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Abstract. In model-based development, a formal description of the soft-
ware (the model) is the central artifact that drives other development
activities. The availability of a modeling language well-suited for the
system under development and appropriate tool support are of utmost
importance to practitioners. Considering the diverse needs of different
application domains, flexibility in the choice of modeling languages and
tools may advance the industrial acceptance of formal methods.
We describe a flexible modeling language framework by which language
and tool developers may better meet the special needs of various users
groups without incurring prohibitive costs. The framework is based on a
modular and extensible implementation of languages features using at-
tribute grammars and forwarding. We show a prototype implementation
of such a framework by extending the host language Mini-Lustre, an ex-
ample synchronous data-flow language, with a collection of features such
as state transitions, condition tables, and events. We also show how new
languages can be created in this framework by feature composition.

1 Introduction

Model-based development is gaining interest from the software industry, espe-
cially in the domain of safety critical systems. The aims are cost reduction and
quality improvement through early defect removal through model testing and
formal analysis, and automated code generation. There are currently many com-
mercial and research tools that attempt to provide these capabilities [1–5].

In previous work [6] we discussed several factors that hinder the widespread
adoption of formal methods and model-based development in practice. We also
formulated several conjectures related to this topic, one of which is related to the
work presented in this report: “no modeling language will be universally accepted,

nor universally applicable.” If a notation is not liked by the intended users it
will simply not be used; a multitude of (domain-specific) languages is needed.
Current languages and tools infrastructures are inflexible and make language
customization and tool integration difficult and costly. As illustration, consider
the following two scenarios.
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#0347860, NSF CCF Award #0429640, and the McKnight Foundation.



First, a development team for an air-transport flight guidance system needs a
modeling language. These systems are typically periodical and take actions when
certain (generally rather complex) conditions hold. Due to the complexity of the
conditions, condition tables, such as those found in RSML−e [5] and SCR [4]
would be useful when reviewing the models with domain experts and regulators.
The developer’s engineers prefer to use a data-flow language specifically designed
for control systems, for example, Lustre. Thus, a language that is basically Lustre
extended with RSML−e-style tables would be desirable.

Second, a development team for pre-launch checkout software for a launch ve-
hicle seeks a modeling language appropriate for capturing the complex sequences
of events that must occur before it is safe to launch the vehicle. The team finds
a pure data-flow language like Lustre unsuitable for the task (they would pre-
fer an explicit notion of states and events), but they like the analysis support
available for Lustre (numerous model checkers and theorem provers). The team
finds the RSML−e syntax more suitable for the task at hand, but does not find a
commercial tool supporting the creation nor analysis of RSML−e models. They
wonder if the Lustre toolset could be extended with RSML−e features to easily
leverage existing analysis and code generation capabilities.

Because customizing commercial toolsets and building tools from the ground
up to provide expanded language and analysis support is generally infeasible or
too costly we believe a different view of modeling languages and tools is needed.
Instead of treating each modeling language as a fixed, monolithic entity, and
implementing its tool support based on that view, we adopt the notion of exten-
sible languages—language implementations that are intended and optimized for
future (front-end and back-end) additions (and possibly modifications). In this
view, the artifacts include a host language and a set of language extensions that
define desired language features not found in the host language.

The flexible modeling language framework described in this paper is based
on the general idea that language extensions may introduce new constructs to
the host language, new semantic analyses that, for example, ensure that the
constructs defined in an extension are used correctly, and new translations to
different target languages. In this framework, a domain-specific language can be
easily created through inclusion of language extensions in the host language. In
our domain, synchronous languages, (e.g., Safe State Machines [2], SCADE [2],
and SCR [4], to name just a few) are prevalent and all share the same seman-
tic foundations. We believe that most (if not all) features of these languages
can be implemented as extensions to a host language in our flexible language
framework. Based on our experiences in model-based development, we believe
that Lustre [7] is a suitable host language. First, Lustre is expressive enough to
capture a large class of interesting behaviors and it has a simple and well-defined
semantics suitable for analysis [8]. Second, there are commercial tools for Lustre
that interest industrial users [2]. Here we use a reduced version (Mini-Lustre)
that espouses the key features of full Lustre, but omits some rather involved
and, for the purpose of this paper, less important ones.
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In this framework, language features such as RSML−e-style tables, State-
charts like events, and designated state variables do not need to be implemented
in the host language but can instead be implemented as a language extension
allowing us to address the needs of the developers in our first scenario.

The host-language is designed to have specific tool support; here, Mini-Lustre
comes with support for semantic analysis such as type checking as well as a trans-
lation to a general purpose programming language and a number of translations
from Mini-Lustre to the input languages of a number of analysis tools. Thus,
to address the second scenario we create language extensions that (1) add the
syntax and semantic analysis of the desired new language, (2) specify the trans-
lation of the new language constructs to the host language Mini-Lustre, and
(3) hide the undesirable (concrete) syntax of Mini-Lustre so that the new lan-
guage primarily uses the host language as an intermediate representation to take
advantage of the translations to various analysis tools. Note that new transla-
tions from the host language to new analysis engines will automatically work to
languages created by extending the host language.

To be useful, extensible language frameworks need two crucial characteristics.
First, language constructs implemented as language extensions must have the
same “look and feel” as constructs in the host language. That is, at a minimum,
they should perform some semantic analysis to report error messages at the
extension level and not rely on their translation to the host language for error
checking. Thus, traditional macros are not an acceptable means for implementing
language constructs as error checking is done on the constructs to which the
macros expand. Second, language extensions must be composable so that various
language extensions, implemented independently, can be imported into a host
language in a cost-effective way. For some language extensions, the composition
can be entirely automatic. The language user may just select language extensions
from a list and the framework automatically builds the specification for the
new extended language. This composition is possible for the first scenario above
in which the host language Lustre is extended with RSML−e-style tables. In
other cases, composition may require more involvement from someone skilled
in language development; this is the case in our second scenario where Lustre
is extended with state variables and the underlying Lustre constructs such as
nodes and data-flow equations need to be hidden (at last syntactically). Both
forms of composition are demonstrated in Section 3.5.

Our extensible view of modeling languages may be realized using attribute
grammars with forwarding [9]. The host language is implemented by writing an
attribute grammar specification of the language. We have developed an attribute
grammar specification language, called Silver for this purpose. The Silver tools
automatically generate an attribute grammar evaluator for languages specified
in Silver. Language extensions, such as the addition of tables suggested above,
are implemented as attribute grammar fragments. The combination of the host
language attribute grammar and the selected attribute grammar fragments that
implement language extensions provide a specification for the new languages as
required in our sample scenarios. Again, the Silver tools provide an automatic
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implementation for these new languages. We illustrate the feasibility of this
approach by implementing solutions to the problems posed in each scenario.

Section 2 presents an implementation of Mini-Lustre as a Silver attribute
grammar specification. Section 3 shows how extensions to Lustre can be imple-
mented as attribute grammar fragments and composed to create new (extended)
languages. These exercises provide a view of the power of this approach. Section 4
discusses related and future work and concludes.

2 Mini-Lustre: the Host Language

Lustre is a synchronous data flow language designed for programming reactive
systems as well as for describing hardware. Lustre is synchronous in that it
provides temporal determinism by partitioning physical time into discrete time
points, at which computations react instantaneously to external events. This
high-level paradigm is specially designed for abstracting the actual computation
away from the complex timing constraints involved with control systems. In ad-
dition, Lustre specifies its computations using a data flow model, which enables
natural parallelism and tractable analysis.

Consider the example in Fig. 1. It specifies partial functionality of an Altitude
Switch (ASW), an avionics system that turns the power on for another system
when the aircraft descends below a threshold altitude and turns it off when the
aircraft ascends above the threshold plus a hysteresis factor. Here we focus on
the AltStatus variable used to keep track whether the aircraft should be consid-
ered above or below the threshold. The initial value of AltStatus is undefined
(Unknown ->) and thereafter assigned by the nested if-expression. We assign
AltStatus the value Above if the altitude readings are reliable (AltQuality
= Good) and we are either (1) classifying AltStatus for the first time (pre(
AltStatus) = Unknown) and we are above the threshold or (2) AltStatus has
been established and we are above the threshold plus the hysteresis. AltStatus
is Below if altitude readings are reliable and the altitude is less than or equal to
the threshold. If the altitude readings are not reliable AltStatus is Unknown.

type Status = enum { Unknown, Above, Below } ;

node ASW (AltQuality:Quality, AltThres:int, Hyst:int, Altitude:int)

returns (AltStatus:Status) ;

let AltStatus = Unknown ->

if AltQuality = Good and Altitude > AltThres and

(pre(AltStatus) = Unknown or Altitude > AltThres + Hyst) then Above

else if AltQuality = Good and (not Altitude > AltThres) then Below

else if not AltQuality = Good then Unknown

else pre(AltStatus) ; tel;

Fig. 1. ASW in Mini-Lustre.
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grammar lustre ;

nt Root, NodeList, Node, VarDeclList, VarDecl, Locals, EqList, Eq, Expr ;

syn attr pp :: String occurs on Root, Node, Expr, VarDecl, ... ;

syn attr errors :: String occurs on Root, Node, Expr, ... ;

syn attr ctrans :: String occurs on Root, Node, Expr, ... ;

prod root r::Root ::= nl::NodeList

{ r.errors = nl.errors; r.pp = nl.pp; r.ctrans = ... nl.ctrans ...; }

prod nodeListCons nl::NodeList ::= n::Node nltail::NodeList { ... }

prod nodeListOne nl::NodeList ::= n::Node { ... }

prod node n::Node ::= name::Id inputs::VarDeclList outputs::VarDeclList

locals::VarDeclList eql::EqList

{ n.pp = "node " ++ name.lexeme ++ " (" ++ inputs.pp ++ ") " ++ ... ;

n.errors = inputs.errors ++ outputs.errors ++ locals.errors ++ eql.errors ;

n.ctrans = ... ; }

prod varDecl vd::VarDecl ::= var::Id type::Type

{ vd.pp = var.lexeme ++ " : " ++ type.lexeme ; }

prod equation eq::Eq ::= id::Id expr::Expr

{ eq.pp = id.lexeme ++ " = " ++ expr.pp ++ ";\n" ;

eq.errors = ... ; /* ensure id and expr have same type */ }

Fig. 2. A portion of the Silver specification of Mini-Lustre.

We provide the attribute grammar (AG) specification for Mini-Lustre, which
contains the characteristic features of full Lustre, such as node declarations and
synchronous computation. The specification is written in Silver and shown in
Fig. 2 and Fig. 3. In general, a Silver specification for a language consists of
a series of declarations that define its concrete and abstract syntax as well as
rules which assign values to attributes associated with nonterminals. To define
the syntax, there are declarations for terminals, nonterminals (keyword nt), and
productions (prod). Productions marked as concrete are used to construct the
parser. They are as expected and thus not shown in Fig. 2 or Fig. 3. The AG
portion of the specification consists of declarations for attributes (attr), and
production-associated equations that define the values of attributes that label
nonterminal nodes in a program’s abstract syntax tree (AST). An attribute is
synthesized (syn) if it propagates information up the abstract syntax tree; it is
inherited (inh) if it propagates information down the AST. Note that the order
of Silver declarations does not matter; values can be used before their definition.

The first line of the specification in Fig. 2 provides the name of this gram-
mar. Grammar names are used in following sections in which the Silver import
statement is used to combine attribute grammar specifications to create the
specification for an extended language. Next, the nonterminals in the grammar
are declared. Synthesized attributes pp, errors, and ctrans of type String

are declared; these attributes, respectively, define a node’s pretty-print or “un-
parsed” representation, the errors occurring on the node and its children, and its
translation to C. The occurs on attribution clause specifies which nonterminals
an attribute decorates. We will elide other nonterminal and attribution (occurs
on) declarations as they can be inferred from the specification.
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prod idref expr::Expr ::= id::Id { ... }

prod and expr::Expr ::= lft::Expr rht::Expr

{ expr.pp = ... ; expr.errors = ... ; expr.ctrans = ... ; }

prod not expr::Expr ::= n::Expr { ... }

prod or expr::Expr ::= lft::Expr rht::Expr

{ expr.pp = "(" ++ lft.pp ++ " || " ++ rht.pp ++ ")" ;

expr.errors = ... ; /* check both lft and rht are bool */

forwards to not( and( not(lft), not(rht) ) ); }

Fig. 3. Silver specifications of Mini-Lustre expressions (Expr).

A Mini-Lustre program (represented by a nonterminal Root) is a series of
node definitions (represented by NodeList). The nonterminal Root on the left
hand side of the production root is named r; the right hand side has a single
NodeList nonterminal named nl. Equations defining the synthesized attributes
of r are listed in curly brackets. For example, the last equation uses ellipses (...)
to indicate that the value of the ctrans attribute on r is computed from the value
of ctrans on nl. A node, defined by production node, is composed of a name
(name), a list of input parameter declarations (inputs of type VarDeclList), a
list of output parameters (outputs), a list of local variable declarations (locals),
and a list of equations (eql of type EqList). Its attributes are defined as ex-
pected. There are several list constructs in Mini-Lustre and we will not show the
productions for many of these as they are what one would expect and can be in-
ferred. They will follow the pattern of using a “cons” and “one” production like
those defined for NodeList in Fig. 2. The production varDecl binds identifier
names to types. These bindings are stored in a symbol table that is passed to the
equations in eql as expected. These are not shown since this is a straight-forward
and common task in attribute grammars. The production equation will check
that the identifier id and expression expr have the same type and generate an
error message if they do not. It also defines its pp attribute as expected. Further
definitions of pp are also what one would expect and are thus elided, though
each production does have an explicit definition for it.

Of special interest is the production or which defines the disjunction of two
expressions. It uses an extension to attribute grammars called forwarding [9] that
is used extensively in defining the extensions to Mini-Lustre in Section 3. To use
forwarding a production defines a construct that it is semantically equivalent to.
It will forward queries for attributes that it does not explicitly define with an
attribute definition to this “forwards-to” construct. The forwards-to construct
will return its value for the queried attribute. In this case of or, the produc-
tion states the semantic equivalent of or(lft,rht) is not( and( not(lft),

not(rht))). When a construct created by the or production is queried for its
errors or pp attributes, it returns the values specified by the explicit defini-
tions. When queried for its ctrans attribute, it returns the value of ctrans

on its semantically equivalent forwards-to construct. This is somewhat similar
to macro expansion, where the forwards-to construct corresponds to the body
of the macro. Unlike a macro definition of or the production with forwarding
reports error messages on programmer-written specifications.
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3 Mini-Lustre Extensions

In this section we define four language features that can be added to Mini-
Lustre as modular language extensions. These features, RSML−e-style tables,
equals clauses, and state variables, and Statechart-like events, are all features
that some but not all users of synchronous languages find useful. We also show
how a simple “module” extension can hide host language syntax to in essence
create a new language that is not an extension of the host. The goal of this section
is to show in some detail how feature-rich modeling languages, tailored to specific
domains or to user preferences, can be easily created by simply composing the
host-language with the desired set of language features. Thus, the extensions,
just like Mini-Lustre, capture the important characteristics of the features and
not a full realization of them. This high-degree of modularity is achieved through
the forwarding extension to attribute grammars.

3.1 Tables

Tables are used for specifying complicated boolean b = table

(c1 && c2) : T F ;

! (c2) : T * ;

(c3 || c2) : F T ;

end;

Fig. 4. RSML−e table.

expressions, available in both RSML−e and SCR.
They have been shown to be useful when presenting
specifications to domain experts, such as pilots and
air traffic controllers [10–12]. An example of such a
table is shown in Fig. 4 in which b, c1, c2, and c3
are boolean variables. In each row of the table there
are “truth value” entries T (true), F (false), or * (don’t-care) indicating the
desired truthfulness of the preceding Boolean expression, e.g. c1 && c2 in the
first row. A table is an alternative form of the Boolean expression that can be
obtained by taking the conjunction of the expressions generated for each entry
in a column and then taking the disjunction of these expressions generated for
the columns. Therefore, the equation in Fig. 4 is semantically equivalent to the
pure-Mini-Lustre code shown below:

b = ((c1&&c2) && !c2 && !(c3||c2)) || (!(c1&&c2) && true && (c3||c2));

The table extension is implemented as a Silver attribute grammar fragment,
portions of which are shown in Fig. 5. This specification shows the abstract
syntax productions and attribute definitions for error-checking and computing
the pure-Mini-Lustre code to which the table construct translates (forwards to).
A table is an alternative form of expression (nonterminal Expr) as defined by
the production table. It consists of a number of rows (ExprRowList); each row
(ExprRow) in turn consists of a (Boolean) expression and a list of truth-values
(TruthValueList). Truth values (TruthValue) consist of the terminal TrueTV
(marker T), FalseTV (marker F), or Star (marker *).

Several attributes are used to compute the pure-Mini-Lustre expression shown
above that the table construct will forward to. The inherited attribute rowexpr

is used to pass the Boolean expression in each row down to the truth values
where a boolean expression in the host language is constructed (according to
the truth value) and is passed up the AST in the attribute texpr. For example,
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grammar lustre_tables ;

import lustre ;

prod table t::Expr ::= erows::ExprRowList

{ t.errors = erows.errors ;

forwards to disjunction(mapConjunction(transpose(erows.texprss ))) ; }

nt ExprRowList, ExprRow, TruthValueList, TruthValue ;

syn attr texprss :: [[Expr]] occurs on ExprRowList ;

syn attr texprs :: [Expr] occurs on ExprRow, TruthValueList ;

syn attr rlen :: Integer occurs on ExprRowList, ExprRow, TruthValueList ;

inh attr rowexpr :: Expr occurs on TruthValueList, TruthValue;

syn attr texpr :: Expr occurs on TruthValue ;

prod exprRowCons erows::ExprRowList ::=

erow::ExprRow erowstail::ExprRowList

{ erows.rlen = erow.rlen ;

erows.errors = erow.errors ++ erowstail.errors ++

if erow.rlen == erowstail.rlen then "" else

"Error: rows need same num of cols";

erows.texprss = cons(erow.texprs, erowstail.texprss ) ; }

prod exprRowOne erows::ExprRowList ::= erow::ExprRow

{ erows.errors = erow.errors ; erows.rlen = erow.rlen ;

erows.texprss = [erow.texprs] ; }

prod exprRow erow::ExprRow ::= e::Expr tvl::TruthValueList

{ erow.rlen = tvl.rlen ; erow.texprs = tvl.texprs ; tvl.rowexpr = e ; }

func disjunction Expr ::= es::[Expr]

{ return if leng(es) == 1 then head(es)

else or(head(es), disjunction(tail(es))) ; }

prod tvlistCons tvl::TruthValueList ::=

tv::TruthValue tvltail::TruthValueList

{ tvl.rlen = 1 + tvltail.rlen ;

tvl.texprs = cons (tv.texpr, tvltail.texprs );

tv.rowexpr = tvl.rowexpr ; tvltail.rowexpr = tvl.rowexpr ; }

prod tvlistOne tvl::TruthValueList ::= tv::TruthValue

{ tvl.rlen = 1; tvl.texprs = [tv.texpr]; tv.rowexpr = tvl.rowexpr ; }

prod tvTrue tv::TruthValue ::= t::TrueTV { tv.texpr = tv.rowexpr ; }

prod tvFalse tv::TruthValue ::= f::FalseTV { tv.texpr = not(tv.rowexpr) ; }

prod tvStar tv::TruthValue ::= s::Star { tv.texpr = true() ; }

Fig. 5. Silver table extension specification.
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for the first row of table in Fig. 4, the texpr attributes for the T and F markers
have values of (c1 && c2) and ! (c1 && c2), respectively. A true constant
is always created for a * entry. The synthesized attributes texpr, texprs, and
texprss collect these Boolean expressions into a list of lists of Exprs that is
passed up to the top ExprRowList node of the complete table. Both list types
and list expressions are denoted using square brackets ([ ]). After a transposi-
tion of the list, the pure-Mini-Lustre translated table is formed. This construct
is the forwards-to construct of the production table. Several utility functions,
transpose, disjunction, conjunction, and mapConjunction, are defined for
building the translated table. Only disjunction is shown, but the others are
similar.

The other critical function computed by the attributes is to perform error
checking. We need to check that all rows in the table have the same number of
columns. This is a semantic analysis that must be performed on the extension
constructs, as an incorrect number of columns in a row will not be detected on
the translation to pure-Mini-Lustre. To accomplish this, that table production
explicitly defines its errors attribute to be the errors reported on its child erows.
To detect such errors, a row length attribute, rlen, is computed on truth value
lists and expression row lists and compared on the exprRowCons production to
detect any rows whose length differs from other rows. This analysis highlights
the critical role played by forwarding. It allows us to define some attributes, such
as ctrans implicitly via the translation to the host language and to define other
attributes, such as errors, explicitly on the extension constructs. This ensures
that semantic analyses can be carried out at the right level of abstraction.

The lustre tables grammar specification provides a definition of Lustre
extended with the table construct since it imports the grammar lustre. The
Silver tools can take this specification and build an attribute evaluator that
performs error checking and translations to C of the extended Mini-Lustre +
tables language. In Section 3.5, we will see how several independently developed
extensions such as those described in the following sections can be combined in
creating an extended language.

grammar lustre_equals ; import lustre ;

nt Cases ; syn attr ifexpr :: Expr occurs on Cases;

prod equals e::Expr ::= cs::Cases

{ e.errors = cs.errors ++ ...; /* ensure e and vals in cs have same type */

forwards to cs.ifexpr ; }

prod casesCons cs::Cases ::= val::Expr cond::Expr cs1::Cases

{ cs.errors = ... ; /* ensure cond is boolean type */

cs.ifexpr = ifthenelse(cond, val, cs1.ifexpr) ; }

prod casesOtherwise cs::Cases ::= val::Expr

{ cs.errors = ... ; cs.ifexpr = val ; }

Fig. 6. The Silver specification of the equals clause extension.
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3.2 Equals Clauses

Specification in the state machine transition style b = equals e1 if (c1 && c2)

equals e2 if ! c1

equals e3 if ! c2

otherwise pre(b);

Fig. 7. Equals clauses

is a popular approach in many domains and is
the basic paradigm of languages such as Stat-
echart, SCR, and RSML−e. The equals clause
construct implemented here as a language exten-
sion is one way to describe the transition choices
of a state machine. An example of the equals clause is shown in Fig. 7, where c1,
c2, and c3 are Boolean variables, and e1, e2, and e3 are expressions of the same
type as variable b. This equals clause is evaluated as follows: if the condition
(c1 && c2) evaluates to true, the value of variable b is taken to be that of e1;
otherwise if c1 is false, the value of b is e2; otherwise if c2 is false, the value of
b is e3; and if none of the condition holds, b retains its original value (pre(b)).
This equals clause can be translated to the pure-Mini-Lustre nested if-then-else
expression shown below.

b = if (c1 && c2) then e1 else if (!c1) then e2

else if (!c2) then e3 else pre(b);

Part of the AG specification of the equals clause extension is shown in Fig. 6.
The complete equals clause (Cases) is defined as an expression (Expr) in produc-
tion equals. The ifexpr attribute on nonterminal Cases holds the equivalent
if-then-else expression, which is constructed in production caseCons. It is used
as the forwards-to construct in the equals production. The errors attribute is
defined explicitly, as in the table extension.

3.3 State Variables

Like the equals clause extension, state variables, representing communicating
state machines, are an important element in the state transition style of soft-
ware specifications. Here we show how the RSML−e state variable construct
that captures this notion can be implemented as a language extension built not
only on the host language Mini-Lustre but also on the two previous extensions
lustre tables and lustre equals.

Fig. 8 shows the same ASW specification from Fig. 1 rewritten with extended
Mini-Lustre, complete with tables, equals clauses, and state variables extensions.
The meaning of the state variable declaration is easy to infer from this example.
What is different from the original equals clauses is that the otherwise clause is
implied here. Although the mixture of Lustre node and state variable declara-
tions may seem strange—for example, the variable AltStatus with its type is
declared twice—an additional extension that defines modules, which forwards to
the node declaration, can fix the syntax and then provide a complete package of
features for the descriptions of state machine models.

Part of the attribute grammar specification of the state variable extension
is shown in Fig. 9. The state variable production stateVar forwards to the
semantically equivalent Mini-Lustre equation that uses the same ifexpr at-
tribute defined on Cases used in the previous example. The inherited attribute
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node ASW (AltQuality:Quality, AltThres:int, Hyst:int, Altitude:int)

returns (AltStatus:Status) ;

let state variable AltStatus : Status

initial value : Unknown

equals Above if table pre(AltStatus) = Unknown : T * ;

AltQuality = Good : T T ;

Altitude > AltThres : T T ;

Altitude > AltThres + Hyst : * T ;

end table

equals Below if table AltQuality = Good : T ;

Altitude > AltThres : F ;

end table

equals Unknown if AltQuality = Good

end state variable tel;

Fig. 8. ASW in Mini-Lustre extended with state variables, equals clauses and tables.

defaultExpr passes the expression to be used in the equation if none of the
conditions in the equals clauses are true. An aspect production is used to add
new attribute rules for attributes inStateVar and defaultExpr to productions
casesCons and equals imported from the grammar lustre equals. The in-
herited attribute inStateVar is true on the Cases enclosed in a stateVar and
false otherwise. This is used on the casesOne production to raise an error if it,
instead of the casesOtherwise production, is used in the original equals clause
which requires an otherwise.

3.4 Events

Events are an extension to Mini-Lustre quite different from the previous ones.
Below is a fragment of an enhanced definition of AltStatus from Fig 1 writ-
ten using Mini-Lustre extended with events. The complex conditions from the
original definition are abbreviated as C1, C2, and C3 here.

event AltClassEvt, AltLostEvt;

AltStatus = Unknown ->

if catch(AltRcvEvt,C1) then throw(AltClassEvt,Above)

else if catch(AltRcvEvt,C2) then throw(AltClassEvt,Below)

else if catch(AltRcvEvt,C3) then throw(AltLostEvt,Unknown) ...

A new declaration construct event is added to the language and used in
the declaration of two events. Here, an altitude classified event is thrown if
AltStatus is defined to be either Above or Below. If not, the AltLostEvt event
is thrown. In the assignment equation for AltStatus, two new constructs, throw
and catch, are used for the generation and consumption of events. The evalua-
tion of throw(evt,e) produces the value e, and causes event evt to be gener-
ated in the next time step. An event remains active for only a single step and
catch(evt,e) returns true if the event evt is active at the current step and
e evaluates to true. Therefore throw is an expression with side-effects, clearly
a conceptual departure from the data flow model of Lustre. The event/action
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grammar lustre_statevar ;

import lustre, lustre_tables, lustre_equals ;

inh attr inStateVar :: Boolean occurs on Cases ;

inh attr defaultExpr :: Expr occurs on Cases ;

prod stateVar eq::Equation ::= id::Id type::Type init::Expr cs::Cases

{ cs.defaultExpr = pre(idref(id)) ; cs.inStateVar = true ;

cs.errors = cs.errors ++ ... ; /* ensure init has correct type */

forwards to equation(id, follow(init, cs.ifexpr)); }

prod casesOne cs::Cases ::= val::Expr cond::Expr

{ cs.errors = if cs.inStateVar then "" else "Error: Missing OTHERWISE clause";

cs.ifexpr = ifthenelse(cond, val, cs.defaultExpr) ; }

aspect prod equals e::Expr ::= cs::Cases { cs.inStateVar = false; }

aspect prod casesCons cs::Cases ::= val::Expr cond::Expr cs1::Cases

{ cs1.defaultExpr = cs.defaultExpr ; cs1.inStateVar = cs.inStateVar ; }

Fig. 9. The Silver specification of the state variable extension.

specification style can simplify some specifications and is an important feature
in languages like Statechart.

The specification using events above can be translated to pure-Mini-Lustre in
which events are translated into Boolean variables. A throw forwards to its sec-
ond argument and a catch forwards to the conjunction of the Boolean variable
of the named event and its second argument. An equation for each new Boolean
variable is also generated by combining the conditions of the if-then-else con-
structs that enclose all throw constructs of the corresponding event. Below is
the equation generated for AltClassEvt.

AltClassEvt = false -> (pre(AltRcvEvt) && pre(C1)) ||

(!(pre(AltRcvEvt) && pre(C1)) && (pre(AltRcvEvt) && pre(C2)) ;

The attribute grammar specification to create the above equation is not trivial
but is more verbose than it is complex. Essentially an inherited attribute of type
Expr is used to pass down the conditions of enclosing if-then-else constructs to
each throw construct. A synthesized attribute is used to compute the disjunction
of these expressions. Thus, the two throw constructs in the example correspond
to the disjunction of two expressions in its translation. The generation of these
equations requires a global transformation beyond the capabilities of macro-
based approaches. Due to space constraints the Silver implementation of events
is not shown.

3.5 Scenario Implementations

Silver has a flexible module system based on the grammar declarations seen in
the specifications above. Silver import statements can be used to easily compose
new and extended languages from these named grammars.

For Scenario 1, the desired language is created by composing the host lan-
guage module lustre and language extension modules lustre tables and lustre -

equals by the Silver specification in Fig. 10. The Silver tools read this to build
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the attribute grammar for the specified language from the imported host and
extensions. The import ... including syntax statement performs two func-
tions. First it imports all the definitions of the attribute grammar constructs
(productions, attributes, etc.) from the named module. These are used in the
attribute grammar evaluation phase to perform error checking and translations
as specified by the attributes. Second, the including syntax clause also add
the concrete syntax specifications defined in the imported module. The speci-
fications of the concrete syntax are given to a parser and scanner generator to
build the parser and scanner for the extended language. In the specifications
above we have not shown these as they are done in a traditional manner.

Many language extensions, including the tables,

grammar scenario1 ;

import lustre

including syntax ;

import lustre tables

including syntax ;

import lustre equals

including syntax ;

Fig. 10. Scenario 1.

equals, state variable, and event extensions presented
here are such that they can be automatically com-
posed with other extensions to create, for example,
the scenario1 language above. This means that no
attribute grammar “glue” code needs to be written to
compose the host language and the language exten-
sions. In this case, the Silver specification above can
be automatically generated from the list of extensions
selected by the user.

For the second scenario, we create a new language that does not use the
node construct of Mini-Lustre but replaces it with a simple module system for
collecting state variables. This is similar to RSML−e but is a smaller language
meant to only demonstrate how new languages can be created in the frame-
work. This is easily accomplished by a Silver specification that imports the
lustre, lustre statevar, lustre tables, and lustre equals modules, but
uses a syntax hiding clause to block the importation of the concrete produc-
tions for nodes and equations from the host specification lustre. This speci-
fication also defines concrete syntax for a module construct that consists of a
sequence of state variables. The abstract production for this module construct
forwards to the expected translation in the host language Mini-Lustre. Space
limitations prevent showing this specification, but the key point is that a new
language is defined by hiding aspects of the host language and replacing them
with the desired new ones.

4 Discussion

4.1 Related Work

Tools and techniques for language extensibility and modularity have been studied
extensively in the area of programming languages and thus the description here is
necessarily cursory. In the framework we have described, language extensions can
define new language constructs, new semantic analyses on the extension-defined
and host language-defined constructs, and translations to new target languages.
There are existing tools and techniques that support each of these types of
language extension, but no single approach supports them all. Closely related
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are various macro approaches, such as syntactic, hygienic, and programmable [13]
macro systems. These allow new constructs to be defined but do not support
semantic analysis of the new constructs.

There has also been a considerable amount of work on language modularity,
e.g., [14,15], from the perspective of attribute grammars. Higher-order functions
as attributes provide the inspiration for some in seeking modular specifications,
e.g., [16], while object-oriented concepts of inheritance and objects motivate oth-
ers, e.g., [17]. Silver builds on much of this work and incorporates, for example,
higher-order attributes [18]. Also of interest are Hedin’s re-writable reference
attribute grammars [19] in which a mechanism for rewriting the abstract syntax
tree based on rewrite-rules is used. There, attributes are only retrieved from
the rewritten tree; this differs from forwarding, which allows attributes to be
retrieved from the original tree and the forwarded-to tree. This is critical for
extensions like tables where we must do error checking on the original tree but
want to get attributes for translations to target languages from the forwarded-to
tree. Microsoft’s Intentional Programming system (IP) [20] is the most closely
related system to the extensible language framework used in this paper.

4.2 Conclusion

Silver was developed for building extensible languages based on attribute gram-
mars with forwarding. It is a full-featured attribute grammar specification lan-
guage with higher-order attributes [18], forwarding [9], a module system, poly-
morphic lists, and pattern-matching; it is freely available on the internet at
www.melt.cs.umn.edu. We have used it to build an extensible versions of Java
1.4 called the Java Language Extender [21] and several modular extensions. One
embeds the domain-specific language SQL into Java for static syntax and type
checking of SQL queries; another adds general-purpose features such as algebraic
data-types and pattern matching.

For users of synchronous languages, we can provide a flexible modeling lan-
guage framework that allows a rich variety of modeling language features to be
used. In the work presented here, we have showed how constructs such as con-
dition tables, state variables, and events can be easily added to a host modeling
language in a modular way. Note that these are not just lightweight syntactic ex-
tensions that do some error checking. Both the tables and the events extensions
do a considerable amount of code transformation and manipulation to generate
the host language constructs that they translate to via forwarding. The analysis
and manipulation rely heavily on the expressive nature of attribute grammars.

We are currently building a much more complete implementation of Lustre
and RSML−e in this framework and exploring the feasibility of building higher-
level abstractions as language extensions. It is our belief that a well-developed
extensible language framework can be built that allows researchers and practi-
tioners to more freely explore the wide range of possible language features that
will help to more effectively specify software systems and ultimately make formal
methods more appealing to a wider audience.
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