensible framework such as ablePcan also take some of
the pressure off of the host language developer. New language constructs and
analyses can be tried out as language extensions, allowing for users to experi-
ment with them and provide feedback based on their hands-on experiences. After
this, some features may migrate into the host language if that is warranted. For

discrete-time constructs found in DTspin, this may be appropriate. In other
cases, such as with the etch-like type analysis, the feature may be sufficient
when packaged as a language extension.

References

1. Bosnacki, D., Dams, D.: Integrating real time into Spin: A prototype implemen-
tation. In: Proceedings of the FORTE/PSTV XVIII Conference. pp. 423–439.
Kluwer (1998), reproduced in Bosnacki’s thesis, available at http://www.win.tue.
nl/~dragan/Thesis/

2. Boyland, J.T.: Remote attribute grammars. J. ACM 52(4), 627–687 (2005)
3. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-specific language

embedding and assimilation without restrictions. In: Proc. of OOPSLA ’04 Conf.
pp. 365–383. ACM Press (2004)

4. Donaldson, A.F., Gay, S.J.: Type inference and strong static type checking for
Promela. Science of Computer Programming 75, 1165–1191 (2010)

5. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: Proc. Conf.
on Object oriented prog. sys. and applications (OOPSLA). pp. 1–18. ACM Press
(2007)

6. Ekman, T., Hedin, G.: The JastAdd system - modular extensible compiler con-
struction. Science of Computer Programming 69, 14–26 (December 2007)

7. Gagnon, E., Hendren, L.J.: SableCC, an object-oriented compiler framework. In:
Proc. of 26th Technology of Object-Oriented Languages and Systems. pp. 140–154.
IEEE Computer Society Press (1998)

8. Gao, J., Heimdahl, M., Van Wyk, E.: Flexible and extensible notations for model-
ing languages. In: Fundamental Approaches to Software Engineering, FASE 2007.
LNCS, vol. 4422, pp. 102–116. Springer (March 2007)

9. Holzmanm, G.: Spin - formal verification. http://www.spinroot.com
10. Holzmann, G.J.: The SPIN Model Checker:Primer and Reference Manual. Addison-

Wesley Professional (September 2003)
11. Schwerdfeger, A., Van Wyk, E.: Verifiable composition of deterministic grammars.

In: Proc. of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM Press (June 2009)

12. Sloane, A.M.: Lightweight language processing in kiama. In: Proc. of the 3rd sum-
mer school on Generative and transformational techniques in software engineering
III (GTTSE 09). pp. 408–425. Springer (2011)

13. Swierstra, S.D., Alcocer, P.R.A., Saraiva, J., Swierstra, D., Azero, P., Saraiva,
J.: Designing and implementing combinator languages. In: 3rd Summer School on
Adv. Functional Prog. LNCS, vol. 1608, pp. 150–206. Springer (1999)

14. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute gram-
mar system. Science of Computer Programming 75(1–2), 39–54 (January 2010)

15. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute grammar-
based language extensions for Java. In: European Conf. on Object Oriented Prog.
(ECOOP). LNCS, vol. 4609, pp. 575–599. Springer (2007)

16. Van Wyk, E., Schwerdfeger, A.: Context-aware scanning for parsing extensible lan-
guages. In: Intl. Conf. on Generative Programming and Component Engineering,
(GPCE). ACM Press (October 2007)

