
Electronic Notes in Theoretical Computer Science 82 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 20 pages

Aspects as Modular Language Extensions

Eric Van Wyk 1

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, Minnesota, U.S.A.

Abstract

Extensible programming languages and their compilers use highly modular specifi-
cations of languages and language extensions that allow a variety of different lan-
guage feature sets to be easily imported into the programming environment by the
programmer. Our model of extensible languages is based on higher-order attribute
grammars and an extension called “forwarding” that mimics a simple rewriting
process. It is designed so that no additional attribute definitions need to be writ-
ten when combining a language with language extensions. Thus, programmers can
remain unaware of the underlying attribute grammars when building customized
languages by importing various extensions. In this paper we show how aspects and
the aspect weaving process from Aspect-Oriented Programming can be specified as
a modular language extension and imported into a base language specified in an
extensible programming language framework.

1 Introduction

The field of programming languages is a long-lived and active field that has
seen the development of a plethora of language paradigms and language fea-
tures. This field continues to be active as the problems faced by program-
mers continue to increase in complexity and extend into ever more diverse
areas. Programming language researchers are continually looking for language
paradigms and features that more adequately support the programmer’s evolv-
ing needs.

Currently, there is an active research community [1] with this end in mind
investigating a set of language features that enable a programmer to modularly
specify computations that do not fit neatly into a language’s organizational
framework, but instead cut across it. The aspect is the primary language
feature for specifying these cross cutting concerns ; programming in this style
is referred to as Aspect-Oriented Programming [19,11,3].

1 Email: evw@cs.umn.edu

c©2003 Published by Elsevier Science B. V.

Van Wyk

For example, consider the following AspectJ [18] advice declaration that
specifies that before any call to the setXmethod of any Point object a message
containing the new x value and current x and y values will be displayed:

before (Point p, int a) : call p.setX (a)

print ("new x " + a + " for point(" + p.x + "," + p.y + ")";

This is a standard technique a programmer may use to trace the changing
value of the x field in Point objects when the source code for the Point

class cannot be modified. To achieve this same result without aspects the
programmer would need to add the print statement before all calls to setX on
Point objects throughout the program whereas with aspects this notion can
be captured in a single location. AspectJ is a particular set of aspect language
features that have been added to the Java language. A high quality compiler
(see www.aspectj.org) has been written for Java and the AspectJ extensions
that solves the immediate problem of providing aspects in Java.

But this leads us to the question of what happens when another set of
interesting language features is proposed. Must a new compiler be written
that adds these features to an existing language? Would it not be better
if we could import new language features, such as aspects, into an existing
programming language environment? This would enable us to combine aspects
with other interesting extensions such as generics [8], those found in Explicit
Programming [10] or programmer-defined extensions that are specific to the
programmer’s domain. If a language is specified in a highly modular and
extensible fashion, it is possible to do just that.

In this paper we show how some AspectJ aspects can be added as a mod-
ular language extension to a simple object-oriented language. The key point
in this exercise is that by specifying the base language and extensions ap-
propriately as higher order attribute grammars [24] that use forwarding [28],
the language composition process is simply the union of the productions and
attribute definitions in the base language and extension. No “glue” attribute
definitions or productions need to be written. This makes it possible for pro-
grammers to combine languages and extensions without being aware of the
underlying attribute grammars. The attribute grammar in our framework
makes use of several extensions to the attribute grammars originally design
by Knuth [20] including higher order attributes [24], reference attributes [15]
and forwarding [28]. Higher order attributes are used to pass around code
trees and are used in the weaving process to move advice code trees to the
join points where they are woven into the original program. Reference at-
tributes are useful in that variable references can maintain a link to their
declaration nodes. Forwarding enables a simple type of rewriting that is used
to rewrite join points into new constructs that contain the advice code from
various advice declarations and thus avoid writing “glue” attribute definitions.

Section 2 describes the AspectJ aspect constructs that we will implement
here as language extensions. Section 3 defines the attribute grammar frame-

2

www.aspectj.org

Van Wyk

work and base object-oriented language to which the aspects are added. Sec-
tion 4 shows how aspect language constructs can be specified in a modular and
additive fashion to be incorporated into the language and Section 5 concludes
with a discussion of what was achieved and related and future work.

2 Aspect oriented programming with AspectJ

In this section we describe some of the AspectJ [18] aspect constructs
that we implement here as language extensions. We will only cover a few
of the many aspect language constructs in AspectJ in order to provide a
basic understanding of how aspects can be added to our base object-oriented
language. The remaining AspectJ constructs pose no fundamental difficulties
to our model.

In any incarnation of aspect oriented programming one must define the join
point model that will be used, how the join points will be specified and how
the implementation of the join points will be modified. While there are several
types of join points in AspectJ, here we only concern ourselves with one: the
method call. The join point model in AspectJ is dynamic, meaning that join
points are points in the execution flow of a program. Thus we consider the join
points to be all the method calls in an executing program. We call a method
call construct in the program a static join point; it represents possibly many
dynamic join points. We affect the behavior of join points by executing a piece
of code before or after the join point and by altering the input values to it.

A point cut is a set of join points and a point cut designator (pcd) is a
mechanism for specifying a point cut. Here, we are interested in the call pcd.
The pcd call (signature) will match method calls whose signature matches that
in the call pcd. A pcd signature consists of a class name or object variable,
a method name and a (list of) parameter specified either as a type name,
variable or wild-card (written as “...”). A matching test, discussed below,
determines if a method call matches a call pcd by examining its object, method
and parameters to see if their types match those in the pcd signature.

Advice is used to affect join point behavior. It consists of a (possibly
empty) list of variable declarations, a point cut designator and advice code
to be executed either before, after or around any join points in the point cut
specified by the point cut designator. Weaving is the process of placing the
advice code before, after or around the affected join points. This process can
be done either statically or dynamically. For example, consider a method call
q.setX (4) and the advice declaration in Section 1. If q is defined as an
object of class Point or a sub class of Point, then the weaver will generate
the code

{ print ("new x " + 4 + " for point (" + q.x + "," + q.y + ")";

q.setX (4) ; }

3

Van Wyk

to replace the original method call since q will always be an instance of Point.
On the other hand, if q is declared to be a super-class of Point (that has a
method setX) then we can not statically determine if q is an instance of class
Point. In this case, we will weave the advice code inside an if-then statement
to make this check at run-time and generate the code

{ if q.instanceOf (‘‘Point’’) then

print ("new x " + 4 + " for point(" + q.x + "," + q.y + ")";

q.setX (4) ; }

If there is no sub-type relationship between p and q then this pcd does not
match the method call and the weaver does nothing.

The process of matching a pcd pcd against a method call construct at
compile time tells us if (i) none of the method call’s dynamic join points
match pcd, if (ii) all of the method call’s dynamic join points match pcd

or if (iii) neither (i) nor (ii) can be determined at compile-time and thus a
run-time test is required. In this last case, the matching test also returns the
boolean expression code to be used in the run-time test. In case (i), the match
test returns a NoMatch value indicating that no weaving should be done for
this piece of advice. For (ii), the match test returns a value Static σ where
σ is a substitution that maps variables declared in the advice to constructs
in the matched method call. In the example above, σ = [p 7→ q, a 7→ 4].
This substitution is applied to the advice code to generate the actual advice
code that is woven into place at the method call. In case (iii) where we can
not statically determine if the pcd of a particular piece of advice matches
all the dynamic join points for a method call construct, the test returns a
value Dynamic σ test where σ is the same as above and test is the boolean
expression for the dynamic test. We apply the substitution to the advice code
and this test code and use it in the weaving process to generate the actual
code to be woven for this method call. This application of σ to the advice
code and test code can be seen in the examples above.

Intuitively, the weaving of advice code and the object program is achieved
by rewriting method calls to code fragments containing the method call and
its advice and dynamic test code. For a particular beforeAdvice declaration
with pcd pcd and advice code code the rewrite rules are as follows:

o.m(p1 . . . pn) =⇒ { σ(code); o.m(p1 . . . pn); }
if match(pcd, o.m(p1 . . . pn)) = Static σ

and
o.m(p1 . . . pn) =⇒ { if σ(test) then {σ(code)}; o.m(p1 . . . pn); }

if match(pcd, o.m(p1 . . . pn)) = Dynamic σ test

A goal of this paper is to show how simple rewrite rules like these can be
used in an attribute grammar system extended with forwarding that does not
destructively change the structure of the abstract syntax tree when applying
such rewrite rules.

4

Van Wyk

3 Language extension in attribute grammars

As stated above, we want to specify programming languages and language ex-
tensions in such a way that programmers can import extensions into their base
programming language as easily as a class or library is imported. To achieve
this goal, languages and extensions are specified as (fragments of) attribute
grammars in such a way that the union of the productions and attribute def-
initions in the language and extensions form the complete specification of the
abstract syntax and semantics of the extended language – the programmer
does not need to write any attribute grammar fragments to “glue” the ex-
tension to the base language. This ability relies critically on forwarding [28].
In this section we discuss the two types of language extension that are re-
quired, how these kinds of extensions are implemented in attribute grammars
through the use of the forwarding extension, and sketch the attribute grammar
specification of the base language that we will extend with AOP constructs.

3.1 Two types of language extension

We identify two types of language extensions that are needed to add as-
pect declarations and aspect weaving to an object-oriented base language.
Although we are adding aspects here, these types of extension are general-
purpose and are all that is required for many other language extensions. Re-
call that our goal is not just to add AOP features to a base language but to
create a framework in which many such extensions can be modularly added.

3.1.1 Extension by adding new constructs

The first type of extension is, as expected, the addition of new language con-
structs. This is done by adding new productions and their associated attribute
definitions to the base language, thus extending the abstract syntax and pro-
viding a semantics for the new language constructs. It is often convenient
to define new language constructs in terms of existing language constructs in
much the same way that macros define new constructs by expanding into ex-
isting language constructs that in essence provide the semantics of the macro.
In our case, however, the new language constructs may perform a significant
amount of semantic analysis through the attributes that they explicitly define
and will only rely on an expansion or rewriting to existing language constructs
to provide definitions to the attributes that they do not explicitly define.

This can be clarified by an example. Consider the simple and rather con-
trived example of adding an if-then statement to a language that has an
if-then-else as the only (non-looping) branching statement. We may want the
if-then to define its own pretty-print attribute for displaying the programmer-
written source code and to generate an error if the condition of the if-then
is not a boolean-typed expression. However, we would like to rewrite an if
〈cond〉 then 〈body〉 to if 〈cond〉 then 〈body〉 else skip when we need attribute
values that are not explicitly defined by if-then, for example, a jbc attribute

5

Van Wyk

defining the construct’s translation to Java byte code. We will see below that
forwarding simulates this capability.

3.1.2 Extension by modifying existing constructs

The second type of language extension is to provide a form of modification of
existing language constructs. This can be done in two ways. The first sim-
ply allows for the addition of new attribute definitions to existing language
constructs for new attributes introduced by the language extension. For ex-
ample, adding a new attribute to specify the translation of the language to
a new target language. The second is by specifying simple rewrite rules that
rewrite the construct to one that implements the desired modification. These
rewrites may wrap additional statements or expressions around the construct.
This type of extension is used to implement simple rewrites like those shown in
Section 2 that define the aspect weaving processes. These can also be imple-
mented by forwarding. The type of rewriting that is used here is very simple.
We do a minimal amount of pattern matching in determining where to apply
a rewrite by only checking that the same production was used to construct
the pattern and the potential tree to be rewritten. The main determinant in
deciding to perform a rewrite is a side condition that tests attribute values of
the candidate attributed trees.

3.2 Forwarding in attribute grammars

An advantage of defining languages in attribute grammars is that the eval-
uation order of attributes is not explicitly specified by the language imple-
menter but is automatically determined from the dependencies between the
attributes [20]. We would like to have a similar property for rewrites in that
we don’t have to explicitly specify when they are to be performed; as we will
see, forwarding provides this property.

Forwarding [28] is a technique for providing default attribute values for
nodes that complements other default schemes such as the automatic copying
of inherited attribute values to a node’s children. A production that con-
tains a forwards-to clause constructs a semantic tree from productions, its
child semantic trees and various (higher order) attribute values on it and its
child nodes. This forwards-to construct is implicitly provided with the inher-
ited attributes of the forwarding construct. When the forwarding construct
is queried for an attribute value that it does not explicitly define, the value
returned for the query is the value of that attribute on the forwards-to con-
struct. The specification of the if-then example from above is shown below
and will help to clarify.

if-then : Stmt0 ::= Expr Stmt1
Stmt0 .pp = “if ” + Expr .pp + ...

Stmt0 .errors = if not Expr .type.isType(boolean) then...

forwardsTo if − then − else Expr Stmt1 skip

6

Van Wyk

Assuming the language has an if-then-else instruction and a skip instruction,
we can model the behavior of the if-then by having it forward to an if-then-
else whose else-clause is a skip instruction. When the if-then is queried for
its pretty-print attribute pp it returns the value it defines, but when queried
for its Java byte-code attribute, jbc, it forwards this query to the if-then-else
that returns its semantically-equivalent jbc attribute value. In this way, we do
not need to concern ourselves with when the “rewrite” takes place since both
trees exist simultaneously to provide the attribute values as they are queried.
Pictorially, the abstract syntax tree for this construct can be seen in Figure 1.

if-then
¡¡ª @@R

Expr1 Expr2

-forwards to
if-then-else
©©©¼ ?
HHHj

Expr1 Expr2 skip

Fig. 1. Abstract syntax tree with forwarding

Our first attempt at implementing the aspect weaving rewrite rules may
resemble the if-then production above. We would add a new “method call
weaver” production that looks like the following:

methodCallWeaver : Expr0 ::= Expr1 Id Expr2
Expr0 .pp = Expr1 .pp + “.” + Id .pp + “(” + Expr2 .pp + “)”
forwardsTo if 〈 there is an applicable rewrite rule 〉 then

〈 advise code 〉 ;
methodCallWeaver Expr1 Id Expr2

else

methodCall Expr1 Id Expr2

This production defines a pp attribute much like the if-then production. It also
must determine if there is an applicable rewrite rule that can be applied to this
method call. It does this by checking that the pattern on the right hand side of
a rewrite rule matches this method call and that the side condition of the rule is
satisfied by (the attributes on) this method call. If the match is not successful,
this production simply forwards to the standard non-weaving method call. If
the match is successful this method call forwards to the sequential composition
of the advice code (from left hand side of the rule) and a weaving version of
the method call that will repeat the process with any remaining rewrite rules.

This production gets its potential rewrite rules from an environment at-
tribute in much the same way that variable references look up their declara-
tions in an environment attribute. The rewrite rules are created at compile
time from the aspect declarations in the object program and a standard inher-
ited environment attribute provides a convenient mechanism to move in-scope
rewrite rules to the method calls where they may be used. As we will see,
aspect declarations add rewrite rules to the environment and static join point
retrieve them from the environment.

7

Van Wyk

The above approach has a flaw however. It requires that the methodCall-
Weaver production be used (by the parser) to construct the original abstract
syntax tree (AST). This prevents us from adding other language extensions
that also rewrite method calls in this way since each assumes that it be put
into the original AST.

To allow simple rewrites like those required for aspect weaving, extensible
languages are defined in our framework such that each production has an as-
sociated “wrapper” or “place-holder” production where both have the same
signature, but the wrapper-production defines only a very few specialized at-
tributes. This wrapper production instead extracts a matching rewrite rule
from the environment and forwards to its instantiated right hand side. If there
are no matching rewrites to apply, it forwards to the tree built by the corre-
sponding non-wrapper production that does define the attributes specifying
the semantics of the construct. It is a generalization of what we have above.

The method-call wrapper-production methodCall W, that is used by the
parser to build the initial AST is shown below.

methodCall W :Expr0 ::= Expr1 Id Expr2
forwardsTo forward

where

matchTree = methodCall Expr1 Id Expr2
forward = case getRWT Expr0 .env matchTree of

Nothing → matchTree
Just(env ′, rwt func)→ (rwt func Expr0 .env)

‘w inh‘ (env = env ′)

It calls the function getRWT with the current environment and the tree (built
with the non-weaving production) to find an applicable rewrite. If there are no
matching rewrite rules, the getRWT function returns a Nothing value and thus
the methodCall W forwards to the tree matchTree that is built by the stan-
dard method-call production methodCall that does define attributes. If there
is a match, getRWT returns a Just value containing the ordered pair of a new
environment that does not contain the matching rewrite rule and a function
generating the matching rewrite rule’s instantiated right hand side. We create
the construct (to forward to) by providing this function with the current en-
vironment (Expr0 .env). The production then forwards to this construct that
has its env attribute defined here by the infix “with-inherited-attribute” oper-
ator ‘w inh‘ to be the environment without the matched rewrite. This ensures
that this rewrite is only applied once in this location. As we’ll see below, we
pass the rewrite function rwt func the current environment, containing the
matched rewrite, so that this matched rewrite can be applied to components
of the matched tree, but not re-applied to the matched tree itself.

Since the wrapper-production defines very few attributes, the requests for
attributes, such as jbc, are forwarded to the constructed right hand side tree ef-
fectively simulating the replacement normally done in term rewriting systems.

8

Van Wyk

A similar wrapper-production is defined for each attribute-defining produc-
tion though the only other one we will see in this paper is the one for variable
references. These wrapper-productions can be automatically generated from
the attribute-defining ones.

But what happens if more than one rewrite can be applied? In this case,
the other matching rewrites are still in the environment env’ that is seen
by the forwarded-to tree. This tree is built using the method-call wrapper-
production as well, and thus the same process is repeated and the additional
rewrites are applied. Thus, the order in which the rewrite rules are applied
depends on the order in which they appear in the environment.

Assuming that the advice declarations add the appropriate rewrite rules to
the environment, this production will effectively implement the aspect weaving
process. Thus, the remainder of the paper is devoted to how these rewrite
rules and their associated match-functions are computed and added to the
environment.

3.3 Attribute grammar specification of the base language

In the remainder of this section we present the attribute grammar based frame-
work used for specifying modular definitions of languages. It this framework,
Knuth’s attribute grammars are extended with higher order attributes [24],
reference attributes [15] and forwarding [28]. We also specify some of the pro-
ductions and attribute definitions that define the base language, but most are
what one would expect and thus we discuss only the most important defini-
tions.

The production signatures of a significant part of the base language are
shown in Table 1. The non-terminals in the abstract syntax grammar include
{Expr,Dcl, Type, Id}. For simplicity we do not make a syntactic distinction
between expressions and statements; both are represented by the non-terminal
Expr and statements are simply side-effecting expressions. The Dcl non-
terminal represents variable and type declarations, and Type represents type
expressions, including type identifiers.

3.3.1 Abstract syntax and semantic trees

Attribute values will range over an unspecified set of primitive values, such
as integers and strings, and a set of higher order values, such as tree nodes
and abstract semantic trees. A node is just a record containing fields for
inherited and synthesized attributes. The types of nodes correspond to the
non-terminal symbols of the grammar. We will superscript these symbols
with an n to indicate the node’s type. For example, Exprn denotes the type
of nodes that contain the inherited and synthesized attributes for expressions
and Exprs (Expri) denote records that contain just the synthesized (inherited)
attributes for an Expr non-terminal. We will use the dot (.) notation for
referencing attribute values on such nodes: n.a is the value of attribute a on

9

Van Wyk

assign : Expr ::= Expr Expr
block : Expr ::= Dcl Expr
exprSeq : Expr ::= Expr Expr
ifthenelse : Expr ::= Expr Expr Expr
bindingVarRef : Expr ::= Id
varRef : Expr ::= Dcln Id
methodCall : Expr ::= Expr Id Expr
varDcl : Dcl ::= Id Type
classDcl : Dcl ::= Id Type
dclSeq : Dcl ::= Dcl Dcl
classType : Type ::= Type Dcl
intType : Type ::= ε

Table 1
A selection of base language production signatures

node n.

(Abstract) semantic trees are used in Johnsson [16] in treating attribute
grammars as a style of programming in lazy functional languages. These trees
are functions that map a set of inherited attributes to a set of synthesized at-
tributes according to the syntax productions and attribute definition rules. In
higher order attribute grammars [24], semantic trees are valid attribute values.
Here, we will change this definition slightly so that the output of the semantic
tree function is a node containing both the input inherited attributes and the
computed synthesized attributes. The types of these trees are denoted by su-
perscripting non-terminal symbols with an f in order to distinguish them from
nodes of the same non-terminal. 2 For example, semantic trees for the Expr
non-terminal, have the type Expr f that is just shorthand for Expr i → Exprn .

We will also use this type notation to refer to values of these types. As is
the norm, we will use numeric subscripts to distinguish between like-named
non-terminals. Since the non-terminals correspond to both nodes and se-
mantic trees, we use the distinguishing superscripts n and f in the attribute
definitions.

3.3.2 Attributes of interest

A significant attribute is the environment attribute env. This inherited at-
tribute is used to make variable and type declarations available to variable and
type references such that the scope rules of the base language are enforced. It
is also used to make AOP advice declarations available to the static join points
that they may affect. The type of env is named Env and is a list of tagged
elements; the tag determines the purpose of the entry and the types of values
stored in the element. In the case of variable declarations, the tag is VarDcl

2 The use of superscripts was omitted from the previous productions but they can be
inferred.

10

Van Wyk

and the element component is an ordered pair with type (String ,Dcl n) con-
taining the name of the variable and (a reference to) the variable’s declaration
node. As expected, scope rules are enforced by adding nested declarations to
the front of the list. This attribute is automatically copied from a node to
its child nodes if no other definition is provided. The synthesized attribute
defs is defined on Dcls, has the same type as env and is used to gather env
declaration entries from Dcls. Some productions and attribute definitions for
these attributes are shown below.

dclSeq : Dcl0 ::= Dcl1 Dcl2
Dcln0 .defs = Dcln1 .defs + Dcln2 .defs
Dcln2 .env = Dcln1 .defs +Dcln0 .env

block : Expr0 ::= Dcl Expr1
Exprn

1 .env = Dcln .defs + Exprn
0 .env

varDcl : Dcl ::= Id Type
Dcln .defs = [VarDcl (Idn .lexeme,Dcln)]
Dcln .type = Typen

In order to avoid inappropriate name capture of variable references when
moving semantic trees around for the rewriting process, we have three produc-
tions for variable references: bindingVarRef, varRef W and varRef as seen in
Table 2. The bindingVarRef production looks up variable declarations in the
environment using the dcl lookup function that returns the variable’s declara-
tion node. It then forwards to the variable reference wrapper-production that
builds its tree from the declaration node and the identifier semantic tree. It
does not look up the identifier in the environment since it has it already as a
parameter. This production is thus slightly different from others in that one
of its arguments is not a semantic tree but a node of type Dcl n . The varRef W
wrapper-production is similar to the methodCall W wrapper-production we
saw above. We have shown its definition of its this f attribute. This attribute
is used to extract, from any node, the semantic tree that was used to create it.
It is defined in a similar fashion on all productions except for bindingVarRef
which gets it from its forward-to construct. The value of this attribute is used
as a semantic tree that we may want use in a different part of the program.
This causes semantic trees that are passed to new locations in the program to
already have their variables bound to their declarations since this tree is built
without using bindingVarRef. We can thus guarantee that name binding only
occurs in the original abstract syntax tree and that moving trees into new
locations that may have new environments does not cause any inappropriate
name capture. 3 The varRef production is used after all variable reference
rewrites have been done and it defines the appropriate attributes such as type
and varDcl, a link to its declaration node.

Types in our base language are supported by a type attribute whose type
is Typen, a reference attribute, that references the variables type by fol-

3 Note that it is still possible to incorrectly move a variable outside of its scope.

11

Van Wyk

bindingVarRef : Expr ::= Id
forwardsTo varRef W dcln Id f

where dcln = dcl lookup(Exprn .env , Idn .lexeme)

varRef W : Expr ::= DclnId
Exprn .varDcl = Dcln

Exprn .this f = varRef W Dcln Id f

forwardsTo forwardf

where matchTree = varRef Dcln Id f

forwardf = case getRWT Exprn .env matchTree of

Nothing → matchTree
Just(rwt , env ′)→ rwt ‘w inh‘ (env = env ′)

varRef : Expr ::= DclnId
Exprn .varDcl = Dcln

Exprn .type = Dcln .type
Exprn .isVarRef = True

Table 2
Variable reference productions.

lowing the similarly named attribute on the variable’s declaration. We can
query an expression expr for properties of its type, like its size in bytes, by
expr .type.size in bytes . The classType production defines an isSubTypeOf at-
tribute whose value is a function that takes a Typen node and returns a boolean
value specifying if that type is a subclass of the class being defined. It’s def-
inition is elided but straightforward. Examples of these productions can be
seen below:

intType : Type ::= ε classType : Type0 ::= Type1 Dcl
Typen .size in bytes = 4 Typen

0 .isSubTypeOf = λtypen → ...

3.3.3 Attribute evaluation

With the use of forwarding, we have the potential of creating very many trees
and unnecessarily evaluating many attributes. Consider the if-then forward-
ing example. Evaluating all the attributes on the child nodes of the if-then
would be wasted effort since most queries for attributes of the forwarding if-
then Expr node will be forwarded to the forwards-to node that has its own
copies of the children whose attribute values will presumably be evaluated. To
counter this potential problem, we rely on lazy evaluation. Attribute values
are not calculated unless they are needed. Our prototype system follows the
example of Johnsson [16] and uses the lazy functional language Haskell [22]
as our implementation language. This evaluation scheme provides us with a
reasonably efficient implementation since only the (portions of) trees that are
needed are generated and evaluated.

12

Van Wyk

4 Defining aspect constructs as language extensions

In this section we provide the specification of the beforeAdvice declaration
and show it how creates the rewrite rules that implement aspect weaving.
Below are some of the productions defining the abstract syntax of the aspect
language features, some of which make use of a new point cut designator PCD
non-terminal. We need to provide semantics, that is, attribute definitions, for
these productions in order to add them to the language defined above.

beforeAdvice : Dcl ::= Dcl PCD Expr
callPCD : PCD ::= objPCD mthPCD prmPCD

classPCD : objPCD ::= Id objectPCD : objPCD ::= Id
methodPCD : mthPCD ::= Id varPCD : prmPCD ::= Id
wildCardPCD : prmPCD ::= ε

We will discuss the definition of the advice and point cut designator con-
structs and then see how they are used to generate a rewrite rule that is put
into the environment env. We’ve seen above how the weaving process is carried
out by the application of these rewrite rules in the production methodCall W.

4.1 Advice declarations

The beforeAdvice declaration production, shown in Table 3, defines the rewrite
rule and its associated matching functions and adds it to the environment.
The advice production generates a declaration from a (compound) declara-
tion Dcl1 , a point cut designator PCD and the advice code Expr. Since the
declaration Dcl declares the (pattern) variables that are used in the pcd and
the advice code, its declarations (Dcln1 .defs) are added to the environment
of the pcd and advice code. Since this declaration is not needed after the
weaving process, it forwards to the empty declaration production dclSkip.

The rewrite rule rwt rule in beforeAdvice is added to the environment in
an element tagged by RWT to distinguish it (and other rewrites) from other
kinds of declarations in the environment. The function rwt rule has the type
Exprn → Maybe(Env → Expr f). This function takes an expression node (the
potential static join point sjp in the program) and tests if it matches the
point cut designator by calling the pcd’s match sjp function (defined below)
on sjp. If match sjp doesn’t match and returns a NoMatch value, then the
rewrite rule returns a Nothing value. Otherwise there is a Static or Dynamic
match and it returns Just the function that generates the semantic tree that
is to be forwarded to at the join point. This is the rewrite function rwt func
that is returned from the function getRWT seen above in methodCall W. This
function takes as a parameter the environment (e in Table 3) that has not
had this rewrite rule removed. This is used in our example here to ensure
that this rewrite can be applied to the static join point’s object expression
sjp.object n and argument expression sjp.paramn if needed. The method-call

13

Van Wyk

beforeAdvice : Dcl0 ::= Dcl1 PCD Expr
PCDn .env = Dcln1 .defs + Dcln0 .env
Exprn .env = Dcln1 .defs + Dcln0 .env
Dcln0 .defs = [RWT rwt rule]
forwardsTo dclSkip

where rwt rule = λ sjp → case (PCDn .match sjp) sjp of

NoMatch → Nothing
Static s → Just (e → exprSeq

(Exprn .this f ‘w inh‘
(env = s + Exprn .env))

(meth call sjp e))
Dynamic s test f → Just (e → exprSeq

((ifthen test f Expr f) ‘w inh‘
(env = s + Exprn .env))

(meth call sjp e))
meth call = λ sjp e → methodCall W

(sjp.object n.this f ‘w inh‘ (env = e))
(sjp.meth n.this f)
(sjp.param n.this f ‘w inh‘ (env = e))

Table 3
beforeAdvice production.

productions define the attributes object n, method n and param n to make its
children accessible for this test and so that they can be used to construct the
rewritten method call built by meth call.

In the case of a static match, match sjp returns Static s where s is the list
of rewrites to map the pattern variables in the advice code to their instanti-
ations from the join point. In our example from Section 2, this s represents
σ = [p 7→ q, a 7→ 4]. The environment for the advice code is thus these rewrites
s and its original environment. The match sjp test returns the rewrite rules
that are used to rewrite pattern variables to expressions at the static join
point. Similarly, in the case of a dynamic match, match sjp returns Dynamic
s test f where s is as before and test f is the test code that must be executed
at run-time to check if the run-time join point matches the PCD. The if-then
statement that conditionally executes the advice code has the same environ-
ment as the advice code in the static match case. In the following subsection,
we describe how the match sjp function works to generate the necessary pat-
tern variable rewrite rules and test code.

4.2 Point Cut Designators

Point cut designator nodes have a match sjp function-valued attribute that
tests if the pcd matches a static join point. This function takes an Exprn and
returns a value of the algebraic type Match defined as follows:

14

Van Wyk

data Match = NoMatch | Static Env | Dynamic Env Exprf

The behavior of this function was sketched in Section 2 and its implementa-
tion in this language framework is shown in Table 4. The methodCallPCD
production is used to match call point cut designators against method calls
by calling the match sjp function on its child PCD nodes and combining their
results with ∧pcd. This operator has type Match ×Match → Match and is
shown in Table 5. It combines matches in the expected way, combining the
substitution environments and dynamic test code of the parameter matches.

methodCallPCD : PCD ::= objPCD mthPCD prmPCD
PCDn .match sjp = λ sjp → objPCDn .match sjp (sjp.objRef) ∧pcd

mthPCDn .match sjp (sjp.methRef) ∧pcd

prmPCDn .match sjp (sjp.paramRef)
objectPCD : objPCD ::= Id

objPCDn .match sjp
= λ sjp → if sjp.type.isSubTypeOf objPDC n .type

then Static [RWT (varRefRWT Idn sjp)]
else if objPDC n .type.isSubTypeOf sjp.type

then Dynamic [RWT (varRefRWT Idn sjp)]
(methodCall sjp.this f mkId(“instanceOf ”)

mkStrConst(objPDC n .type.className))
else NoMatch

methodPCD : mthPCD ::= Id
mthPCDn .match sjp = λId ′ → if Id .lexeme = Id ′.lexeme

then Static[] else NoMatch
varPCD : prmPCD ::= Id

varPCDn .match sjp = λsjp → Static [RWT (varRefRWT Id n sjp)]
wildCardPCD : prmPCD ::= ε

varPCDn .match sjp = λsjp → Static []

Table 4
Point cut designator productions.

The objectPCD production is used when an object variable is used in the
PCD instead of a class name as in the examples in Section 2. The object at the
method call is passed to match sjp as the sjp parameter. If the sjp’s type is a
sub-type of the class type of the object in the pcd, then we have a static match
and we create a rewrite rule that maps Id to the matched object sjp and it
becomes the environment passed back in the Static match. In our example
in Section 2, this is the rewrite mapping p to q. The function varRefRWT
that builds this rewrite rule is discussed below. In the case that the object
type at the PCD is a sub-type of the matched object type sjb.type then we
will need a run-time test to ensure that the actual sjp object is indeed of
the proper class. The test code generated in this case uses the base language
reflective instanceOf method to do this test. It is written using the abstract

15

Van Wyk

syntax here but it corresponds to the test condition q.instanceOf("Point")
in Section 2.

The methodPCD ’s match function checks if the identifier of the PCD is
the same as the method name found at the join point. If they are, it returns
a static match with an empty environment, otherwise no match is returned.
The varPCD is used for variables in the PCD. Since the variable will match
anything, we always generate a Static match with the required rewrite rule.
The ∧pcd function does need to check that when we combine two Static or
Dynamic matches, that the environment rewrite rules do not rewrite the same
variable to different expressions. For brevity, this check is not shown in our
∧pcd function, however, shown below. The wildCardPCD also always provides
a static match, but generates no rewrites.

∧pcd : Match ×Match → Match
m1 ∧pcd m2 = case m1 of

NoMatch → NoMatch
Static s1 → case m2 of NoMatch → NoMatch

Static s2 → Static(s1 + s2)
Dynamic s2 t → Dynamic(s1 + s2) t

Dynamic s1 t1 →case m2 of

NoMatch → NoMatch
Static s2 → Dynamic(s1 + s2) t1
Dynamic s2 t2 → Dynamic(s1 + s2) (andExpr t1 t2)

Table 5
Point cut designator and operator.

4.2.1 Generating rewrite rules

Recall that the advice code and possibly the generated dynamic test code
are copied to the join point where the variables that were declared in the
advice declarations will need to be replaced by the appropriate constructs
from the matched join point. This substitution σ is implemented by a set
of rewrite rules, similar to those for rewriting method calls, and are returned
as an environment. For one of these variable rewrite rules, the condition
that tests if it applies to a construct in the advice code is shown in the utility
function varRefRWT below. This condition tests if the construct n is in fact a
variable reference using the isVarRef boolean attribute that is true on variable
reference expressions but false everywhere else. If it is, it tests if it has the
same declaration as the advice variable advice var n. (Nodes have a simple
reference equality test.)

varRefRWT :: Id → Expr → Expr → Maybe(Env → Expr f)
varRefRWT advice var n sjp n
= if n.isVarRef ∧ n.varDcl = advice var n.varDcl

then Just(e → sjp.this f) else Nothing

16

Van Wyk

If this test succeeds, then we want to rewrite the advice variable to the seman-
tic tree extracted from the matched static join point via the this f attribute. 4

In this section we have shown how advice declarations can be specified as
modular language extensions and describe how they specify the rewrite rules,
for method calls and advice variables, that implement aspect weaving.

5 Discussion, future work and related work

5.1 Discussion

In this paper we have shown that many AspectJ aspect constructs can be
specified as a modular language extension that can be added in a to an ex-
isting object-oriented language specified in an extensible language framework
by simply combining their defining attribute grammar fragments. No “glue”
code was needed. Many other AspectJ constructs, such as control flow pcds,
property based matching and different types of join points can also be added
with a similar amount of work, but they are omitted here for brevity. More
complex pcds such as cflow which are satisfied by checking if a certain pat-
tern of method calls can be found on the run-time call stack can be specified
using the techniques above. We need only create and maintain a run-time
data structure that keeps track of the methods have been called. New method
calls update this data structure and the cflow pcd will generate a dynamic
test, not unlike the ones shown above, that checks at run-time if the pattern
it specifies is satisfied by the run-time data structure.

5.2 Future work

We have said above that we would like the process of language extension to
be as easy for the programmer as importing a class. This is a long term and,
admittedly, rather ambitious goal. There are several hurdles we must clear
before this can become a reality.

We’ve said nothing about how the concrete syntax of our language will be
specified. Most parsing algorithms accept only specific classes of grammars,
such as LR(k) and LL(k), and adding new concrete productions to a grammar
can easily remove it from the desired class. For many extensions, however, a
unique leading keyword, such as “before” in our aspect extensions, can make
the extended concrete language parse-able. We have also shown in [28] how
operator overloading can be handled with forwarding, so many of the types of
syntactic extensions one would make can be handled. When this fails the use
of the disambiguation filters of generalized LR parsers in [26] may be useful.

Hand-coding the rewrite functions as we’ve done using forwarding is rather

4 Note that Exprns that are variable references define varDcl, but others do not. Allowing
them do so simplifies our presentation here at the expense of breaking the attribute grammar
rule that all nodes of the same non-terminal type define the same attributes.

17

Van Wyk

straight-forward but tedious and makes the specifications hard to read. A
better approach that we are investigating is ways in which the rewrite rules
can be written as they are in Section 2 and automatically “complied” into the
attribute grammar that uses forwarding that we saw above.

5.3 Related Work

There is much work in the attribute grammar literature on modular attribute
grammars and their use in language specification ([17,14,12,2,13] are but a few
examples). It is a goal of this paper to show that it is the combination of higher
order attributes, reference attributes and forwarding that enables languages
to be specified in a highly modular fashion. Removing any of these extensions
from the attribute grammar definition above would have a significant negative
impact on its modularity [28]. Forwarding was, in fact, used in a previous
version of Microsoft’s Intentional Programming system [23].

There are other language extension systems and we describe those most
closely related to our work here. The ASF+SDF [27] system is based on mod-
ular algebraic specifications and term rewriting, although primitive recursvie
schemes, a subclass of algebraic specifications are comparable to stongly non-
circular attribute grammars [27, page 48]. Both ASF+SDF and our system
allow for modular specification of languages and language extensions but we
begin with attribute grammars (as oppsed to general term rewriting) and add
a very simple form of rewriting. We do this because the rewrites we are inter-
ested in have very simple patterns but complex side conditions that depend
on attributes values that are not directly available in terms.

Forwarding is similar to macro expansion in that the forwards-to construct
is similar to an expanded macro body. Thus, this work is similar to macro
systems like JSE [4], JTK [7], <bigwig> [9] and Maya [5]. But by using
forwarding, we can specify extensions that are difficult or impossible to express
in these systems since the forwards-to construct can depend on any semantic
value (attribute) of the langague constructs (though Maya does also base
macro dispatch on the static type of macro parameters). In this sense we have
much in common with meta-object protocol systems like OpenJava [25]. We
also allow extension writers to define their own semantics by introducing new
attributes. The only macro system, to our knowledge, that also allows this is
the Scheme macro system McMacMic [21]. Some of these macro systems use
special parsing techniques. We separate parsing from the evaluation of ASTs;
the parser builds the initial AST with forwarding placeholder productions,
thus removing the need for many of these system’s parsing extensions.

It is worth noting that Maya has been used to implement aspects as a
language extension [6], but it implements dynamic aspect weaving instead of
the more difficult static weaving presented here.

18

Van Wyk

References

[1] Aspect Oriented Software Development web pages. See http://www.aosd.net.

[2] S. R. Adams. Modular Grammars for Programming Language Prototyping.
PhD thesis, University of Southampton, Department of Electronics and
Computer Science, UK, 1993.

[3] M. Aksit, editor. Proceedings of the 2nd international conference on Aspect-
oriented software development. ACM Press, 2003.

[4] J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proceedings
of the OOPSLA ’01 conference on Object Oriented Programming Systems
Languages and Applications, pages 31–42. ACM Press, 2001.

[5] J. Baker and W. Hsieh. Maya: Multiple-dispatch syntax extension in java. In
Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, June 2002.

[6] J. Baker and W. Hsieh. Runtime aspect weaving through metaprogramming.
In Proceedings of the 1st international conference on Aspect-oriented software
development, pages 86–95. ACM Press, 2002.

[7] D. Batory, D. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-
specific languages. In Proceedings Fifth International Conference on Software
Reuse, pages 143–53. IEEE, 2–5 1998.

[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future
safe for the past: adding genericity to the Java programming language.
In Proceedings of the conference on Object-oriented programming, systems,
languages, and applications (OOPSLA98), pages 183–200. ACM Press, 1998.

[9] C. Bradrand and M. Schwartzbach. Growing languages with metamorphic
syntax macros. In Proc. Partial Evaluation and Semantics-Based Program
Manipulation, Workshop. Association of Computing Machinery, 2002.

[10] A. Bryant, A. Catton, K. De Volder, and G. Murphy. Explicit programming.
In Proceedings of the 1st international conference on Aspect-oriented software
development, pages 10–18. ACM Press, 2002.

[11] D. Crawford, editor. Communications of the ACM, volume 44, October 2001.

[12] D. D. P. Dueck and G. V. Cormack. Modular attribute grammars. The
Computer Journal, 33(2):164–172, 1990.

[13] R. Farrow, T. J. Marlowe, and D. M. Yellin. Composable attribute grammars.
In 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 223–234, 1992.

[14] H. Ganzinger and R. Giegerich. Attribute coupled grammars. SIGPLAN
Notices, 19:157–170, 1984.

19

http://www.aosd.net

Van Wyk

[15] G. Hedin. Reference attribute grammars. In 2nd International Workshop on
Attribute Grammars and their Applications, 1999.

[16] T. Johnsson. Attribute grammars as a functional programming paradigm.
In G. Kahn, editor, Functional Programming Languages and Computer
Architecture, volume 274 of LNCS, pages 154–173. Springer-Verlag, 1987.

[17] U. Kastens and W. M. Waite. Modularity and reusability in attribute
grammars. Acta Informatica, 31:601–627, 1994.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, ECOOP 2001 Object–
Oriented Programming, volume 2072 of LNCS, pages 327–353, 2001.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka,
editors, ECOOP’97 Object–Oriented Programming, volume 1241 of LNCS,
pages 220–242, 1997.

[20] D. E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, 1968. Corrections in 5(2):95–96, 1971.

[21] S. Krishnamurthi, M. Felleisen, and B. F. Duba. From macros to reusable
generatvie programming. In K. Czarnacki and U. Eisenecker, editors,
First International Symposium on Generative and Component-Based Software
Engineering, volume 1799 of LNCS, pages 105–120, 1999.

[22] S. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,
J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler.
Haskell 98. Available at URL: http://www.haskell.org, February 1999.

[23] C. Simonyi. The future is intentional. IEEE Computer, May 1999.

[24] D. Swierstra and H. Vogt. Higher-order attribute grammars. In International
Summer School on Attribute Grammars Applications and Systens: SAGA,
volume 545 of LNCS, pages 256–296. Springer-Verlag, 1991.

[25] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. Openjava: A class-based
macro system for java. In W. Cazzola, R. Stroud, and F. Tisato, editors,
Reflection and Software Engineering, volume 1826 of LNCS, pages 117–133.
Springer-Verlag, 2000.

[26] M. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation filters
for scannerless generalized lr parsers. In Proc. 11th International Conf. on
Compiler Construction, volume 2304 of LNCS, pages 143–158, 2002.

[27] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping, An
Algebraic Specification Approach. World Scientific, 1996.

[28] E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in
attribute grammars for modular language design. In Proc. 11th International
Conf. on Compiler Construction, volume 2304 of LNCS, pages 128–142.
Springer-Verlag, 2002.

20

	Introduction
	Aspect oriented programming with AspectJ
	Language extension in attribute grammars
	Two types of language extension
	Forwarding in attribute grammars
	Attribute grammar specification of the base language

	Defining aspect constructs as language extensions
	Advice declarations
	Point Cut Designators

	Discussion, future work and related work
	Discussion
	Future work
	Related Work

	References

