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Abstract. In this paper we describe a language extension that adds
dimension analysis to Java. Dimension analysis can be used to check that
values that represent physical measurements such as length and mass
are not used inconsistently. What distinguishes this work from previous
work that adds dimension analysis to programming languages is that
here the extension is implemented as a composable language extension.
This means that it can easily be combined with other extensions, possibly
developed by other parties, to create an extended implementation of Java
with new features that address concerns from several different domains.

1 Introduction

Dimension analysis can be used to check that a computer program does not in-
correctly use values that represent physical measurements. For example, it can
ensure that a value representing a length is not added to a value representing
a mass. This analysis may be extended to also take into account the units of
measurements of these values and thus check, for example, that a length mea-
surement in feet is not added to a length measurement in meters.

Modern programming languages rarely provide support for this type of anal-
ysis and it is the source of a number of highly publicized software failures. For
example, in September 1999, the unsuccessful landing of the Mars Climate Or-
biter on the surface of Mars was traced back to a software failure in which a
measurement in English units was interpreted as a measurement in metric units
by the navigation software [13].

This paper is not the first to add dimension analysis to a programming
language. To mention just a few, Wand and O’Keefe [20] and Kennedy [11] add
dimension inference and analysis to ML and House [9] add it to Pascal. The work
presented here differs from these in that it adds dimension analysis to Java as a
composable language extension. The others add dimension analysis by creating a
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new monolithic language that cannot be easily extended with some other features
that may be desired. Our goal is to extend a language with dimension analysis
in such a way that it is composable with other language extensions.

Our dimension analysis extension is implemented in the able]J extensible
language framework [17]. ableJ currently supports Java 1.4, but some aspects of
Java 1.5 have been added. It is often the case in ableJ that the composition of the
host language (Java) and several extensions can be done automatically. Thus, a
programmer can direct the tools to build a customized language implementation
for the host language extended with the unique set of extensions that he or
she requires to handle the task at hand. This paper describes how dimension
analysis can be implemented as a composable language extension. This extension
follows the pattern described previous work on ableJ and composable langauge
extensions [17].

To get a sense of the type of dimension analysis that is supported by this
extension, consider the sample program in Figure 1. The key features include the
new type expressions for specifying dimensions in types. For example, the fields
len and wid are defined with dimension type “Dim<int, L>” whose dimension
expression L indicates that this is a length measurement and whose represen-
tation type specifies that this measurement value is represented as an integer.
These type expressions share the syntax of Java generics but are implemented as

public class Sample {
Dim<int, L> len, width, perimeter ;
Dim<int, L"2> area ;
public Dim<int, a b> product (Dim<int, a> x, Dim<int, b> y)
{ return x *x y ; }
public Dim<int, a> sum (Dim<int, a> x, Dim<int, a> y)
{return x +y ; }

void demo (int 1, int w) {

len = (Dim<int, L>) 1 ; // cast from primitive types
(Dim<int, L>) w ;
perimeter = len + wid + len + wid ; // a valid sum
Dim<int, T> t = (Dim<int, T>) 3 ;

wid

Dim<int, L/T"2> acc ; // an acceleration variable
area = len * wid ; // a valid product

len = sum(len, wid) ; // valid call to method sum
area = product(len, wid) ; // valid call to method product
len = sum(len, area) ; // invalid call to method sum
len = len + area ; // a dimension error

acc = len / (t * t) ; // an acceleration

Fig. 1. A sample program using the dimension analysis extension.



new types; Dim is a new keyword, not the name of a parameterized class. Another
feature to note is that arithmetic operators such as +, *, and other are overloaded
for dimension types so that we can check that dimension values are added and
multiplied correctly. Assignment is similarly overloaded. An overloaded method
call operator ensures that for any method call, the dimension variables (a and
b) in the dimension expressions in methods product and sum are substituted for
types in a consistent manner. In the second assignment to area in demo we check
that the dimension variable a is instantiated to the same dimension expression,
in this case L, in both of the input types and in the output type and that these
instantiated dimension expressions match those in the types of the actual argu-
ments. In processing this program, the extended language implementation will
check that the dimension types are used correctly and translate the program to
a pure Java program in which the dimension types are translated to their repre-
sentation types. Although this example program is a bit contrived it highlights
the key features of the language extension.

In Section 2 we describe the ableJ framework and the attribute grammar that
defines Java. In Section 3 we describe the attribute grammar that defines the
language extension that implements dimension analysis. In Section 4 we describe
some related work and conclude in Section 5.

2 The ableJ 1.4 extensible language framework

In this section we briefly describe the ableJ extensible language framework. Java
1.4 and the dimension analysis language extension are implemented as attribute
grammars written in the Silver [15] attribute grammar specification language.
Many aspects of the ableJ grammar have been simplified for presentation reasons.
Additional information about ableJ can be found in previous work [17].

Silver has many features beyond those originally introduced by Knuth [12].
These include higher-order attributes [19], collection attributes [3], forward-
ing [16], various general-purpose constructs such as pattern matching and type-
safe polymorphic lists. Silver also has mechanisms for specifying the concrete
syntax of languages and language extensions. It passes these specifications to
Copper, our parser and scanner generator that implements context-aware scan-
ning [18]. In this approach the scanner uses information from the LR-parser’s
state to disambiguate lexical syntax. The resulting scanner and parser are deter-
ministic and also support the composition of language extensions. In this paper
we will only present the abstract syntax of ableJ and the dimension extension.

Figure 2 presents a significantly simplified subset of the Silver specification
of Java 1.4 which is used in our actual implementation. This grammar defines
nonterminal symbols, terminal symbols, productions, and attributes. The non-
terminals Stmt, Expr, and Type represent, respectively, Java statements, expres-
sions, and type expressions that appear in the abstract syntax tree of a Java
program. The nonterminal TypeRep is used in the symbol table (the attribute
env) in bindings of names to type representations.



grammar edu:umn:cs:melt:ableJi4 ;
nonterminal Stmt, Expr, Type, TypeRep ;
terminal Id_t /[a-zA-Z][a-zA-Z0-9_]*/ ;

syntheszied attribute pp::String occurs on Expr, Stmt, Type;
synthesized attribute errors::[String] occurs on Expr, Stmt,
synthesized attribute typerep::TypeRep occurs on Expr, Type ;
synthesized attribute hostStmt::Stmt occurs on Stmt ;
synthesized attribute hostType::Type occurs on Type ;

abstract production if_then s::Stmt ::= cond::Expr body::Stmt
{ s.pp = "if (" ++ cond.pp ++ ") {\n" ++ body.pp ++ "F\n" ;
s.hostStmt = if_then( cond.hostExpr, body.hostStmt ) ;
cond.env = s.env ; body.env = s.env ;
s.errors = case cond.typerep of
booleanTypeRep() => [ ]
| _ => [ "Error: condition must be boolean." ]

end ++ cond.errors ++ body.errors ; }
abstract production add e::Expr ::= 1::Expr r::Expr
{epp="C"++ 1.pp ++ " + " ++ r.pp ++ ")"
attribute transforms :: [Expr] with ++ ;
transforms := [ ] ;
forwards to if length(transforms) == 1 then head(transforms)
else if length(transforms) == 0 then exprWithErrors(
["Type error on addition, types not supported."] )
else exprWithErrors(["Internal compiler error."]) ; }
abstract production localVarDcl s::Stmt ::= t::Type id::Id_t
{s.pp=t.pp ++ " " ++ id.lexeme ++ "\n" ;
s.defs = [ varBinding(id.lexeme, t.typerep ) 1 ; }
abstract production boundId e::Expr ::= id::Id_t t::TypeRep
{ e.pp = id.lexeme ;
attribute transforms :: [Expr] with ++ ; transforms := [ ] ;
forwards to if length(transforms) == then head(transforms)
else generic_boundId(id,t) ; }
abstract production booleanTypeExpr te::TypeExpr ::= b::’Boolean’

{ te.typerep = booleanTypeRep() ; te.pp = "Boolean" ;
te.hostType = booleanTypeExpr(b); }

abstract production booleanTypeRep tr::TypeRep ::= { tr.pp="boolean"; }
aspect production add e::Expr ::= 1::Expr r::Expr
{ transforms <- if match(intTypeRep(), 1) && match(intTypeRep(), r)
then add_int(1,r) else [ ] ; }
abstract production add_int e::Expr ::= 1::Expr r::Expr

{ e.typerep = intTypeRep ( ); e.hostExpr = add(l.hostExpr,r.hostExpr); }

Fig. 2. Highlights of a simplified Java host language attribute grammar.



Synthesized attributes such as the pretty print attribute pp are defined. pp
has type String and decorates (occurs on) tree nodes of type Expr, Stmt, and
others. An errors attribute is used to collect type errors, and later dimension
errors, found in a program. Both of these attributes are defined on the if then
production. The definition of the errors attribute uses pattern matching to
check that the type (typerep) of the condition is Boolean.

The production localVarDcl creates a binding of the name of its identifier
to its type representation and passes this up the tree in the defs attribute. At
the statement-block level (and others) this information is collected to form the
symbol table and passed back down the tree in the inherited attribute env.

Forwarding: We have previously introduced forwarding[16] as an extension to
attribute grammars that is useful in specifying languages in a highly modular
way. To use forwarding, a production specifies (using the forwards to clause)
how to build a new AST that will be queried for any attributes that are not
explicitly defined by an equation on the “forwarding” production. This new
AST, called the “forwarded-to tree”, can be seen as the semantic equivalent
of the original forwarding AST. If the original tree does not explicitly define
an attribute a, its value is automatically computed by copying it from the a
attribute on the forwarded-to tree.

Forwarding is used by productions that define new language extensions to
specify the semantically equivalent construct in the host language that they will
“translate” to. The type expression “Dim<int, L>” used in the declaration of
len and wid in the second line of Figure 1 will be represented in the program’s
AST by a production that forwards to the type expression tree for int. As we
will see below (Figure 4), the extension production will define some attributes to
facilitate dimension analysis but it will not define any of the host NT attributes
that are used to translate the extended program to a semantically equivalent
host language program. Each nonterminal N7 in the host language is decorated
by a synthesized attribute host NT of type NT that holds a node’s translation
to the host language. This attribute is defined only on host language produc-
tions and computes the translation using the host language production and the
host language translations of its children (stored in their host NT attribute) to
compute this. This can be seen on the if_then production. When the dimension
type expression tree for “Dim<int, L>” is queried for the value of its hostType
attribute it will forward that query to the type expression tree for “int” which
will return a copy of itself. In this manner, we can extract the translation of the
extended program to the host language.

Operator Overloading: Operator overloading also uses forwarding and this can
be seen in the production add. This production is used by the parser in con-
structing the original AST. It is a place holder that will forward to a new Expr
tree constructed by a production specific to the types of the operands. In the
simplified example in the figure, this production specifies a collection attribute [3)
named transforms that is given an initial value (by the := operator) of an empty
list. The aspect production for add near the bottom of the figure can remotely



define values for attributes for the original add abstract production. In this case,
it may add an Expr tree to the transforms list, using the <- operator, if the
types of the operands 1 and r are both integers. The tree that it may add is
constructed by the add_int production. This production defines the errors and
typerep attributes for integer addition. When the original tree built by add is
queried for its typerep attribute, for example, it forwards that query to the
first tree in the transforms list. If transforms is empty, then there is a type
error in the program; there is no implementation for add for the types of the
child expressions. If there is more than one tree in transforms then an internal
compiler error has occured since more than one aspect production has specifed
an implementation for addition for the types of the child expressions. This can
only occur when language extensions overload operators for host language types,
which they rarely do. Extensions typically overload operators for the new types
that they introduce; such overloading do not trigger this error and it is thus
rare in practice. In Section 3 we will see that the dimension analysis extension
overloads addition and other constructs in a similar fashion.

Language FExtensions: In the following section we describe the attribute gram-
mar specification of the dimension analysis language extension. This extension
follows the pattern of other extensions to the ableJ framework. Extensions may
introduce new language constructs, either by specifying new concrete syntax so
that their abstract syntax is placed into the original AST, or by using opera-
tor overloading facilities so that a “place holder” production will forward to a
production specified in the language extension. In either case, the productions
defined in the extension will (and must) specify their transformation to a se-
mantically equivalent host language construct using forwarding. In effect, the
translation of the extended program to a host language program is carried out
by the many local transformations that forwarding specifies. Different language
extension constructs are not isolated from one another in the AST however since
they can communicate when declarations add information to the symbol table
that may be retrieved in other parts of the AST. The extension productions will
do some semantic analysis (by explicitly defining some attributes). Forward-
ing is then used to specify their translation to the host language. The dimension
analysis extension follows this pattern. The new productions perform the dimen-
sion analysis and then forward to pure Java constructs on which the dimension
information has been translated away.

3 Dimension analysis extension

In this section we discuss some principles of dimension analysis and then show
how dimension analysis can be added as a composable language extension to
the ableJ specification of Java. This language extension defines new syntax for
type expressions and overloads some existing host language syntax for arith-
metic operators, among others, to perform dimension analysis and ensure that
measurement values are not incorrectly used.



3.1 Principles of dimension analysis

Dimensions describe a specific type of measurement. These include length, mass,
temperature, among others. These are not to be confused with units that specify
the unit of measurement for a particular dimension. For example, the dimension
of length can be measured in units of feet or meters. Dimensions can be clas-
sified as base dimensions or derived dimensions. Traditionally, base dimensions
include length, mass, temperature, time, electric current, amount of material
and luminosity. Derived dimensions are specified in terms of these. For example,
area is derived from the base dimension of length as length squared; acceleration
is derived from length and time as length divided by time squared. Dimension
expressions are generated from base dimensions and dimension variables using
the operations of product and inverse. From these operations we can define di-
vision and exponentiation. A unit dimension is represented as 1. We represent
dimension expressions in our language extension using the nonterminal DimExpr
and the productions shown in Figure 3. A nonterminal and productions for base
dimensions are also shown. The acceleration dimension expression L / T2 is
represented by the tree divide (basedim(L()), power(basedim( time()),2)).

We will define a few functions on DimExpr trees for use in type checking.
A unify function is used to unify two dimension expressions and if successful,
return the set of substitutions for dimension variables that unifies them. This
function will be used in checking that two expressions that have dimension types
can be added or copied in an assignment. If the dimension expressions that are
components of their types can be unified then it is safe to add or copy them.
Note that multiplication of values of different dimensions is always allowed. The
dimension of the resulting product is the product of their respective dimension
expressions. If unit checking is added, then multiplication can fail if the operands
use units inconsistently.

nonterminal DimExpr ;

abstract production product de::DimExpr ::
abstract production divide de::DimExpr ::
abstract production power  de::DimExpr ::
abstract production dimvar de::DimExpr ::= v::String { }
abstract production basedim de::DimExpr ::= bd::BaseDim { }
abstract production unit de: :DimExpr ::= {1

1::DimExpr r::DimExpr { }
1::DimExpr r::DimExpr { 1}
b::DimExpr e::Integer { }

nonterminal BaseDim

abstract production M bd::BaseDim ::= { } -- Mass
abstract production L bd::BaseDim ::= { } -- Length
abstract production T bd::BaseDim ::= { } -- Time

Fig. 3. Grammar for dimension expressions



3.2 Type expressions for dimension analysis

New type expressions: We need new type expressions so that programmers can
specify dimension types. Thus, an abstract production dimTypeExpr with the
left hand side as the host language nonterminal Type is introduced in the ex-
tension. This production is shown in Figure 4. This production specifies that
dimension types consist of a representation type rep (int, float, Integer, etc)
and a dimension expression d that specifies the dimensionality of the values to
be represented. This production defines a pretty print attribute and errors at-
tribute as expected. The typerep attribute specifies the representation of the
type. This is used by productions such as the localVarDcl production from
Figure 2 to add information to the symbol table that binds variable names to
types. The end result is that there are entries in the symbol table env that bind
variable names to information about their type. The dimTypeExpr production
passes the symbol table env down the tree to its components and also forwards
to the representation type rep.

Note that this extension does not check that the underlying representation
types are type correct. Dimension analysis productions, such as dimTypeExpr,
will forward to constructs on which the dimension types have been erased that do
additional type checking on the translated version to ensure that the underlying
representation types are used correctly. Errors detected here are reported to the
programier.

Dimension Expressions: Concrete syntax productions are used to parse dimen-
sion expressions like those shown in the Dim type expressions in Figure 1 to
construct abstract syntax trees (ASTs) using the productions in Figure 3. These
trees are the representation of the dimensions used in dimension analysis. We do
not describe the specification of the concrete syntax here as it is what one would
expect. A normalization function (normalize) converts these expressions into a
normalized form that simplifies the dimension analysis. For example, normalize
would simplify the dimension expression (L T) / (M T°2 M"(-1)) toL / T.

abstract production dimTypeExpr te::Type ::= rep::Type d::DimExpr
{ te.pp = "Dim<" ++ rep.pp ++ "," ++ d.pp ++ ">" ;

te.errors := rep.errors ++ d.errors;

te.typerep = dimTypeRep_ST(rep.typerep, normalize(d)) ;

rep.env = te.env ; d.env = te.env ;

forwards to rep ; }

abstract production dimTypeRep_ST tr::TypeRep ::= rep::TypeRep de::DimExpr
abstract production dimTypeRep_Ex tr::TypeRep ::= de::DimExpr reptree: :Expr

Fig. 4. Type expression and representation productions.



Type representations: The host language nonterminal TypeRep is used for in-
ternal representations of types that are used in type checking in ableJ. For our
dimension extension to fit into the ableJ framework we define productions that
define type representations for dimension types. There are two such represen-
tations. The first production, dimTypeRep_ST, is used in the symbol table and
specifies the dimensionality and the representation type of variables declared as
dimension types. The signature of this production is shown in Figure 4. This
production is used in dimTypeExpr to define the type representation of the di-
mension type. The second, dimTypeRep_Ex, is used in type representations that
decorate expressions. This one also specifies the dimensionality of the expression
but instead of the type of the representation it specifies the tree that this expres-
sion will translate to. The type representation on this tree is the representation
type. Thus, expressions (Expr trees) that have a dimension typerep will forward
to this representation tree that is part of their type. This TypeRep production
is used below in the Expr productions that overload arithmetic operators.

3.3 Overloading existing host language syntax

When introducing a new type, we often find it useful to overload the certain host
language operations to provide type-specific behavior to these operations. For
example, we will overload the host addition production add so that we can check
that the dimensions of the operands are compatible on addition. This subsection
describes several of the operators (productions) that are overloaded.

Overloading variable references: It is sometimes useful to overload the variable
reference production so that variables that are bound to dimension types get
their own type-specific production in the AST.

The able] infrastructure handles Java name disambiguation' and the looking
up of names and binding them to their types. The abstract productions that
perform this task are not relevant here. What matters is that they will forward
to the production boundId shown in Figure 2. This production has a collection
attribute called transforms that has the type [Expr]. Language extension will
add new trees to this list if they want to overload a specific instance of a variable
reference. This is similar to the way in which add is overloaded.

The aspect production at the top of Figure 5 from the dimension extension
specifies that if the type bound to this identifier is a dimension type, then add the
AST that is constructed with the bound identifier production specific to dimen-
sion types (boundId dims) to the list of possible trees that the original boundId
can transform to. If there is only one such tree, then the boundId production
will forward to that. In the case where the type of the identifier is a dimension
type, we then effectively overload variable references with the boundId_dims pro-
duction. This production, also in Figure 5, defines the type (typerep attribute)
to be the dimension type that contains the dimension expression of the type
(dimexpr(t)) and the tree that this will eventually translate to (reptree). The

! This determines, for example, if “a” in “a.b.c” is a package, a class, or an object.



tree reptree is constructed with the boundId production but the type given
to that production is the representation type of the dimension. As an example,
consider the variable len in the example program in Figure 1. On the multi-
plication of len with wid, the len identifier in the original AST is overloaded
using the production boundId_dims and sets its type to be a dimension type that
contains a representation tree that is just the bound identifier “len” that has as
its type the type int. Thus, we essentially erase the dimension information in
the translation to Java once we have verified that the dimension values are used
in a correct manner.

aspect production boundId e::Expr ::= id::Id_t t::TypeRep
{ transforms <- if match(dimTypeRep_ST(_,_), t)

then [ boundId_dims(id,t) ] else [ ] ; }
abstract production boundId_dims e::Expr ::= id::Id_t t::TypeRep

{ e.pp = id.lexeme ;
e.typerep = dimTypeRep_Ex(dimexpr(t), reptree) ;
forwards to reptree ;
local attribute reptree :: Expr ;
reptree = boundId(id, reptyperep(t)) ; 1}

Fig. 5. Overloading variable references.

Overloading arithmetic operations: In Section 2 we showed how addition can
be overloaded with a type specific production. In Figure 6 are the aspect and
dimension-type-specific productions that accomplish this for dimension types.

The production add_dims will unify the dimension expressions from the type
representations of the two operands 1 and r. If unification succeeds, this process
returns a list of bindings (bnds of type [UnifyBnd]) that map dimension vari-
ables to dimension expressions that will unify the two dimension expressions and
an empty list of errors. Otherwise an empty list of bindings and a list with one
error message specifying that unification failed is returned. The type of unify
is given in Figure 7. If the case of the addition in Figure 1 of x and y in method
sum which both have the dimension expression a, the unification succeeds and
returns no bindings since they are the same expression. In the case of the ad-
ditions that compute perimeter the dimension expressions are always L which
also unify. If we were to unify dimension expressions L and a unification would
succeed with the binding a — L. In these cases the bindings are applied (using
the apply function) to the dimension expression of 1 to get the new dimension
expression used in the typerep for the type of the sum. For the erroneous ad-
dition of len and area, the dimension expressions L and L L will not unify. In
this case the dimension expression in the typerep is an erroneous dimension
expression. Our extension uses the unification algorithm given by Kennedy in
his work on extending ML with dimension analysis [11].

10



aspect production add e::Expr ::= 1::Expr r::Expr
{ transforms <- if match(dimTypeRep_Ex(_,_), 1) &&
match(dimTypeRep_Ex(_,_), 1)
then [ add_dims(1,r) 1 else [ ] ; 1}

abstract production add_dims e::Expr ::= 1::Expr r::Expr
{epp=1.pp++ "+ " ++ r.pp;
local attribute bnds :: [UnifyBnd] ;
local attribute errs :: [String];
(bnds,errs) = unify ( get_dimexpr(l.typerep), get_dimexpr(r.typerep) ) ;
e.typerep = dimTypeRep_Ex(apply(bnds, get_dimexpr(l.typerep)), rep_tree);
forwards to if null(l.errors ++ r.errors) then rep_tree
else exprWithErrors(l.errors ++ r.errors) ;
local attribute rep_tree :: Expr ;
rep_tree = if null(errs)
then add (get_rep_tree(l.typerep), get_rep_tree(r.typerep))
else exprWithErrors(["Dimensions incompatible on addition."]);}

Fig. 6. Overloading addition.

The tree that the add_dims production will forward to (rep_tree) is either
the sum of the representation trees of 1 and r (constructed by the production
add) or an erroneous tree indicating that the dimensions were incompatible.
It is this tree that this production will forward to. When unification succeeds,
rep-tree is simply the same expression in which the dimension information has
been removed and the variables and expressions have the type of the underlying
representation type instead of the dimension type.

Overloading multiplication is done in a similar fashion except that we need
only generate the product of the dimension expressions of the operands since
multiplication of any dimensions is valid.

function unify  ([UnifyBnd], [Error]) ::= di::DimExpr d2::DimExpr { ... }
function apply DimExpr ::= b::[UnifyBnd] de::DimExpr { ... }
function compose [UnifyBnd] ::= bl::[UnifyBnd] b2::[UnifyBnd] { ... }

Fig. 7. Function headers for unify, compose, and apply.

Overloading assignment and parameter passing: The productions for assignment
and method call can also be overloaded in a similar fashion. For many language
extensions that introduce new types this is often not necessary however since, if
these productions are not overloaded, they forward to trees that use the copy
production whose signature is shown below:

abstract production copy e::Expr ::= s::Expr t::TypeRep { ... }

11



By overloading this production, an extension in essence overloads assignment, the
copying of parameters into a method, and the copying of the return value back
out. In the dimension extension we overload this production with a copy_dims
production that unifies the dimension expressions on s and t to check that the
dimensions are compatible. It is quite similar to add-dims and we thus do not
show it here.

Owverloading method calls: Although the copy production above would ensure
that on method calls the dimension expressions of the formal and actual param-
eters unify individually, we must check that they unify in a consistent manner
and that we provide consistent substitutions for dimension variables in all places.
For example, the call to sum in Figure 1 with arguments len and area is incor-
rect because we must unify the dimension variable a to the same dimension
expression. Although copy would unify a to L and a to L L for each parameter
individually this is not enough. Thus, we will overload the method call produc-
tion with a type specific production for dimension types if any of the arguments
have a dimension type. (In the case where only the return type is a dimension
type the overloading of copy is sufficient.)

This new method call production calls the function check_call shown in
Figure 8 and passes it the dimension expressions of the formal parameters and
actual parameters that have dimension types. It also passes in an empty set of
bindings. It will first check that for each parameter either both the formal and
the actual parameter or neither have a dimension type. The check_call func-
tion calls unify on the first dimension expression in the formals and actuals
lists after applying any previously discovered substitutions (psubs) to them. If
unification succeeds, then it calls itself with the tails of the lists and the new sub-
stitutions (new_subs) and the application of them to the dimension expressions
in the previous bindings psubs.

In the case of the incorrect call to sum mentioned above, check_call will first
unify a to L for the first parameter len. It will then pass this binding in psubs
in the recursive call. On the second call, it first applies this substitution to a,
the dimension expression of the formal parameter y to get L, and then applies it
to L L, the dimension expression the actual parameter area, to get L L. It then
attempts to unify L and L L and fails—thus indicating that the arguments to
sum have incompatible dimensions.

If the call to check_call succeeds, the returned set of substitutions are ap-
plied to the dimension expression of the return type to get the dimension ex-
pression that is used in the type representation of the method call. In the case of
the valid call to sum with parameters len and wid, the substitution mapping a
to L is applied to the return type dimension expression a to yield L—the length
dimension that is then correctly used in the assignment to len.

3.4 Composing ableJ and the dimension analysis language extension

The attribute grammar fragment presented above in this section defines the
dimension analysis constructs and analysis needed to extend the ableJ attribute

12



function check_call ([UnifyBnd], [String])
::= formals:: [DimExpr] actuals::[DimExpr] psubs::[UnifyBnd]
{ return
if null(formals) && null(actuals)
then (psubs, [ 1)
else if null(formals) || null(actuals)
then (psubs, [ "incorrect number of arguments" ] )
else if ! null(unify_errors)
then (psubs, [ "incompatible dimensions:" ++ head(formals).pp ++
" and " ++ head(actuals).pp ] )
else check_call( tail(formals), tail(actuals),
new_subs ++ compose(new_subs,psubs)) ;
local attribute new_subs :: [ UnifyBnd ] ;
local attribute unify_errs :: [ String ] ;
( new_subs, unify_errs ) = unify ( apply(psubs,head(formals)) ,
apply(psubs,head(actuals)) ) ; }

Fig. 8. The check_call function

grammar specification of Java with dimension analysis. The process of composing
these two attribute grammars is performed by the Silver tools. A component-
wise union of the sets of nonterminals, terminals, productions, and attribute
definitions on productions is straightforward and implements the composition
of the host language and the language extension. This is easily extended to
handle more than one language extension. Since this composition is performed
by the Silver tools, non-experts can specify a host language and a desired set of
language extensions that can be automatically composed to create a specification
of a unique language that has features tailored to a particular task at hand.
For more information on the composition process readers are directed to our
previously published paper on this topic [17].

4 Related work

Dimension analysis: Previous research in this area has illustrated different
techniques for adding dimension and unit analysis to programming languages.
House [9] implemented the extension of dimensions to Pascal. He implemented
a polymorphic dimension type system in the monomorphic type system of Pas-
cal. Wand and O’Keefe [20] designed dimensional inference in an ML-like type
system. In their extension, they extended single numeric types parameterized on
dimension. They assumed a fixed number of base dimensions. Delft [5] extended
Java with dimension analysis in a monolithic way. Kennedy [11] has implemented
dimension extension to Standard ML programming using the ML’s capabilities
of polymorphism and type inference. It is his dimension unification algorithm
that is used in our extension.

Allen et al. [2] provide a solution that differs from ours and the others de-
scribed above. They first add meta-programming facilities (meta-classes) to an
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extension of Java called MixGen. They then use those to implement dimension
and unit analysis. Their extension of dimension types integrates well with gener-
ics and subtypes, something not investigated in our extension.? This approach
also supports composition of extensions since a programmer can use meta-classes
from different libraries. It does not however allow the extension writer to create
new syntactic constructs that reflect the notation of the domain. This is less
critical for extensions that add new numeric types for dimension analaysis, but
it is critical for language extensions that, for example, extend Java with SQL to
support static checking for syntax and type errors [17].

Extensible languages: Mechanisms for specifying and implementing program-
ming languages have been an active research area for many years and thus there
is much work on this topic in general and, more specifically, on the topic of
extending Java with different language features. We are thus necessarily very
brief here. A more complete description of related work can be found in previous
work [17,16].

In the attribute grammar community there have been many investigations
into the modular specification of languages [8,10, 7,1, 14], to cite just a few. Of
particular interest is the JastAddII [6] system and its implementation of Java
1.5. Where as we use forwarding to add a form of (non-destructive) transforma-
tion to attribute grammars JastAddII adds destructive rewriting. Both allow for
the implicit specification of semantics (that is attributes) through some transfor-
mation technique. Destructive rewriting has the advantage of not keeping both
trees in memory at the same time and thus uses less memory than forwarding.
It can also be used for traditional optimizations implemented as rewrite rules.
Forwarding, on the other hand, has the advantage of allowing attributes to be
computed on either the original extension AST or the forwarded-to host language
AST. This supports a more modular specification of languages.

JavaBorg is an extensible Java tool that uses MetaBorg [4], an embedding
tool that allows one to extend a host language by adding concrete syntax for
objects. It is based on term rewriting and uses conditional rewriting of the AST
to process programs. Thus, one must encode semantic analysis as rewrite rules.

5 Conclusion

There are several features that we are in the process of adding to our extension.
The first adds the notion of units so that these can also be checked. This ex-
tension is straight forward since unit specifications like ft (for feet) might be
used instead of L in dimension expressions. The unification algorithm must be
extended to track units and multiplication must be checked for consistent use
of units as well. A second may add the automatic conversion of non-dimension
types (like int) to appropriate dimension types. Although more convenient, this

2 OQur apporach supports extensions that add new types and sub-type relation-
ships [17].
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is less safe than the current implementation. In extending ableJ 1.4 with Java
1.5 features we will investigate how new extension-introduced types such as the
dimension types presented here can integrate with Java generics.

The language extension presented here adds dimension analysis to Java. Al-
though it is less complete than some previous work on dimension analysis, it is
distinguished in that it is added to Java as a composable language extension that
also introduces new syntactic constructs. Thus, several extensions may be simul-
taneously added to Java so that the composed language contains new language
features from more than one domain.
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