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Abstract

This paper describes an extension to Lustre to support the analysis of globally asyn-
chronous, locally synchronous (GALS) architectures. This extension consists of con-
structs for directly specifying the timeout automata used to describe asynchronous
communication between processes represented by Lustre nodes. It is implemented
using an extensible language framework based on attribute grammars that allows
such extensions to be modularly defined so that they may be more easily composed
with other language extensions.

Key words: synchronous languages, extensible languages,
attribute grammars, composable language extensions

1 Introduction

Synchronous languages [2] have been successfully used to describe and reason
about a wide variety of systems, including hardware design and synthesis [24],
embedded software control [2], and modeling and analysis of globally asyn-
chronous, locally synchronous (GALS) architectures [15]. These can be seen
as domain-specific languages that address the concurrency and synchronization
concerns of embedded systems and hardware at a high-level of abstraction.

The Lustre language [14], in particular, has been used in a wide range
of academic and industrial projects. To better suit specific communities, the
Lustre language has evolved into different dialects that further specialize the
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language. These dialects have evolved from a simple “kernel” language that
has been fairly stable throughout the development of Lustre. For example,
to better support safety-critical software development, activation conditions
(condact) and initialized delay (fby) constructs were added to the variant
of the language used by the SCADE toolset [11], and a richer type system
and modularity constructs have been proposed in Lustre v6. Other examples
include with expressions and array slicing and composition operators in Lustre
v4, case, TO and FROM expressions and support for generic types in the
SCADE textual syntax, and different packages for statecharts-like extensions
to the language [8,20]. In recent work [12], we have extended Lustre with
condition tables like those found in RSML−e [25], state variables for building
simple state machines, and a notion of events.

There are many more domain-specific features that would make Lustre
easier to use in new domains. For example, Lustre has been used for the
analysis [15] and code generation [5,6] of GALS architectures. Our interests
here are in using Lustre to specify and analyze (but not generate code from)
the behavior of GALS architectures. Previous explorations of this idea, such
as [15], assume that users manually construct a scheduler node and use it to
manage the clocks of all of the asynchronous processes in the model. However,
a scheduler could be automatically derived using a language extension, given
the rates and drift of the asynchronous processes in the model. To support
this process, we add to Lustre a timeout condact construct that defines the
behavior of an asynchronous process within the architecture as follows:

a, b = timeout condact(rate,min drift ,max drift , channel(x , y), init a, init b);

This construct (defined in Section 2) specifies that node channel representing
a periodic process within the architecture is to be executed every rate millisec-
onds subject to clock drift in the range min drift ..max drift . Like a condact

expression, if the node does not evaluate, then the result of the expression is
the value from the most recent evaluation, and before the first evaluation, the
values init a and init b are used. Using this construct, a scheduler (imple-
mented in the kernel Lustre language) can be automatically derived.

Extending a language using traditional techniques often requires a large
development and tooling effort. Thus, there has been much research in pro-
gramming languages communities on the development of techniques and tools
for implementing languages that reduce the costs associated with adding new
features to languages. There are (at least) two important criteria for exten-
sions to a language. First, the new language constructs should have the same
“look and feel” as the host language constructs. That is, they should support
the same type of error-checking, optimization, and translations as do the host
language constructs. Second, it should be possible to combine implementa-
tions of different extensions to the same host language to create a new language
which incorporates the constructs in both. Furthermore, such a composition
should require little or no implementation-level knowledge of the language
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extensions. When this second criteria (referred to as the “composability cri-
teria”) is not met, users may be forced to chose between incompatible dialects
of Lustre that individually have only some of the desired language constructs.

In previous work [28], we raised this issue of incompatible dialects and the
traditionally high cost of language development. We proposed an extensible
language framework for Lustre based on attribute grammars as a possible
alternative approach to language development that satisfies the two criteria
mentioned above. This approach is used to implement timeout automata as
language constructs in Lustre. The primary contributions of this paper are the
specification and implementation of timeout automata as first class language
constructs in Lustre. Section 2 describes the GALS approach to development
and defines the timeout automata construct. Section 3 describes some aspects
of the implementation of the timeout automata as a language extension in our
extensible languages approach. Section 4 discusses related work and concludes.

2 Timeout Automata and GALS architectures

2.1 GALS and Flight Guidance Synchronization Example

To illustrate our approach to the analysis of GALS architectures, we describe
the synchronization logic in a Flight Guidance System (FGS). The FGS com-
pares the measured state of the aircraft (position, speed, and attitude) to the
desired state and generates pitch and roll guidance commands to minimize
the difference between the measured and desired state. The FGS subsystem
accepts input about the aircraft’s state from several other subsystems and
computes the pitch and roll guidance commands provided to the autopilot.

The FGS system has two physical sides corresponding to the left and right
sides of the aircraft. These provide redundant implementations that commu-
nicate over a cross-channel bus. Normally, only one FGS instance (the pilot
flying side) is active, with the other FGS instance operating as a silent, hot
spare. A transfer switch button on the flight control panel (FCP) can be used
to toggle the pilot flying side. In some critical flight modes, both sides are
active and independently generate guidance values for the autopilot, so that
the autopilot can verify that they agree within a predefined tolerance value. 5

To make the example of this paper tractable, we restrict ourselves to a
simplified specification that deals only with the logic determining whether an
FGS instance is active. This example captures critical functionality for the
FGS, e.g., at least one side is active at all times, and illustrates some of the
communication and coordination problems that can occur in GALS systems.
In our analysis [21], we prove that this simplified model simulates the behavior
of the full FGS w.r.t. synchronization, thereby ensuring that the results proven
about the simplified specification also apply to the full specification.

5 A more detailed description of the FGS can be found in [21].
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Fig. 1. Two FGS Synchronization Architecture in Simulink

A graphical model of the system architecture is shown in Figure 1. The
system inputs are:

• the Transfer Switch input (1), which switches the pilot flying side,

• the Independent Mode inputs (2, 3), which are Boolean signals that deter-
mine whether each side believes it is in the independent mode of operation, 6

and

• the Clock inputs (4 – 7). Clocks are Boolean signals that enable the exe-
cution of the processes within the architecture. Treating the clock signals
as unconstrained inputs allows us to model GALS systems within a syn-
chronous paradigm [15]. By embedding this model inside a model that con-
strains the clocks, we can model a variety of different physical architectures
and reason about their behavior.

The system outputs are:

• the Active outputs, which are Boolean signals that describe whether each
side believes itself to be active, i.e., computing pitch and roll commands for
the autopilot, and

• the Pilot Flying outputs, which are Boolean signals that describe whether
each side believes itself to be the pilot flying side.

2.2 Timeout Automata

A timeout automaton is a mechanism for constraining the Boolean clocks of
processes to match a notion of real (calendar) time. As described in [9], the

6 As discussed in [21], in an actual system these are not inputs to the FGS but are instead
computed. However, the system synchronization properties do not depend on the details of
this computation.
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automata consists of a set of processes, each of which run at a certain rate.
A scheduler (also called an event list) stores the times at which each of the
processes will next execute. Evaluation of the system consists of advancing
time to the next instant in which a process (or processes) can execute. Given
a set of processes P , we assume that each process p ∈ P has an associated
rate rp, a time until next execution tp, and a Boolean clock signal cp, and that
there is a distinguished variable ci that records the increment of time since the
last instant. Then, given a state σ mapping identifiers to values, we generate
a new state σ′ as follows:

• σ′(ci) equals min(σ(tp)) where p ∈ P

• σ′(cp) is true iff σ′(ci) − σ(tp) = 0

• σ′(tp) equals rp if σ′(cp); otherwise σ′(ci) − σ(tp).

Each process “fires” (executes) when its clock signal cp is true. Time always
advances by some positive increment described by ci. If multiple processes
share the same value for tp and tp = ci, then they execute simultaneously
within the step. Clock drift between processes can be introduced to the model
by allowing the rate rp of each process to vary within some specified range.

In [9,3,4] this approach has been shown to be amenable to model-checking
using SMT-based solvers for interesting GALS problems. We have also used
it for system simulation and testing. The primary advantage of timeout au-
tomata for analysis that maximal time progress is made on each step (i.e.,
there are no “stuttering” steps in which the clock ticks but no other changes
occur), and each step consumes a varying amount of real time as described by
the clock increment ci.

In the Dual FGS example, we have used timeout automata to prove the
correctness of the synchronization logic between the two FGSs. Properties
proved include: (1) at least one FGS is always Active, and (2) at most one
FGS is the Pilot Flying side. Other properties of interest are described in [21].
The proofs follow the process described in [9].

2.3 Implementation of Timeout Automata In Lustre

Timeout automata can be described as an extension to Lustre with the addi-
tion of a new expression construct:

timeout condact(rate,min drift ,max drift , 〈node〉, 〈init vals〉);

This construct specifies that node node representing a periodic process within
the architecture is to be executed every rate milliseconds subject to clock
drift in the range min drift ..max drift . Like a condact expression, if the node
does not evaluate, then the result of the expression is the value from the
most recent evaluation, and before the first evaluation of the node, the initial
values init vals are used. It is assumed (and checked by the compiler) that
timeout condact expressions are not nested within other clocked expressions;
this matches the expectation within GALS systems in that the asynchrony
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occurs at the global level and synchronous clocking mechanisms are local to
one of the modeled processes.

In the Dual FGS model, the left and right FGSs run every 100 ms with a
+/- 1 ms drift and communications between the two FGSs requires 15 to 25
ms. The expression of this architecture in Lustre is shown in Figure 2.

type fgs_data = ... ; /* contains PF, Independent, and Ack data */

const lft_fgs_init = ... ; lr_init = ... ;

rht_fgs_init = ... ; rl_init = ... ;

node fgs ( other_fgs_in: fgs_data, ind_mode: bool,

transfer_switch: bool, init_pilot_flying: bool)

returns ( fgs_out: fgs_data ) ;

let ... tel ;

node channel ( channel_in: fgs_data)

returns ( channel_out: fgs_data ) ;

let ... tel ;

node main ( trans: bool, lft_ind_mode: bool, rht_ind_mode: bool )

returns ( lft_fgs_pilot: bool, lft_fgs_active: bool,

rht_fgs_pilot: bool, rht_fgs_active: bool ) ;

var

lft_fgs_out: fgs_data ; lr_chan_out: fgs_data ;

rht_fgs_out: fgs_data ; rl_chan_out: fgs_data ;

let

(1) lft_fgs_out = timeout_condact(100.0, -1.0, 1.0,

fgs(rl_chan_out, trans, lft_ind_mode , true),

lft_fgs_init) ;

(2) lr_chan_out = timeout_condact(20.0, -5.0, 5.0,

channel(lft_fgs_out),lr_init);

(3) rht_fgs_out = timeout_condact(100.0, -1.0, 1.0,

fgs(lr_chan_out, trans, rht_ind_mode , false),

rht_fgs_init) ;

(4) rl_chan_out = timeout_condact(20.0, -5.0, 5.0,

channel(rht_fgs_out),rl_init);

tel;

Fig. 2. FGS Synchronization Architecture using timeout condact.

The semantics of the timeout condact specifications match the formaliza-
tion in Section 2.2. Each timeout condact expression becomes a process in the
timeout automata model, and a global scheduler is synthesized in Lustre from
the set of these processes. As an example, consider Figure 3, the automatically
generated implementation in Lustre for the FGS timeout condact in Figure 2.

The timeout node (line 8 of Figure 3) is used to define the rp, cp, and tp
variables for a process within the model. The rate and drift inputs set rp,
the init time input sets the initial value of tp, and the time decrement input
corresponds to the global time decrement between steps ci. The timeout node
contains an individual count-down timer time remaining that corresponds to
tp, and generates a Boolean signal fired that corresponds to cp.
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The expansion of the timeout condacts in main creates instances of the
timeout node for each process and define constraints that describe the legal
values for timers and drift inputs within the model. Line (3) in Figure 3 is
the translation of the first timeout condact in Figure 2 to its implementation
as a kernel language condact construct. The component node call to fgs and
the initial values are the same; but the rate and drift parameters have been
replaced by a clock variable (corresponding to cp in the formal model) named
fired 1. This variable is set on line (6) by a call to the timeout node that
implements the time keeping operations of the timeout condacts.

On Figure 3 line (7), the model then selects the smallest time-remaining
as the amount to advance each component clock (time decrement) and feeds
that value back to each individual component timer for use in computing the
next clock tick. The definition of the node min is not shown but is what one
would expect. Since the time decrement value specifies the elapsed global
time since the last clock tick, it is also output from the main node to allow
a model checker to check properties involving global time (for example, the
maximum time that some property P can be false is less than some time t).

Assert statements are also generated to restrict the new input drift values
to be within the originally specified ranges of possible clock drift specified
in the original timeout condact constructs. For the first timeout condact,
the generated assert statements are shown in Figure 3 lines (4) and (5).
Additional input parameters for the unconstrained input drift values are also
added to the interface of main. The translation also adds new local variables
in the line following the label (1).

The translation of the timeout condact constructs involves more that just
local transformations that are possible with macro processing. The transla-
tion needs to generate new equations for each timeout condact and for defin-
ing time decrement based on a global analysis that determines how many
timeout condacts were used in the original code and what the generated time-
remaining variables for each one are. Note that the original type declarations
for fgs data, the four constant init values and the declarations of the fgs and
channel nodes are not changed in the translation and appear in the translated
code as they did in the original. Thus, they are not repeated in Figure 3.

As there are only four processes in this model, the automata is relatively
simple. However, with larger number of processes, it can become unwieldy.
It is “boilerplate” code that must be re-written for each GALS system to be
analyzed. Also, it is cumbersome to experiment with different architectural
configurations (e.g., changing the rates and drift) in the translated model. We
wish to encourage this kind of experimentation and formal analysis in the early
stages of system design. Finally, there are hints that can be provided to aid
analysis based on the structure of the automata (for example, the minimum
and maximum possible values that the system clock can advance within a
step). To make it easy to analyze these kinds of models, we would prefer to
add a language construct to automatically construct the automata.
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node main (drift_4: real, init_time_4: real, drift_3: real, init_time_3: real,

drift_2: real, init_time_2: real, drift_1: real, init_time_1: real,

trans: bool, lft_ind_mode: bool, rht_ind_mode: bool)

returns (time_decrement: real,

lft_fgs_pilot: bool, lft_fgs_active: bool,

rht_fgs_pilot: bool, rht_fgs_active: bool);

(1) var fired_4: real; time_remaining_4: real;

fired_3: real; time_remaining_3: real;

fired_2: real; time_remaining_2: real;

fired_1: real; time_remaining_1: real;

(2) lft_fgs_out: fgs_data ; lr_chan_out: fgs_data ;

rht_fgs_out: fgs_data ; rl_chan_out: fgs_data ;

let

(3) lft_fgs_out = condact(fired_1, fgs(rl_chan_out, trans,lft_ind_mode, true),

lft_fgs_init);

lr_chan_out = condact(fired_2, channel(lft_fgs_out), lr_init);

rht_fgs_out = condact(fired_3, fgs(lr_chan_out, trans,rht_ind_mode, false),

rht_fgs_init);

rl_chan_out = condact(fired_4, channel(rht_fgs_out), rl_init);

(4) assert(((drift_1 <= 1) && (drift_1 >= -1)));

(5) assert(((init_time_1 >= 0.0) && (init_time_1 <= (100.0 + 1))));

assert(((drift_2 <= 5) && (drift_2 >= -5)));

assert(((init_time_2 >= 0.0) && (init_time_2 <= (20.0 + 5))));

assert(((drift_3 <= 1) && (drift_3 >= -1)));

assert(((init_time_3 >= 0.0) && (init_time_3 <= (100.0 + 1))));

assert(((drift_4 <= 5) && (drift_4 >= -5)));

assert(((init_time_4 >= 0.0) && (init_time_4 <= (20.0 + 5))));

(6) fired_1, time_remaining_1 = timeout(100.0, drift_1, init_time_1,

time_decrement);

fired_2, time_remaining_2 = timeout(20.0, drift_2, init_time_2,

time_decrement);

fired_3, time_remaining_3 = timeout(100.0, drift_3, init_time_3,

time_decrement);

fired_4, time_remaining_4 = timeout(20.0, drift_4, init_time_4,

time_decrement);

(7) time_decrement = min(time_remaining_4, min(time_remaining_3,

min(time_remaining_2, time_remaining_1)));

tel;

(8) node timeout (rate: real, drift: real, init_time: real,

time_decrement: real)

returns (fired: real, time_remaining: real);

let

time_remaining = init_time -> if fired then rate + drift

else pre(time_remaining) - pre(time_decrement);

fired = (pre(time_remaining) <= pre(time_decrement));

tel;

Fig. 3. Translated FGS Timeout Automata Model
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3 Timeout Automata as a Language Extension

Implementing the timeout automata described in Section 2 by translation to
the kernel Lustre language does not, per se, pose any exceptionally difficult
challenges. Any solution, including ours, will (i) add a timeout node like the
one in Figure 3 to the specification, (ii) add the equations that call to the
timeout node and calculate the time decrement value, and (iii) replace all
timeout condact constructs with the appropriate condact constructs that
use the new Boolean fired flag. The main challenges arise in satisfying the
look-and-feel and composability criteria described in Section 1. We have
built [12] an extensible language framework based on higher-order attribute
grammars (AGs) [17,30] and implemented an AG specification language called
Silver [26] that supports the building of languages and extensions that satisfy
these criteria. In this approach a host language and language extensions are
implemented as individual Silver AG modules. The supporting tools allow the
composition of these modules to define new extended languages with little or
no implementation-level knowledge of the host or languages extensions [12].
In this section we give a brief overview of how the timeout condact extension
is constructed using this approach. Due to space constraints this is necessarily
cursory and a number of simplifications and omissions have been made, but
the full Silver specifications can be found at www.melt.cs.umn.edu.

3.1 Mini-Lustre as the Host Language

The specification for Mini-Lustre (a subset of Lustre) is written in Silver, a
portion of which is shown in Figure. 4. A Silver specification for a language
consists of an unordered series of declarations that define its concrete and ab-
stract syntax as well as rules which assign values to attributes associated with
non-terminals in the abstract syntax tree (AST). Since concrete syntax is de-
fined as expected for traditional parser and scanner generators we do not show
those and only discuss abstract syntax. To define the (abstract) syntax, there
are declarations for terminals, non-terminals (keyword nt), and productions
(prod), following standard AG terminology [17]. Synthesized attributes (syn)
propagate information up the abstract syntax tree; inherited attributes (inh)
propagate information down the AST. Equations defining attribute values are
used to specify the semantic analyses, such as type checking. 7

The first line in Figure 4 provides the name of this grammar. These are
used in import statements to compose attribute grammar specifications to
create the specification for an extended language. Next, are declarations for
nonterminals. Synthesized attributes pp, errors, and ctrans of type String

are declared; these attributes, respectively, define a node’s pretty-print or
“unparsed” representation, the errors occurring on the node and its children,
and its translation to C. The attribute typerep is used to represent the type

7 This is meant broadly and can include causality and initial-state-definedness checks.
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grammar lustre ;

nt Root, DclList, Dcl, VarDclList, VarDcl, Locals, EqList, Eq, IdList, Expr;

syn attr pp :: String occurs on Root, Dcl, Expr, VarDcl, ... ;

syn attr errors :: String occurs on Root, Dcl, Expr, ... ;

syn attr ctrans :: String occurs on Root, Dcl, Expr, ... ;

syn attr typerep :: TypeRep occurs on Expr, ExprList ;

prod root r::Root ::= dl::DclList

{ r.pp = dl.pp; r.errors = dl.errors; r.ctrans = ... dl.ctrans ...; }

prod dclListCons dl::DclList ::= d::Dcl dltail::DclList { ... }

prod dclListOne dl::DclList ::= d::Dcl { ... }

prod nodeDcl n::Dcl ::= name::Id inputs::VarDclList outputs::VarDclList

locals::VarDclList eqs::EqList

{ n.pp = "node " ++ name.lexeme ++ " (" ++ inputs.pp ++ ") " ++ "returns"

++ " (" ++ outputs.pp ++ ") " ++ "\n" ++ locals.pp ++ "\nlet\n"

++ eqs.pp ++ "\ntel;\n";

n.errors = inputs.errors ++ outputs.errors ++ ... ; n.ctrans = ... ; }

prod varDcl vd::VarDcl ::= var::Id type::Type { ... }

prod equation eq::Eq ::= ids::IdList expr::Expr

{ eq.pp = ids.pp ++ " = " ++ expr.pp ++ ";\n" ;

eq.errors = ... ; /* ensure ids and expr have same type(s) */ }

prod idExpr e::Expr ::= id::Id

{ ...; e.ctrans=...; e.errors = ... ; /* ensure id is declared */ }

prod condactExpr e::Expr ::= f::Expr call::Expr init_vals::ExprList { ... }

Fig. 4. A portion of the Silver specification of Mini-Lustre.

of an expression or expression/id list. The occurs on clause specifies which
nonterminals an attribute decorates. We will elide other nonterminal and
attribution declarations as they can be inferred from the specification.

A Mini-Lustre program (represented by Root) is a series of declarations
(DclList). The nonterminal Root on the left hand side of production root is
named r (“::” reads as “has type”); the right hand side has a single DclList
nonterminal named dl. Equations defining the synthesized attributes of r are
listed in curly brackets. For example, the first equation defines the pp attribute
on r to be the value of pp on dl. A node, defined by nodeDcl, has a name
(name), a list of input parameter declarations (inputs:: VarDclList), a list
of output parameters (outputs), a list of local variable declarations (locals),
and a list of equations (eql:: EqList). The production varDcl binds iden-
tifier names to types. These bindings are stored in a symbol table that is
passed to the equations in eqs and used for type-checking the expressions and
equations following rules specified by the errors attributes. For example, the
production equation checks that the identifier id and expression expr have
the same type and generates an error message if they do not.

3.2 Timeout Automata as a Language Extension

To add the timeout condact construct to the extensible Lustre framework we
must write a Silver attribute grammar specification that will specify the con-
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crete and abstract syntax of the new construct, perform error checking and
other analyses on the timeout condact, specify its translation to a condact

construct, and for each use of a timeout condact in a node add additional
equations and parameters to that node. Further we must add the definitions
for the timeout and min node to the Lustre specification. Using language fea-
tures provided by Silver, all these tasks can be specified in a single grammar
module, thus making this extension a stand-alone unit that can be optionally
composed with other similarly-defined language extensions.

Fig. 5 shows the Silver production tmoCondactExpr that specifies the ab-
stract syntax of the timeout condact construct. To maintain the native look-
and-feel, the pp, errors, and typerep attributes are defined explicitly in this
production. Explicitly defining errors ensures that type errors are detected
and reported on the timeout condact, not its kernel Lustre translation. Though
elided, the definition of errors checks that the types of values returned by
the node call call match the types of the initial values init vals.

Although tmoCondactExpr explicitly defines some attributes, it does not
do so for attributes such as ctrans (or attributes for translating to the input
languages of different model checkers). These attributes are implicitly defined
using forwarding [27] through translation to a condact (condactExpr) in the
host language by using the forwards to clause. When a tmoCondactExpr

node in the AST is queried for an attribute that is not explicitly defined by
an attribute definition, it forwards that query to the forwards-to construct.
The value defined there is returned as the value of that attribute for the
timeout condact. Thus, the value of ctrans on a timeout condact is the value
of the ctrans attribute on the generated (translated-to) condact construct.
Therefore, all back-end tools only see the generated condact calls while Lustre
programmers see the timeout condact calls they write.

In addition, the Silver specification assigns a unique integer identifier (at-
tribute num) to each timeout condact call. The identifier for each call is used
in generated local variable names such as fired 1 and fired 2 as seen in
Figure 3. Furthermore, relevant information regarding this timeout condact

call is gathered and propagated up the AST to the enclosing node declaration
using the synthesized attribute tmoCallInfoList. This information is used
for generating the added equations for variables such as time remaining 1

and time decrement also seen in Figure 3. The additional attribute defini-
tions of tmoCallInfoList on existing host language productions can be all
specified in the grammar module of the timeout condact extension by using
the Silver language feature aspect productions, and no changes to the host
language specification need to be made [13]. Once the information of all
timeout condact calls in a node is gathered to the level of node declaration
(production nodeDecl), it is used to generate additional equations and param-
eters to be inserted into the node. This step is a global transformation that
is simplified and modularly defined by using the Silver language feature col-

lections. Its mechanism is not further elaborated here and interested readers
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grammar timeout; import lustre;

prod tmoCondactExpr e::Expr ::= rate::Expr min_drift::Expr max_drift::Expr

call::Expr init_vals::ExprList

{ e.pp = "timeout_condact(" ++ rate.pp ++ ", " ++ min_drift.pp ++ ... ;

e.typerep = call.typerep ;

e.errors = ...; /* check that call and init_vals have the same type */

forwards to condactExpr(idExpr(mkTerminal(Id, "fired_" ++ toString(e.num))),

call, init_vals);

e.num = gen_unique_int ( ) ;

/* gathering information of timeout_condact calls */

e.tmoCallInfoList = [tmoInfo(rate, min_drift, max_drift, e.num)]; }

Fig. 5. Silver specification for the timeout condact construct.

may refer to [13] for detailed explanations.

4 Conclusion

4.1 Discussion

In this paper we have defined a timeout condact construct useful in specifying
and analyzing GALS architectures. It has been implemented as a language
extension in an extensible Lustre framework. Timeout automata is one of
several approaches for modeling asynchrony within synchronous languages. It
has been used successfully on several protocol examples (e.g. [9,3,4]) and al-
lows a natural expression of interesting safety and bounded liveness properties
over GALS architectures. However, in the simplistic translation described in
this paper, it adds a significant amount of additional state into the model,
which makes formal analysis more expensive. Abstractions of the possible
real-time evolutions of the architecture, such as those described by [15] may
yield more tractable analysis. The use of extensible languages opens up several
possible directions for future research. First, we plan to investigate whether
abstractions can be performed as part of the compilation step to “kernel” lus-
tre. Second, we plan on investigating techniques for describing clock relations
(such as in [15]) directly through language extensions.

Our initial efforts in extensible languages were in the domain of program-
ming languages. We have built an extensible specification of Java 1.4 and
specified a number of non-trivial language extensions [29]. One extension em-
beds the database query language SQL into Java so that queries can be writ-
ten naturally and syntax and type errors in SQL queries can be detected at
compile-time, instead of run-time, as is the case in library-based approaches.

4.2 Related Work

There have been many other efforts to extend Lustre with new language fea-
tures. Many of these features can also be implemented by translation to the
a kernel Lustre language. For example, recent work to add state machines to
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Lustre [8] translates the state machine constructs into a kernel Lustre language
and the addition of modules and generics proposed for Lustre v6.

Extensions for synthesizing Lustre logical clocks from Simulink models
with “real-time” rates for blocks are proposed in [5,6]. This work is similar
in that it moves from a notion of real-time to logical time. Unlike timeout
automata, it imposes a fixed real-time value on the base rate of the model;
this allows for code generation but makes it more difficult to analyze processes
with non-harmonic periods or arbitrarily small amounts of process drift.

Embedded domain specific languages [16], higher-order extensions to Lus-
tre [23], and reactive extensions to ML [19] can be used to build extensible
language frameworks for synchronous languages [7]. But composition of lan-
guage features typically requires some implementation level understanding of
the language extension and thus various extensions cannot be as freely com-
posed as in our approach [12].

More generally, several approaches have been described for extending lan-
guages with new features. Macros systems (lexical, syntactic, hygienic [18],
etc) do allow new languages constructs to be specified but they lack an effective
means for performing the static analysis used to, for example, generate domain
specific error messages. Note that some modern macro systems (e.g. [1] how-
ever do a some limited facilities for error processing. Object-oriented frame-
works, such as Polyglot [22], have also been proposed for building extensible
languages, but they do not support the automatic composition of language
extensions that is provided by the attribute grammar-based approach.

Modular language definition and extensibility has received a significant
amount of attention from the AG community. Other attribute grammar
approaches lack forwarding and the default definition of attributes that it
provides - thus the reuse of language features specified as AG fragments is
achieved only by writing attribute definitions that “glue” new fragments into
the host language AG. However, a particularly interesting approach is the
rewritable reference attribute grammars [10] in the JastAddII system. New
constructs are translated to host language constructs by destructive rewrites
on the syntax tree. Although forwarding is similar to rewriting, it is non-
destructive; the original tree and the forwards-to tree exist simultaneously.
This allows both the explicit and implicit (via forwarding) specification of se-
mantics, a capability that we have found to be crucial in the highly modular
language specifications required for extensible languages and composable lan-
guage extensions. Some modularity is lost when the rewrites are destructive.
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