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Abstract

Building verified compilers is difficult, especially when complex analyses such as
type checking or data-flow analysis must be performed. Both the type checking
and program optimization communities have developed methods for proving the
correctness of these processes and developed tools for using, respectively, verified
type systems and verified optimizations. However, it is difficult to use both of these
analyses in a single declarative framework since these processes work on differ-
ent program representations: type checking on abstract syntax trees and data-flow
analysis-based optimization on control flow or program dependency graphs.

We present an attribute grammar specification language that has been extended
with constructs for specifying attribute-labelled control flow graphs and both CTL
and LTL-FV formulas that specify data-flow analyses. These formulas are model-
checked on these graphs to perform the specified analyses. Thus, verified type rules
and verified data-flow analyses (verified either by hand or with automated proof
tools) can both be transcribed into a single declarative framework based on attribute
grammars to build a high-confidence language implementations. Also, the attribute
grammar specification language is extensible so that it is relatively straight-forward
to add new constructs for different temporal logics so that alternative logics and
model checkers can be used to specify data-flow analyses in this framework.

Key words: compiler optimization, optimization verification,
data flow analysis, attribute grammars

1 Introduction

Building verified or high-assurance compilers is a challenging task; it is es-
pecially difficult and often beyond the abilities of current automatic proof
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techniques when complex program analyses must be performed to support
type checking or data-flow analysis-based optimization. These analyses often
require a precise understanding of the subtle ways in which program con-
structs interact, and thus defining them, even in declarative frameworks, is
difficult. Both the type theory and program optimization communities have
addressed this problem by developing techniques to prove the correctness of
their respective program analyses.

To build a verified compiler one must write a specification of the compiler
that addresses all aspects of the language and that is amenable to the kinds
of analyses that are done to generate proofs of correctness. An obstacle to
this is that different aspects of the compiler are more naturally defined us-
ing different notations for different program representations. For example,
type-checking is typically a syntax-directed activity and thus the process of
checking types in a program and of proving the correctness of a type system is
tightly coupled to the syntax-tree program representation. On the other hand,
optimizing transformations are often written as rewrite rules with data-flow
analysis-based side conditions, and performing data-flow analysis and proving
its correctness are tightly coupled to the control flow graph or dependency
graph program representations.

In the case of type-checking, type rules used to prove the soundness (safety)
of a type system follow the structure of the program’s abstract syntax. Thus
they can easily be transcribed into an attribute grammar [10] based imple-
mentation, thereby providing us with a high-degree of confidence that the
implementation is correct. Consider the type rule for function abstraction
in the simply-typed lambda calculus (taken from [17, page 103]) shown in
Fig. 1(a). Γ is the environment that maps variable names to types. The
rule states that if extending Γ with the mapping of x to type T1 ensures that
the term t2 has type T2, then the lambda-expression λx: T1.t2 has the type
T1 → T2 in the environment Γ. For example, if Γ maps a variable y to the
type Int, the above rule would show that the expression λx:Int.y+x has type
Int->Int. The rule (T-ABS) can be transcribed onto the Abs production for
function abstraction shown in Fig. 1(b). Here, an inherited attribute env

plays the role of Γ. The environment for the lambda-expression body t2 is
the environment of the lambda-expression t (t.env) extended by envAdd with
the mapping from x to the type T1. t2 uses its env attribute to compute its
type attribute which is then used to create the functional type for the term
t using the function funcType. Thus, attribute grammars (AGs) provide an

Γ, x: T1 ⊢ t2: T2

Γ ⊢ λx: T1.t2: T1 → T2

(T-Abs)

production Abs

t::Expr ::= x::Id T1::Type t2::Expr

t.type = funcType(T1, t2.type);

t2.env = envAdd((x,T1),t.env);

(a) (b)

Fig. 1. A type rule (a) and attribute grammar implementation (b).
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s : v := e ⇒ skip

if
s |= AX¬E[true U use(v)]

production assign s::Stmt ::= v::Id e::Expr

s.isdead = s |= AX !E[ true U v in uses];

s.uses = e.uses ;

(a) (b)

Fig. 2. Optimization rewrite rule(a) and an attribute grammar implementation(b).

attractive framework for implementing languages with complex analyses like
type-checking since they provide a high-level declarative framework for speci-
fying syntax-directed semantics of languages. Critically, implementations can
be automatically generated from the AG specification.

We would also like to transcribe verified optimizations, such as the simple
dead-code elimination rule in Fig. 2(a), into an attribute grammar specifica-
tion of an imperative language, but this is not easily done since analyses that
do not naturally follow the structure of the abstract syntax tree (AST) are
difficult to specify using AGs. This rule states that the assignment statement
v := e on the control flow graph node s can be replaced by a skip statement if
s satisfies the CTL property shown. The property is satisfied if on all succes-
sors of s, there does not exist a path to a use of the variable v. That is, v is
not used in a future computation. We 3 verified the correctness of this rule in
an earlier paper [13] (note that we assume expressions have no side effects).
We might like to use this verified optimization in an attribute grammar to flag
certain assignments as dead. To do so we would like to write a production like
the one in Fig. 2(b). Here, isdead is a boolean-valued attribute and uses is
an attribute containing the variables used (referenced) by the statement. Of
course statements and conditions of while loops and if-then-else statements
must be connected in a control flow or program dependency graph to enable
a model checker to check if this formula holds on a particular assignment
statement. This is not shown in the figure but in Sec. 3.1.

The primary contribution of this paper is to show how an attribute gram-
mar specification language can be extended to allow semantic analyses based
on the control flow graph of a program. Of specific interest are the data-flow
analyses used in verified optimizations of imperative programs. We present
extensions to an attribute grammar specification language, called Silver (see
Sec. 2), that include constructs for building labelled control flow graphs and for
model checking these graphs with both CTL and LTL-FV temporal logic for-
mulas using, respectively NuSMV [4] and a hand-built LTL-FV model checker
that supports free variables (Sec. 3). Thus, in one declarative formalism both
syntax-tree-based and control flow graph-based analyses can be declaratively
specified. This is very useful since both types of analyses are needed in build-
ing efficient high-confidence compilers. A distinguishing characteristic of this
work is that Silver is designed as an extensible language so that writing addi-
tional extensions to Silver to use different temporal logics and model checkers

3 Van Wyk and David Lacey, Neil D. Jones, and Carl Frederiksen.
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to do data-flow analysis is a straight-forward process (see Sec. 4). (Note that
we have not built tools that read Silver specifications and prove their cor-
rectness although this is a promising direction of research). Sec. 5 provides a
discussion of future and related work and concludes.

2 Attribute Grammars and Silver

In this section we present a brief introduction to our attribute grammar speci-
fication language Silver through the specification of a small subset of C (called
C−) that is used in examples in the paper. A simple C− program is shown
in Fig. 3(a). Such a small language is presented here so that a relatively
complete specification that illustrates the details of Silver and the data-flow
analysis extensions can be described in the available space.

1 { a = 0;

2 b = 1;

3 c = 3;

4 if (a == 1)

5 b = 5;

else

6 b = 2;

7 while (b == 3)

8 a = a + 1;

}

root

seq

1 seq

2 seq

3 seq

if

4 5 6

while

7 8 exit

(a) (b)

Fig. 3. C− program (a) and its AST and control flow graph (b)

Attribute grammars [10] specify program semantics by associating values
(called attributes) with nodes in a program’s abstract syntax tree (AST). Thus
non-terminals are decorated with attributes and productions are associated
with semantic functions that define attribute values. A partial Silver speci-
fication for C− is shown in Fig. 4. It defines 4 non-terminals: the AST root
(Root), statement lists (Stmts), statements (Stmt), and expressions (Expr),
and a single terminal for identifiers (Id). A pretty-print attribute (pp) stores
the constructs textual representation, has type String, and occurs on all
non-terminal symbols. The def attribute has type String and stores either
the name of the identifier defined by the assign statement or the empty string
to indicate no variables are defined, as happens on skip and expressions. At-
tribute uses is a string list that contains the names of variables referenced by
an expression or statement and thus occurs on Expr and Stmt non-terminals.
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nonterminal Root, Stmt, Stmts, Expr;

terminal Id ;

synthesized attribute pp :: String

occurs on {Root, Stmt, Stmts, Expr};

synthesized attribute def :: String

occurs on {Stmt, Expr};

synthesized attribute uses :: StringList

occurs on {Stmt, Expr};

production root

r::Root ::= s::Stmts

r.pp = "{\n" ++ s.pp ++ "\n}\n" ;

production stmt_cons

stmts::Stmts ::= s::Stmt ss::Stmts

stmts.pp = s.pp ++ "\n" ++ ss.pp ;

production stmt_one

stmts::Stmts ::= s::Stmt

stmts.pp = s.pp ;

production if_then_else

i::Stmt ::= c::Expr t::Stmt e::Stmt

i.pp = "if (" ++ c.pp ++ ...

production while

w::Stmt ::= cond::Expr body::Stmt

w.pp = "while (" ++ cond.pp ++ ...

production assign

s::Stmt ::= v::Id e::Expr

s.pp = v.lex ++ "=" ++ e.pp ++ ";";

s.def = v.lex;

s.uses = e.uses;

production skip

s::Stmt ::=

s.def = "" ;

s.uses = empty_str_list();

production equality

e::Expr ::= l::Expr r::Expr

e.def = "";

e.uses = append_str_list

(l.uses, r.uses);

production var_ref

e::Expr ::= v::Id

e.def = "";

e.uses = cons_str_list (v.lex,

empty_str_list());

Fig. 4. Attribute grammar specification of C−in Silver

Productions define the abstract syntax of C−. 4 They specify the pro-
duction name and its signature which has named non-terminal and terminal
symbols. Consider the assign production which defines assignment state-
ments. It defines the pretty-print attribute on the Stmt node named s to
be composed from the lexeme (lex) of the identifier terminal (the identifier’s
name) and the pretty-print attribute of the expression e. It defines def as the
identifier’s lexeme and uses as the uses of expression e. The other produc-
tions and attribute definitions should be self-explanatory. All of the attributes
here are synthesized attributes and are used to propagate (synthesize) infor-
mation that flows up the AST. In later sections some inherited attributes are
defined and these pass information down the tree from parent to child nodes;
these are commonly used to pass environments down the tree.

3 DFA via Model Checking in Attribute Grammars

In this section we describe extensions to Silver that allow the declarative spec-
ifications of control flow graph-based analyses, specifically data-flow analysis.
These extensions allow one to write the temporal logic specifications of the

4 For the purposes of this paper we can assume that the concrete syntax is defined using a
traditional parser and scanner generator.
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data-flow analysis and to invoke a model checker to perform the specified anal-
ysis. In Sec. 3.1 we show the Silver extension for building a control flow graph
(CFG) and specifying what attributes label its nodes. In Sec. 3.2 we describe
the CTL extension to Silver that generates a NuSMV model from the CFG
and allows CTL formulas to be specified and checked using the NuSMV model
checker. In Sec. 3.3 we do the same for LTL extended with free-variables and
our implementation of its model checker. In Sec. 4, we describe how Silver
extensions that perform CTL and LTL-FV model checking are implemented.

3.1 Building control flow graphs in Silver

The first extension to Silver allows one to easily specify how the control flow
graph is built and what attributes label its nodes. This extended language
is used in Fig. 5 to define the control flow graph for C− programs. The first
line of that specification indicates that some of the Stmt and Expr nodes in
the AST may be used as nodes in the CFG. The CFG is specified as a distin-
guished set of control flow edges that overlay specified nodes in the AST. In
C−, the assignment statement nodes, the skip statement nodes, and the con-
ditional expression nodes in the if-then-else statements and while loops will be
nodes in the CFG. To build the CFG, we write additional productions, called
“aspect productions” that add definitions of additional attributes to existing
productions. These productions define a synthesized attribute entry of type
CFG Node that occurs on Stmt and Stmts nodes. This attribute indicates the
entry node in the CFG. On the root production, all nodes reachable from the
stmts.entry attribute will be the nodes in the CFG for the program.

To construct the value of the entry attribute we use the construct

cfg 〈AST node for the CFG〉 〈successor nodes〉

The inherited attribute succ defines the successor in the CFG for a construct.
Fig. 5 shows examples of some productions that specify CFG nodes. For
example, the entry node of the CFG for the if-then-else is the conditional
expression cond with successors that are the entry nodes for the then and else

statements. This construct can be interpreted as marking the specified AST
nodes as also being nodes in the CFG. The AST for the example C− program
in Fig. 3(a) is shown in Fig. 3(b), with the CFG edges indicated by dotted
lines. The edge with no source indicates that node 1 is the entry node and a
special exit node is also created. Conditions are boxes; statements are circles.

We also need to indicate which attributes are to be used to label the nodes
of the CFG. This is necessary since we will not actually model check the CFG,
but generate a representation of it to give to the NuSMV and LTL-FV model
checkers. This is done using the cfg attributes construct. In the example
in Fig 5, we have specified the def and uses attributes from Fig. 4 as CFG
attributes because they are used in the data-flow properties used as examples
in Secs. 3.2 and 3.3. All nodes declared as CFG nodes (Stmt and Expr in this
case) must have these CFG attributes defined on them.
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cfg nodes Stmt, Expr;

cfg attributes def, uses;

synthesized attribute entry::CFG_node

occurs on {Stmt, Stmts} ;

inherited attribute succ::CFG_node

occurs on {Stmt, Stmts} ;

aspect production stmt_cons

stmts::Stmts ::= s::Stmt ss::Stmts

stmts.entry = s.entry ;

s.succ = ss.entry ;

ss.succ = stmts.succ ;

aspect production assign

s::Stmt ::= v::Id e::Expr

s.entry = cfg s [s.succ];

aspect production if_then_else

s::Stmt ::= c::Expr t::Stmt e::Stmt

s.entry = cfg cond [t.entry,

e.entry];

t.succ = s.succ ;

e.succ = s.succ ;

aspect production skip

s::Stmt ::=

s.entry = cfg s [s.succ];

Fig. 5. Calls to construct the control flow graph in the specification of C−

3.2 Checking CTL properties on the CFG using NuSMV

In this section we describe constructs that extend Silver that allow CTL for-
mulas to be checked on the CFG and the construction of a NuSMV model
from the CFG on which the formulas are actually checked.

Finite state model checkers like NuSMV require that a model specification
give the finite domain of all state variables. In our example, the domains of the
NuSMV state variables corresponding to the CFG attributes def and uses are
the set of all the variables in the program, and, respectively, the power set of
this set. These sets are constructed using the synthesized attribute all vars

(not shown); on the root node its value is the set of all variables in the program.
Because this information is needed, the NuSMV representation of the CFG is
constructed on the root of the AST. This attribute and its definition on root

are shown in Fig. 6. The construct smvmodel 〈CFG entry node〉 is used to
construct the NuSMV model. To build the model it gathers all the successors
of the given CFG node and uses the given ranges of attributes that decorate
the CFG nodes. A range is required for each CFG node attribute specified
by the cfg attributes construct, in this case, def and uses. (A self-loop
on the exit node is also added as required by the semantics of CTL that all
states have at least one successor.) The inherited attribute smv model (some
definitions not shown) defined on root is passed down to all the AST nodes
so that it can be used to do data-flow analysis.

As an example of data-flow analysis-based optimizations, we show how
(immediate) dead code analysis on the assign production is used to determine
if the assignment should be changed to a skip statement. The synthesized
higher-order [23] attributes opt stmt and opt stmts are used to construct
the optimized program. In the root production, the value of the opt stmts

attribute (on s::Stmts) is the tree representing the optimized program.

To determine if opt stmt is set to skip or the original assignment state-
ment, the assign production calls the model checker with a property specified
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inherited attribute smv_model :: SMV_Model occurs on {Stmts, Stmt} ;

aspect production root r::Root ::= stmts::Stmt

stmts.smv_model = smvmodel stmts.entry

[def ranges over r.all_vars,

uses ranges over powerset of r.all_vars];

synthesized attribute opt_stmt :: Stmt occurs on Stmt ;

synthesized attribute opt_stmts :: Stmts occurs on Stmts ;

aspect production assign s::Stmt ::= v::Id e::Expr

s.opt_stmt = if s.smv_model, s.entry |=

AX ( A [!(v.lex in uses) U (def == v.lex && !(v.lex in uses)) ]

|| AG !(v.lex in uses) )

then skip () else s;

aspect production stmt_cons stmts::Stmts ::= s::Stmt ss::Stmts

stmts.opt_stmts = stmt_cons (s.opt_stmt, ss.opt_stmts) ;

Fig. 6. DFA-based optimizations using CTL and NuSMV.

in CTL. The syntax of the model checking expression is M, s |= f where M is
the model, s is the state, and f is the formula. This expression has boolean
type. In the use of this construct on the assign production in Fig. 6 the
model M is the inherited attribute smv model. The state s is the CFG node
for the assignment s. The property f is the CTL formula which states that
on all next (AX) states from the assign CFG node, either (i) on all paths (A),
v’s lexeme lex is not in uses until (U) it is equal to def (that is, v it is not
used until it is defined, with the new definition not using the old value) or
(ii) globally on all paths (AG), v’s lexeme does not ever appear in uses (that
is, the assigned value is not used later). This formula would be satisfied on
nodes numbered 2 and 3 in Fig. 3(b). Note that this formula is different from
the one presented in Sec. 1; this one finds more dead assignment statements
but can also be verified.

To understand precisely how the CTL formula is model-checked we note
that for each assignment statement in a program, the model checker will be
called with the same model but with a different CTL formula. The formula is
constructed from attribute values, such as v.lex. For the statement b = 1;
in Fig. 3 the constructed CTL formula is

AX ( A [!(b in uses) U (def == b && !(b in uses)) ]

|| AG !(b in uses) )

This formula is translated to its NuSMV representation before it is passed to
NuSMV to be checked. Because the attributes def and uses are not bound
to an AST node, they are not instantiated and their values on the CFG nodes
are used during model checking.
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3.3 Checking LTL-FV properties on the CFG

In this section, we present a second extension to Silver that performs DFA
via model checking. In this case, the temporal logic is LTL-FV [11], a version
of LTL extended with free variables. The free variables are similar to the
free variables added to CTL by Lacey and de Moor [12] and used in our
proofs of optimization correctness [13,14]. Instead of returning the set of
states that satisfy a model, the model checkers for these logics return a set of
nodes and substitutions for the free variables that satisfy the formula. For the
example LTL-FV formula in this section, this set of substitutions specifies all
(immediately) dead assignment statements. Thus the model checker is called
once for the model, instead of once for each assignment as in Sec. 3.2. Thus,
the creation of the model and the invocation of the model checker are both
done on the root production for C−.

aspect production root r::Root ::= stmts::Stmts

r.ltlfv_model = ltlfvmodel stmts.entry ;

stmts.deadResults = modelcheck r.ltlfv_model

with (def == x) && X ( (!x in uses U (def == x && !x in uses))

|| G !(x in uses))

with [x ranging over r.all_vars];

In the production above the model for the LTL-FV model checker is cre-
ated from stmts.entry in a manner similar to the CTL case. The attribute
deadResults is assigned the set of substitutions that result from checking
the model with the dead-code formula (essentially the LTL-FV version of the
CTL version from above). In the case of the sample C− program in Fig. 3 this
set is {(2, [x 7→ b]), (3, [x 7→ c])} The LTL-FV model checker is finite state,
like NuSMV, and thus to generate a finite state model we specify the set of
possible values for the free variables in the formula. Here, r.all vars is, as
before, the set of all variables.

The results of the model checker (stmts.deadResults in this case) are
passed down as an inherited attribute to the productions that need the results.
The extension provides a construct to check whether a particular substitution
satisfies the formula on a particular node. The syntax of this construct is

check 〈results〉 for 〈substitutions〉 on 〈CFG node〉

Thus, to know if an assignment is dead, we check to see if the formula is
satisfied on the assign production’s node, with x substituted with v.lex.

aspect production assign s::Stmt ::= v::Id e::Expr

s.opt_stmt = if check s.deadResults for [x mapsto v.lex] on s.entry

then skip () else s ;

On the AST node 2 for the program in Fig. 3 the substitution (2, [x 7→ b])
would be found and the check would return true and the optimized statement
is then created as before. We can model check multiple formulas like this
on the root production, and pass the results down to appropriate nodes via
multiple inherited result attributes.
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4 The implementation of Silver DFA extensions

A distinguishing characteristic of this work is that Silver is designed and built
as an extensible language. Thus it can easily be extended with new language
constructs and semantic analyses of those constructs. Above we presented ex-
tensions that allow Silver to perform data-flow analysis based on two different
temporal logics. Extensions to use other logics and model checkers can also
be added in a straight-forward way.

Silver attribute grammar specifications are implemented by translating
them to Haskell code. This Silver-to-Haskell translator is implemented as an
attribute grammar written in Silver. (A good test for Silver was to write a
compiler for it in itself.) The declarative, modular, and extensible nature of
attribute grammars is the key to implementing the DFA extensions to Sil-
ver [22]. To add new language constructs to Silver, one adds new productions
that define their concrete and abstract syntax and attribute definitions for the
attributes that label the nonterminals in the abstract grammar for Silver.

The productions that define the abstract syntax of the CFG and DFA
constructs also specify how these constructs translate into attribute grammar
specifications written in pure, non-extended, Silver. For example, the model
checking constructs (|= and modelcheck) both translate into Silver “system”
calls that call the appropriate model checker. To build the appropriate model
representations, each extension also writes aspect productions for the CFG
building productions in the CFG extension; these have attributes that specify
the translation of the CFG to the NuSMV or LTL-FV model language.

The attribute grammar specification for Silver and the attribute grammar
fragments defining the CFG, CTL, and LTL-FV extensions are all combined
to create a specification for an extended Silver that processes the C− specifica-
tion given in sections 2 and 3. In fact, both CTL and LTL-FV model checking
can be used in a single programming language specification if two types of
logics for DFA are desired. The translation of the DFA extension constructs
to pure Silver utilizes an enhancement to attribute grammars called “forward-
ing” [22] that allows attribute grammars to be written in a highly modular
and extensible manner.

5 Related Work, Future Work and Discussion

5.1 Related Work

5.1.1 DFA via Model Checking, and comparison to traditional approaches

Steffen’s pioneering work [20] first proposed the idea of using temporal logic
to specify data-flow properties and using a model checker to perform the
data-flow analysis specified by a particular temporal logic formula. Several
have followed his lead. Schmidt [18], for example, showed that DFA is just
model checking abstract interpretations of programs. One problem with this
approach is that commonly used temporal logics are propositional, making

10
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the properties specified in them program-specific. Lacey and de Moor [12]
extended the logic CTL so that data-flow properties did not need to be ex-
pressed in terms of variables from a specific program but could be expressed
using free variables that represented program variables or other constructs
such as constants. We followed this approach in adding free variables to LTL
to create LTL-FV [11] and used it in Section 3.3. This approach to DFA has
the advantage that solutions to DFA problems are specified at the rather high
level of abstraction of temporal logic. This is especially helpful in proving the
correctness of DFA-based program optimizations (see section 5.1.2).

One critical question is which of the data-flow analysis problems solved by
traditional techniques (such as iterative bit-vector algorithms) can be solved
by model checking. Steffen showed that a subset of the µ-calculus temporal
logic was sufficient to specify all standard bit-vector iterative data-flow anal-
yses such as dead-code analysis [20]. Although the µ-calculus is expressive
and mathematically elegant it is not easy to read, write, or analyze. Steffen
developed a specification language (similar to CTL) that was less expressive
but much easier to use. Formulas specified in this higher-level specification
language were then translated to the lower level µ-calculus.

While the logics we have considered (CTL and LTL-FV) are representa-
tive of the logics used by most commonly-used model checkers, they are not
as expressive as the µ-calculus. For example, our extensions can specify only
immediate and not full (or repeated) dead code elimination. But as men-
tioned in Sec. 4, Silver is an extensible language, so other extensions can be
developed based on different logics and model checkers such as those men-
tioned here. Nothing prevents us from writing another extension to Silver
to use a model checker for the µ-calculus to perform any standard bit-vector
DFA. Also, it should be stated that the addition of free variables to logics like
CTL and LTL allows us to perform analyses such as constant propagation,
for which bit vector algorithms are too restrictive and which require more
general monotone DFA frameworks [9]. To perform constant propagation new
attributes specifying constant assignments must be defined in addition to the
def and uses attributes used above to label the CFG. Many classic data flow
problems specified using temporal logics with free variables are given in the
original sources for these logics [13,11].

5.1.2 Optimization verification

There has been a significant amount of work done on proving the correctness
of optimizing program transformations. We devised a technique for proving
the correctness of such transformations when they are specified as rewrite
rules with side conditions written in CTL-FV [13,7,14]. This formed the basis
of the work by Lerner, et al. [15]. They restricted the side-condition spec-
ification language to a small but commonly used subset so that the proofs
of correctness could be automated. Others have also developed techniques
for proving the correctness of DFA-based program transformations, e.g. [19].
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Promising approaches based on translation validation that verify that the se-
mantics of the optimized program match those of the original un-optimized
program, e.g. [24], have also been explored. These approaches do not verify
the translator or optimizer but instead verify its results.

5.1.3 Attribute Grammars and Data Flow Analysis

We are not the first to investigate ways to perform data-flow analysis in an
attribute grammar framework. Previous work in this area falls roughly into
three categories. The first category includes systems that have specific data-
flow analyses hand-implemented as part of the AG system. New analysis
can be added only by coding the analysis in the implementation language
of the AG. One such system by Tan and Lemone [21] can compute the live-
variables and available expressions data flow analyses. It is implemented in
Pascal and to add new analysis one must extend the system by writing Pascal
code to perform the desired DFA. The second category includes systems that
use what Farrow [6] calls “ad-hoc” circular attribute definitions [2]. While
these are not allowed in traditional AG systems [10], some well-defined cir-
cular attribute definitions can be evaluated by computing fixpoints over the
set of attribute values. Here data-flow analyses are implemented as circular
attributes: the fixpoint computation over attribute values corresponds to the
fixpoints computed in model checking temporal logic formulas. Farrow for-
malized the evaluation mechanisms for circular attributes and the conditions
under which such computations are guaranteed to terminate. Systems based
on such techniques form the third category. Examples of such systems include
MUG2 [8] and the more recent CRAGs [16] and APS [3] systems. These sys-
tems do not enforce Farrow’s termination conditions, but rely on the person
writing the AG specification to follow them. Thus one may accidentally write
non-terminating data-flow analyses in these systems.

We propose a fourth category, uniquely (to our knowledge) inhabited by
our system, that uses temporal logic to specify data-flow properties and model-
checking to implement analyses specified by formulas. The benefits include a
guarantee of termination of the DFA (since model checkers for temporal logics
always terminate) and, when using a logic like CTL or LTL-FV, being able to
specify DFA at a higher level of abstraction than that of circular attributes.
Also, Silver can be easily extended to use logics like the µ-calculus (see Sec. 5.3)
that are more expressive than CTL and LTL-FV (see Sec. 5.1.1).

5.2 Future Work

In this paper we have focused more on the specification of the data-flow anal-
ysis than on the specification of the transformations to be performed. We
are currently investigating mechanisms for specifying rewrite rules like those
in Fig. 1(a) so that they, along with the DFA side conditions, can be more
directly transcribed into the AG specification. The approach presented in this
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paper uses the higher-order attribute opt stmt to construct the optimized
program in a bottom-up fashion. This is similar to the bottom-up application
of rewrite-rules used in OPTRAN [8] to perform program transformation.

Interprocedural data-flow analysis is not supported by the two logics pre-
sented here, but we are planning to build further extensions to Silver that
perform this type of analysis. There are logics and model-checkers that can
be use to perform interprocedural DFA – one is CaReT [1], a logic that can
encode procedure calls and returns. This Silver extension will also need to
add constructs to Silver for building nodes and edges in the control flow graph
that indicate calls to functions and returns from those functions. These are
needed to ensure that only valid call-return paths are used in model-checking a
property. Because Silver is extensible adding such analyses is straight-forward.

Other future work addresses scalability issues so that the ideas presented
here can be employed on complete language descriptions. Because the control
flow graph abstraction typically tracks just the “program counter” and a small
set of attributes instead of the state of all program variables, the model (CFG)
for programs is of reasonable size. Thus, model checkers designed to handle
very large state spaces can easily handle such models. Of greater concern is
the fact that in the CTL extension, NuSMV is called once for each assignment
statement. Even though NuSMV is highly tuned this may be too inefficient.
However, in the LTL-FV extension the model checker is called just once per
analysis. But the size of the returned substitution set may be large and
expensive to compute. Further investigation is required to determine if making
multiple calls to fast model checkers like NuSMV is more or less efficient than
making a single call to more complex model checkers for free-variable logics.

We are also investigating how to schedule and efficiently perform optimiza-
tions. Although the optimized program is easily generated using higher-order
attributes (opt stmt and opt stmts above), the optimized tree may need to
be optimized again, as in the case of dead-code analysis. This re-evaluates
many attributes whose values are the same on the original and optimized
ASTs. There are several avenues to pursue more efficient implementations –
one is to perform an optimization in place by changing, for example, the as-
signment to a skip, and updating attributes incrementally [5] and only when
the change affects the results of other analyses as suggested in [8].

5.3 Discussion, motivation of extensible languages

We built these data flow analysis extensions to Silver because in other research
endeavors we need to write high-level language specifications that include both
syntax-directed and control flow graph-based analyses in a single framework.
We use Silver to write specifications for extensible host languages and language

extensions that add new language constructs, semantic analyses of these con-
structs, and optimizations of these constructs (often based on data-flow anal-
ysis) to the host language. Many of the language extensions we have specified

13



Van Wyk and Krishnan

contain domain specific constructs. Examples include an extension that em-
beds SQL into an extensible Java host language and a computational geometry
extension that adds efficient unbounded numeric types. We expect that lan-
guage extensions will be written by people who are experts in these specific
domains but are not programming language implementation experts. Thus,
we want to provide a high-level formalism for specifying data-flow properties
that may be used in optimizations of domain specific constructs. Temporal
logics provide such a high-level formalism.

Silver is unique in that it allows, in a single declarative framework, the spec-
ification of complex semantic analyses on the program representation that is
most appropriate for each analysis. Syntax directed analyses like type check-
ing are specified in a natural way using traditional attributes and control flow
graph-based analyses like data-flow analysis are specified in a natural way
using temporal logic formulas. Evaluation of the analysis it carried out by
either attribute evaluation or model checking. Because Silver is extensible,
adding facilities for new analyses based on other temporal logics, such as the
µ-calculus or CaReT as discussed above, can be done in a straight-forward
manner. Thus, as new logics and model checkers are developed that are useful
in performing program analyses they can easily incorporated into Silver.

Acknowledgements: We would like to thank Derek Bodin for his efforts in
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