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Abstract

Attribute grammar specification languages, like many domain-specific languages,
offer significant advantages to their users, such as high-level declarative constructs
and domain-specific analyses. Despite these advantages, attribute grammars are of-
ten not adopted to the degree that their proponents envision. One practical obstacle
to their adoption is a perceived lack of both domain-specific and general purpose
language features needed to address the many different aspects of a problem. Here
we describe Silver, an extensible attribute grammar specification system, and show
how it can be extended with general purpose features such as pattern matching and
domain-specific features such as collection attributes and constructs for supporting
data-flow analysis of imperative programs. The result is an attribute grammar spec-
ification language with a rich set of language features. Silver is implemented in itself
by a Silver attribute grammar and utilizes forwarding to implement the extensions
in a cost-effective manner.

Key words: extensible languages, extensible compilers, attribute grammars,
forwarding, Silver attribute grammar system

1 Introduction

Domain-specific languages offer several significant advantages to their users
over general purpose programming languages [11]. They allow problem solu-
tions to be expressed using the notational constructs of the problem domain.
These languages are often declarative in nature, resulting in concise programs.
Also, important optimizations and analysis are often only feasible when the
domain-specific information is directly represented in the language constructs
of the DSL as opposed to encoding them in lower-level constructs in a general
purpose language.
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But, domain-specific languages have some disadvantages as well. Van Deursen
et al. [11, page 27] describe several and we quote three that pose particular
challenges to DSL implementers here:

• “The costs of designing, implementing and maintaining a DSL.”
• “The difficulty in finding the proper scope for a DSL.”
• “The difficulty of balancing between domain-specificity and general purpose

programming language constructs.”

Although many DSLs are widely used, these disadvantages (and others) some-
times prohibit the level of adoption envisioned by the DSL implementers.

In the domain of language analysis and translation, attribute grammar spec-
ification languages offer many advantages but are also not as widely used as
they might be. Attribute grammars (AG) were developed almost 40 years ago
by Knuth [28] and there has been a steady stream of research in such systems
since then, see [50,14,5] to cite just a very few. The continued interest is due
to the fact that they provide a high-level, declarative means for solving a wide
variety of language analysis and translation problems. Evidence of this can
be seen in their use in implementing language processing tools for full-fledged
popular languages such as Java 1.5 [15,13] and Icon [22].

Our experience using attribute grammars is primarily with our own sys-
tem, Silver. We have developed an attribute grammar specification language
called Silver to incorporate an extension to AGs called forwarding [45] that
has proven useful in the specification of extensible programming and model-
ing/specification languages. We have used Silver to specify an extensible im-
plementation of Java 1.4 [47] and several modular language extensions. One
embeds SQL into Java and performs static type checking of the embedded
SQL queries [44]. We have also built an extensible version of (a substantial
subset of) the synchronous language Lustre (used in embedded safety-critical
systems) and various language extensions [21] for it.

In the early stages of this work, using a prototype implementation of Silver
we found the challenges described by van Deursen et al. [11] and listed above
to ring especially true. For example, we found situations where we wanted
some of the general purpose features we enjoy in modern functional languages
such as parametric polymorphism and pattern matching. We wanted features
sometimes found in other AG systems like collections [5] or autocopy rules for
inherited attributes to reduce boilerplate AG specifications. We also wanted
additional features for specific problem domains addressed by AGs: perform-
ing data-flow analysis on imperative programs, for example. In our prototype
attribute grammar implementations of Silver we found that we had created
languages that were quite useful for problems that fit completely in the lan-
guage’s application domain but that felt brittle and overly constraining for
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aspects of the applications that did not fit squarely in the traditional domain
of attribute grammars. This view is not that uncommon and others [10, page
185] have noted that AGs can sometimes feel cumbersome and restrictive when
compared to modern languages. Thus the primary challenges in implementing
Silver were in determining what domain-specific and general purpose features
should be included, and then implementing them in a cost-effective manner.

These are similar to the challenges that extensible languages are designed to
address: lack of features, ease of implementation, modularity so that sets of
features can be easily composed to create new languages (and their processing
tools) that have the features needed to better address the problems faced by
users of such languages. We thus decided to implement Silver as an extensi-
ble language in order to mitigate some these challenges. Through a series of
bootstrapping steps we were able to implement Silver as an AG specification
written in Silver.

The remainder of this section describes extensible languages as they are pro-
cessed by Silver and outlines its development. Section 2 describes the features
in the “core” Silver language and provides an example specification of a small
imperative language to motivate the extensions to Silver that are described in
Section 3. Section 4 discusses related work and Section 5 concludes.

1.1 Extensible Languages

In the extensible languages paradigm, languages are not treated as monolithic
entities and implemented as such. Instead, new language features are imple-
mented and deployed as modular language extensions that are added later,
perhaps by the language user, to a host language. In the case of DSLs, the
host language defines the core, fundamental features of the DSL. The language
extensions define the desired language features that are not implemented in
the host language. In our approach, the host language is implemented as an
AG specification and language extensions are implemented as AG fragments.
Language extensions may introduce new language constructs (notations), new
semantic analyses that, for example, perform some error checking, or new
translations to different target languages. A key characteristic of the language
extensions that are supported is that new language constructs need to be
translated to semantically equivalent constructs in the host language. Thus
the host language must satisfy some notion of completeness.

Many extension constructs are implemented as local transformations that
translate the extension construct to semantically equivalent constructs in the
host language. This provides an implicit specification of the semantics (that is
attributes) of the extension construct. This is done via forwarding [45] which
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also allows explicit specification of semantics (attributes) at the extension
language level.

Some language features cannot be implemented by purely local transforma-
tions but instead require non-local transformations. We are especially inter-
ested in composable language extensions; these are extensions that can be
used in conjunction with other language extensions typically designed with-
out knowledge of one another. One characteristic of composable extensions is
that the order in which different constructs defined in different language ex-
tensions are translated down to host language constructs should not matter.
Silver does not provide linguistic support for the sort of global transforma-
tions that cause radical rewrites of the original syntax tree. 1 Constructs that
employ a certain type of global transformations for translation to the host
language can be easily composed, however, if they satisfy two requirements.
First, the global transformation for construct c in a program p to program pH

in the host language must be strictly additive; that is, new constructs may be
added on a global scale in creating pH but these do not involve a radical reor-
ganization of p’s global structure. Second, the constructs added to pH cannot
conflict with global additions made by other features. Two transformations
that add new declarations to the beginning of a program to support the lo-
cal transformations satisfy these requirements. Our attribute grammar-based
methodology uses (higher-order) collection attributes and forwarding on key
productions in the core language specification to enable the addition of new
constructs on a global scale.

1.2 Development of Silver as an Extensible Language

A core attribute grammar language serves as the host language for the full-
featured version of Silver that is used in specifying extensible programming
and modeling languages and their extensions [47,21]. In addition to the tradi-
tional constructs introduced by Knuth [28] the core Silver language includes
higher-order attributes [50] that allow attributes to store (undecorated) syntax
trees. This is useful for creating new trees in building, for example, optimized
versions of a program or for constructing data structures such as symbol ta-
bles or representations of types used for type checking. To support interesting
language extensions, the core host Silver language must be Turing complete
and thus higher-order attributes are essential. Attributes containing decorated
trees are also allowed. These are essentially the same as Hedin’s reference at-
tributes [14] which allows attributes to store references (pointers) to nodes

1 However, if one is willing to specify an order in which the global transformations
of different extensions are to be made, then one can use higher-order attributes in
Silver to implement the global restructuring to construct a new transformed tree.
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in the tree. These are useful for linking variable uses to their declarations in
various languages. The core language also includes forwarding [45], a feature
that allows productions to implicitly define the value of attributes by trans-
lation. Aspect productions allow new attributes to be defined for an existing
production typically defined in a different grammar module or file. Core Sil-
ver also has a module system used in composing host language and extension
specifications. Section 2.1 discusses core Silver.

Several general purpose and domain-specific language extensions have been
made to core Silver to create the full-featured version. These include pattern
matching on trees (by production), type-safe polymorphic lists, and conve-
nience constructs such as autocopy inherited attributes. We also implement
collection attributes [5] as a language extension. These can be used in the
AG specification of the host language to enable certain useful, but limited,
global transformations that do not interfere with similar global transforma-
tions specified by other language extensions. Additional extensions provide
constructs for building control flow graphs for imperative programs and per-
forming data-flow analysis via model checking [46]. These extensions are dis-
cussed in Section 2.2 and 3. We will not provide formal definitions of attribute
grammars [28], higher-order attributes [50], forwarding [45], or collection at-
tributes [5] but will instead describe their functionality through examples.
Formal descriptions can be found in the cited papers.

The end result is that Silver is an extensible full-featured attribute gram-
mar specification language with many domain-specific and general purpose
language features; it is constructed from a simple core AG language and com-
posable, modular language extensions.

2 Silver attribute grammar specification language

In this section we describe the language features in core Silver and the gen-
eral purpose and domain-specific features added as language extensions. We
describe and motivate several of these features by providing a partial speci-
fication of a small C-like imperative language named SimpleC written in the
full, extended Silver language.

2.1 Core Silver

To support the modular development of language specifications, attribute
grammar specifications written in Silver can be distributed across different
grammar modules. A Silver grammar module contains AG declarations and
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definitions for nonterminals, terminals, productions, and attributes. Silver
module names, like Java packages, are based on Internet domain names in
order to avoid name clashes. Module names indicate directories, not files, and
the implementation of a Silver module may be spread across several files in the
specified directory. The scope of a construct defined in a particular file includes
all of that file and all other files in the same module. Silver specifications can
also define concrete syntax for a language that is used to generate a parser
and scanner for the language. Fig. 1 shows part of the specification of the
abstract syntax and its attributes for SimpleC. It is written primarily using
constructs from core Silver. Fig. 2 shows a specification of its concrete syntax
and also uses constructs from core Silver. Fig. 3 has additional abstract syntax
specifications for type checking and utilizes several Silver features added as
language extensions.

These figures correspond to different files in the edu:umn:cs:melt:simplec

grammar. Additional files complete the definition of SimpleC but are not
shown as the key characteristics of Silver can be seen in the figures presented.

Each Silver file begins with a declaration of the grammar name, as can be
seen in the figures in the grammar declaration. After the grammar declaration
(and any import statements that include AG declarations from other grammar
modules) a Silver file consists of a series of AG declarations. Line comments
begin with “--”.

2.1.1 Silver specifications for abstract syntax

The essence of attribute grammars consists of specifications of nonterminals
and productions that define a context-free grammar, and the declaration of at-
tributes that decorate specified nonterminals, and the definitions for comput-
ing their value on different productions. To understand the language features
in core Silver consider the specifications in Fig. 1. Reading from the beginning
of that figure we see the declaration of nonterminal symbols Prog (program),
Dcl (declaration), Dcls, Stmt (statement), Expr (expression), and Type (type
expressions).

Next a synthesized attribute c of type String is declared. Synthesized at-
tributes are used to propagate semantic information up the syntax tree. The
attribute defines the translation of SimpleC to C and decorates the nontermi-
nals specified in the occurs on specification. Other attributes and nontermi-
nals referenced in this figure are defined in different files in the directory of
files that define this grammar. Figs. 1-3 each show a portion of a single file in
this directory.

Following are a few sample production declarations. Productions with the
abstract modifier are not used to generate the input specification to a parser
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grammar edu:umn:cs:melt:simplec;
nonterminal Prog, Dcls, Dcl, Stmt, Expr, Type ;
synthesized attribute c :: String ;
attribute c occurs on Prog, Dcls, Dcl, Stmt, Expr, Type ;

abstract production program p::Prog ::= f::Dcls
{ p.c = "#include <stdio.h> \n" ++ f.c ;
p.errors := f.errors ;
f.env = [ :: Binding ] ; }

abstract production while w::Stmt ::= cond::Expr body::Stmt
{ w.c = "while ( " ++ cond.c ++ ") \n" ++ body.c ;
w.errors := cond.errors ++ body.errors ; }

abstract production for
f::Stmt ::= init::Stmt cond::Expr inc::Stmt body::Stmt
{ forwards to stmt_seq (init, while(cond, stmt_seq(body,inc))) ; }

abstract production stmt_seq s::Stmt ::= s1::Stmt s2::Stmt
{ s.c = s1.c ++ s2.c ; }

abstract production logical_and e::Expr ::= l::Expr r::Expr
{ e.c = "(" ++ l.c ++ " && " ++ r.c ++ ")";
e.errors := ... ;
e.typerep = booleanType(); }

abstract production logical_not e::Expr ::= ce::Expr
{ e.c = "( ! " ++ ce.c ")";
e.errors := ... ;
e.typerep = booleanType(); }

abstract production logical_or e::Expr ::= l::Expr r::Expr
{ e.typerep = booleanType();
e.errors := ... ;
forwards to logical_not ( logical_and (logical_not(l),

logical_not(r)));
-- l || r becomes ! (! l && ! r)

}

abstract production func_call e::Expr ::= f::Id_t arg::Expr
{ e.c = f.lexeme ++ "(" ++ arg.c ++ ")" ;
e.errors := arg.errors; }

Fig. 1. Abstract syntax specification for SimpleC.
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generator. We will later see productions with the concrete modifier instead;
these are used in constructing the parser. The first production is named
program, its left-hand side nonterminal is Prog and is named p. In Silver
nonterminals and terminals are named so that they can be referenced in the
attribute definitions. The has-type construct :: specifies the name of a nonter-
minal or terminal on its left and the type of the nonterminal or terminal on its
right. The production’s right-hand side contains the Dcls nonterminal named
f. Programs in SimpleC are sequences of (function) declarations (Dcls). Pro-
ductions that define this sequence and function declarations are not shown for
space reasons. Attribute definitions are given between the curly braces (“{”
and “}”). Here, the attribute c on p is defined to be a C include specification
followed by the translation to C of the sequence of declarations (f.c). String
concatenation is specified by the operator ++. Definitions of other attributes
that use features added as language extensions such as lists ([...]) and col-
lections (:=) are also shown but described below in Section 2.2. For example,
the inherited attribute env is defined in the program production for f to be
the empty list.

Productions for loops, statement sequences and a few sample expression pro-
ductions such as conjunction and negation follow. These define the attribute
c in the expected ways. For example, in the while loop production named
while the C translation attribute is constructed from the translations of the
condition (cond.c) and the body (body.c). Its errors attribute is defined by
concatenating the lists of errors from these components using the overloaded
operator ++ that is also used for list concatenation.

The for and logical or productions use forwarding [45] to implement local
transformations that map these constructs to other semantically equivalent
constructs in SimpleC. In the case of the for-loop, the forwards to clause
specifies that for (init; cond; inc) body is equivalent to init ; while (cond) {
body; inc; } . For logical-or it specifies that l ∨ r is equivalent to ¬(¬ l ∧¬ r).
Forwarding allows a production to define a distinguished syntax tree that pro-
vides default values for synthesized attributes that it does not explicitly define
with an attribute definition. When a tree node is queried for an attribute that
is not explicitly defined, it “forwards” that query to this tree which will return
its value. In logical or this tree is the semantically equivalent expression con-
structed from logical and and logical not productions. The errors and
typerep attributes are defined explicitly so that an error message can be re-
ported on the code written by the programmer. The value of the c attribute
is defined implicitly and retrieved from the forwards-to tree. Forwarding is
used in the implementation of language extensions to define their translation
to the host language. Forwarding suffices for translations that require only a
local transformation.

The definitions of typerep are described below in Section 2.2. Productions
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defining statements, declarations, and other expressions are what one might
expect and are not shown. Also, several definitions that would have the ex-
pected value are elided with ellipses (...).

The production for functions calls completes Fig. 1. Its definition of typerep is
not specified here, but is given in the aspect production with the same name
in Fig. 3. Aspect productions allow attributes to be defined for concrete or
abstract productions specified in different locations in the same file, different
files, or even different modules.

2.1.2 Silver specifications for concrete syntax

Productions with the concrete modifier are used to generate input specifica-
tions for a parser generator. Different extensions to Silver integrate different
parser and scanner generators into Silver. The original version of Silver gen-
erates input to Happy – a Yacc-like LALR(1) parser generator that creates
parsers implemented in Haskell, the language in which Silver specifications are
implemented. The current version of Silver generates input to Copper [48].
This is an LALR(1) parser and scanner generator that we have designed that
uses context-aware scanning. In this approach, each time the parser calls the
scanner to retrieve the next token, the parser passes to the scanner the set of
terminal symbols that are allowed in the current parse state. This set is called
the valid lookahead set. The scanner will only return tokens in this set and
it is thus more discriminating than traditional disjoint scanners. With this
approach parse table conflicts are far less likely when composing grammars.
In fact, when the concrete syntax introduced by an extension satisfies a set of
reasonable restrictions we can guarantee that there will be no conflicts in the
composed grammar [40].

The full range of attribute declaration and definition capabilities in Silver can
be used on concrete productions just as they are used on abstract productions.
Thus, on languages in which the concrete syntax is straightforward one may
decide to perform semantic analysis on the concrete syntax tree. For more
complex languages, one may separate the concrete and abstract syntax so
that the only attributes on the concrete productions are used to construct the
AST over which the attributes that implement the semantic analysis (such as
type checking) are evaluated.

The separation of concrete and abstract syntax in SimpleC is a bit contrived
but its specification is shown in Fig. 2. Nonterminals are defined just as in the
abstract syntax with the exception that Prog c is marked as the start nonter-
minal. The concrete nonterminals and productions are named by convention
with a c suffix to indicate that they are part of the concrete syntax.

Next are the declarations of some terminal symbols. Id t and the regular ex-
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grammar edu:umn:cs:melt:simplec;
start nonterminal Prog_c ;
nonterminal FunDcls_c, FunDcl_c, Dcls_c, Dcl_c,

Stmts_c, Stmt_c, Type_c, Expr_c ;

terminal IntLit_t /[0-9]+/ ;
terminal Id_t /[a-zA-Z][a-zA-Z0-9\_]*/ ;
terminal NotOp ’!’ precedence = 12;
terminal AndOp ’&&’ precedence = 10, association = none ;
terminal OrOp ’||’ precedence = 8, association = none ;

synthesized attribute ast_Stmt_c :: Stmt occurs on Stmt_c ;
synthesized attribute ast_Stmts_c :: Stmt occurs on Stmts_c ;
synthesized attribute ast_Expr_c :: Expr occurs on Expr_c ;

concrete production program_c p::Prog_c ::= fds::FunDcls_c
{ p.ast_Prog_c = program(fds.ast_FunDcls_c) ; }
concrete production stmts_cons_c
ss::Stmts_c ::= s::Stmt_c stail::Stmts_c
{ ss.ast_Stmts_c = stmt_seq(s.ast_Stmt_c, stail.ast_Stmts_c) ; }
concrete production stmts_one_c ss::Stmts_c ::= s::Stmt_c
{ ss.ast_Stmts_c = s.ast_Stmt_c ; }
concrete production while_c
w::Stmt_c ::= ’while’ ’(’ c::Expr_c ’)’ s::Stmt_c
{ w.ast_Stmt_c = while(c.ast_Expr_c, s.ast_Stmt_c) ; }
concrete production assign_c
a::Stmt_c ::= id::Id_t ’=’ e::Expr_c ’;’
{ a.ast_Stmt_c = assign(id,e.ast_Expr_c) ; }
concrete production logical_and_c
e::Expr_c ::= l::Expr_c ’&&’ r::Expr_c
{ a.ast_Expr_c = logical_and(l.ast_Expr_C, r.ast_Expr_c) ; }
concrete production idref_c e::Expr_c ::= id::Id_t
{ e.ast_Expr_c = idref(id); }

Fig. 2. Concrete syntax specification for SimpleC.

pression (denoted /regex/) are used by the generated scanner to identify iden-
tifiers. Keyword and punctuation terminal symbols, like AndOp, that match a
fixed string (denoted ’fixed lexeme’) instead of a regular expression can be
specified by their fixed string directly in productions, as in the production
logical and c. Traditional specification of operator precedence and associa-
tivity are also supported.

Silver is a strongly-typed language and thus several synthesized attributes of
the appropriate types are defined in order to compute the abstract syntax tree
from the concrete syntax tree. The first one in Fig. 2 specifies that the attribute
ast Stmt c is used to generate ASTs of type Stmt for concrete nonterminals
of type Stmt c. Definitions of these attributes are provided on the concrete
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grammar edu:umn:cs:melt:simplec;

autocopy attribute env :: [ Binding ] ;
attribute env occurs on Prog, Dcls, Dcl, Stmt, Expr, Type ;
nonterminal Binding with typerep ;
synthesized attribute name :: String occurs on Binding ;
synthesized attribute typerep :: TRep occurs on Expr ;
nonterminal TRep ;

abstract production funcType ft::TRep ::= i::TRep o::TRep { }
abstract production booleanType bt::TRep ::= { }
abstract production intType it::TRep ::= { }
abstract production arrayType at::TRep ::= elem::TRep { }
abstract production errorType et::TRep ::= { }

synthesized attribute errors :: [String] collect with ++ ;
attribute errors occurs on Prog, Dcls, Dcl, Stmt, Expr, Type ;

aspect production func_call e::Expr ::= f::Id_t arg::Expr
{ e.c = f.lexeme ++ "(" ++ arg.c ++ ")" ;
e.errors <- case ftype of

funcType(i,o) =>
(if equal_types(i,arg.typerep)
then [ :: String ]
else ["Error: incorrect input type."])

| _ => ["Error: functional type required."] end ;
e.typerep = case ftype of

funcType(i,o) => o
| _ => errorType() end ;

local attribute ftype :: TRep ;
ftype = lookup(e.env,f.lexeme) ; }

Fig. 3. Specifications for type checking SimpleC.

productions and construct the AST. Many of the specifications are omitted but
can be inferred. This specification is rather verbose when compared to tools
like Yacc and in Section 3.3 we describe an extension to Silver that provides a
much more concise and readable specification mechanism for concrete syntax.

2.2 Full Silver: core Silver with language extensions

The Silver constructs used in Figs. 1 and 2 use primarily constructs from
the core Silver language. The definitions of attributes errors and env in
Fig. 1 and the specifications in Fig. 3 make use of Silver features that were
added as extensions to the core Silver language. These features include type-
safe polymorphic lists, pattern matching on syntax trees, collection attributes,
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and some extensions that allow one to conveniently define the attribution
(occurs on) relation. In Section 3.3 we describe an extension for the concise
specification of concrete syntax and in Section 3.4 we describe an extension
for the specification of data-flow analysis for imperative programs.

The inherited environment (symbol-table) attribute env defined in Fig. 3 uses
two of the extensions to Silver. First, it is an autocopy attribute and thus if no
explicit definition for env is given in a production, then one is automatically
generated that copies the value of env from the left-hand side nonterminal
node to its appropriate children. Second, its type uses the type-safe poly-
morphic list extension to specify that env is a list of Binding values. The
simple Binding nonterminal declaration uses the with-clause extension to in-
dicate that the typerep attribute decorates Binding. The attribute name also
decorates Binding nonterminals. These are used to bind names of program
variables to type-representation trees of type TRep.

The attribute typerep is a higher-order attribute. It holds a tree whose root
is a nonterminal of type TRep. The type of an Expr is represented by these
trees. These trees are constructed by the productions funcType, booleanType,
intType, and errorType that follow. These productions are used to define
the higher-order attribute typerep on expressions and bindings. In Fig. 1 the
abstract production booleanType is used to indicate that logical expressions
have boolean type.

Collection attributes in Silver are similar to those defined by Boyland [5]
with the exception that assignments to collection attributes cannot be made
via reference attributes to reference tree nodes decorated by such attributes.
Collection attributes are associated with an associative operator used to fold
together contributions to the attribute. Collection attributes are declared us-
ing the collect with clause that specifies the collection operator. The Sil-
ver collection assignment operator := (which differs from the standard def-
inition operator =) is used in several productions to define the attribute’s
initial value. Aspect productions may use the collection contribution opera-
tor <- to fold additional values into the attribute. A fold operation of type
((a × a → a) × a × [a]) → a uses the operator, initial value, and list of con-
tributed values assigned in different aspects to compute the final value of the
attribute. A collection attribute with operator ⊕, initial value vi and values
assigned in aspects v1, v2, ..., vn has the final value of vi ⊕ v1 ⊕ v2⊕, ...,⊕vn.
Although the operator does not have to be commutative, the order in which
aspect-contributed values are combined is not specifiable in Silver and thus
this order must not matter. In Fig. 3 the errors attribute of type [String] is
collected by the list concatenation operator ++. On the while-loop production
while in Fig. 1 the initial value of this attribute is the concatenation of the
errors found on its two children. In the func call production in Fig. 1 the
initial value is the errors on the argument arg. This is combined with the
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errors defined in the aspect production in Fig. 3. This contribution (<-) to
errors uses pattern matching to inspect the production used to construct the
typerep tree ftype. This tree is the type of the identifier f as found in the
environment e.env using the lookup function.

The production program in Fig. 1 defines the attribute env to be the empty
list of bindings. Silver does not have ML-style type-inference and it is not
part of the polymorphic list extension. Thus, empty list expressions explicitly
specify the type of the list elements.

Pattern matching is a mechanism for data structure decomposition used in
combination with algebraic datatype definitions and found in several languages
including ML and Haskell. The matching of a value to a pattern is performed
by matching the value constructors of each variant of the datatype to that of
the value, and recursively matching the arguments to the value constructors of
each. In Silver, and in AGs in general, nonterminals correspond to algebraic
types and productions correspond to value constructors for variants of the
datatype. The production signature is a device similar to the ML datatype
definition, by which both auxiliary data structures and the abstract syntax
of the object language can be defined in a uniform way. When nonterminals
and productions are used for constructing syntax trees for programs there are
rather few occasions in which one needs to know what the variant (produc-
tion) of a tree is and thus attribute grammar systems do not typically have
constructs for doing so. However, when AG constructs are used to define data-
structures that are used more generally, decomposition often becomes quite
useful and sometimes necessary.

This can be seen in Fig. 3 in the aspect production func call. The type for
SimpleC expressions is represented by the datatype (nonterminal) TRep and
each abstract production with a TRep left-hand side nonterminal defines a
variant of the datatype. To perform type checking on function calls, the input
type and output type would be extracted from the constructed functional type;
on array access expressions, the array’s component type must be extracted.
Without pattern matching, synthesized attributes would need to be defined for
these component types. But this cannot be done in a type-safe manner since
on any TRep production most such attributes would not be properly defined;
e.g., we would either not define a funcOutputType attribute on arrayType

productions, or define it with some sort of error value. Pattern matching pro-
vides a type-safe solution and is used in the aspect production func call in
Fig. 3 to specify that the type of a function call is the output type of the type
of the function being called. In the case that the type of the identifier f is
not a function, an error is generated. A local attribute (local attribute) is
used to hold the type of the function. Because the attribute definitions and
local attribute declarations are not ordered it is not uncommon to write the
definition of local attributes near the end of this collection, after it has been
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grammar silver:core ;
start nonterminal File ;

nonterminal AGDcls, AGDcl;
concrete production fileRoot
f::File ::= g::GrammarSpec i::Imports dcls::AGDcls
{ f.haskell = ...;
dcls.env = i.defs ++ dcls.defs; }

synthesized attribute haskell :: String ;

concrete production ntDcl d::AGDcl ::= ’nonterminal’ nt::Id ’;’
{ ... }
concrete production occursDcl
d::AGDcl ::= ’attribute’ attr::Id ’occurs’ ’on’ nt::Id ’;’
{ ... }
concrete production agDclCons ds::AGDcls ::= d::AGDcl dtail::AGDcls
{ ... }
abstract production agDclSeq ds::AGDcl ::= d1::AGDcl d2::AGDcl
{ ... }

Fig. 4. Sample specifications of the silver:core language.

used.

3 Implementing Silver and its language extensions

This section shows how some of the Silver extensions described in Section 2 are
implemented as language extensions and composed with core Silver. The full-
featured version of Silver used to specify SimpleC is constructed from the host
language core Silver and the extensions described above and in Sections 3.3
and 3.4. This core host language is implemented as an attribute grammar
in the module silver:core. The extensions to Silver are implemented as
attribute grammar fragments that extend silver:core. Silver is implemented
in Silver via bootstrapping. For example, we built collection attributes as
an extension to Silver and used it to enable other language extensions, such
as the pattern matching extension shown below. A few declarations in the
specification of core Silver are shown in Fig. 4. It declares nonterminals for a
Silver file and attribute grammar declaration(s) (AGDcl, AGDcls) that are used
in the abstract production declarations for nonterminals (ntDcl) and occurs-
on declarations (occursDcl). The grammar is implemented by a translation to
Haskell specified by the haskell attribute defined on core Silver productions.
Some additional Silver specifications are provided later in this section and
used to describe the implementation of the language extensions.
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grammar silver:exts:convenience ;
concrete production withDcl
d::AGDcl ::= n::’nonterminal’ nt::Id ’with’ attr::Id s::’;’
{ d.errors = ... check that nt and attr are declared ...
forwards to agDclSeq ( ntDcl(n,nt,s),

occursDcl(’attribute’,attr,’occurs’, ’on’, nt, s) ) }

Fig. 5. Partial Silver specification for the simplified with-clause extension.

3.1 The With-Clause

A nonterminal declaration using the with-clause in Silver additionally specifies
that the listed attributes occur on the declared nonterminal. It is a simple
extension that requires only a local transformation to translate into core Silver.
The declaration nonterminal Binding with typerep; in Fig. 3 translates to

nonterminal Binding; attribute typerep occurs on Binding;

The implementation of a simplified version of the with-clause extension (that
specifies only one nonterminal and one attribute) is shown in Fig. 5 as part
of the silver:exts:convenience module. The production withDcl explicitly
defines an attribute errors so that error messages can be issued in terms of the
specification written by the developer (not the generated specification). Other
attribute values are implicitly defined by and obtained from its forwards-to
tree, the syntax of its semantically equivalent series of nonterminal and occurs

on declarations.

3.2 Pattern Matching

In order to implement pattern matching as a modular language extension
to core Silver, both local and additive global transformations are required
in translating pattern matching constructs into core Silver. Note that only
a small part of the core Silver and pattern matching specifications is shown
in an effort to provide a relatively detailed description of one aspect of the
implementation as opposed to a broad but shallow overview. Consider the
case expression that defines typerep in the aspect production func call in
Fig. 3. A local transformation, implemented via forwarding, translates this
construct to the core Silver nested if-then-else expression shown in Fig. 6,
the details of which are described below.
if ftype.prodName == "funcType"
then cast(TRep,get_nth(ftype.childList,1))
else if true then errorType()

else error("No matching pattern for case expression");

Fig. 6. Result of local transformation of pattern matching case to core Silver.
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grammar edu:umn:cs:melt:simplec ;
synthesized attribute prodName :: String ;
synthesized attribute childList :: [ AnyType ] ;
attribute prodName, childList occurs on TRep ;

abstract production funcType ft::TRep ::= i::TRep o::TRep
{ ft.prodname = "funcType" ;
ft.children = [ cast(AnyType,i), cast(AnyType,o) ] ; ... }

abstract prod boolType bt::TRep ::=
{ bt.prodname = "boolType" ;
bt.children = [ :: AnyType ] ; ... }

aspect prod funcCall
{ e.typerep = ... see Fig. 6 .. ; ... }

Fig. 7. Result of local and global transformation mapping the SimpleC grammar to
core Silver.

Global transformations add the declarations, occurs-on declarations, and def-
initions of the attributes prodName and childList used in the translation of
a pattern matching case construct, like the one in Fig. 6. These are added
on a global scale to the object grammar. Part of the transformed SimpleC
grammar is shown in Fig. 7. The local transformations, as we have seen in the
SimpleC logical or and Silver withDcl constructs, are easily implemented
via forwarding. This is briefly covered below before the discussion of the im-
plementation of the global transformations which is the main topic of this
section.

The local transformation is implemented using forwarding in the same manner
as with the simplified with declaration shown above. The productions defining
case expressions use a higher-order attribute (not shown) to construct the
nested if expression that the case expression forwards to. This expression uses
two attributes; prodName of type String that holds the name of the production
used to construct the tree, and childList, a list of AnyType values that are the
nonterminal trees and terminals that were the right-hand side arguments to
the production. In Fig. 6, we test the prodName attribute to determine which
pattern matches ftype. If it was constructed by the production funcType

then the get nth function extracts the proper list element which is cast back
to the proper type (TRep). This makes use of a type-unsafe AnyType type in
core Silver that is useful in language extensions such as this one. (Section 3.5
discusses how type-safety is restored in the extended version of Silver used
for specifying languages other than Silver and used in our specifications of
SimpleC and Java 1.4.) The type AnyType wraps terminal, nonterminal and
primitive types in a single type and the cast operator is used to wrap or
unwrap these values. A run-time error is raised if these are used incorrectly.

We focus on the global transformation that adds attribute definitions for
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grammar silver:core ;
concrete production prodDcl
p::AGDcl ::= ’abstract’ ’production’ n::Id sig::Signature

b::ProdStmts
{ production attribute moreStmts :: ProdStmts

collect with prodStmtsSeq ;
moreStmts := prodStmtsEmpty();
forwards to prodDcl_expanded (n, sig,

prodStmtsSeq(b, moreStmts) ) ; }
abstract production prodDcl_expanded
p::AGDcl ::= n::Id sig::Signature b::ProdStmts
{ p.haskell = ...; ... }

abstract production prodStmtsSeq
p::ProdStmts ::= p1::ProdStmts p2::ProdStmts {...}
abstract prod prodStmtsEmpty p::ProdStmts ::= {...}

Fig. 8. Building extensibility into production declarations.

prodName and childList to productions in the object grammar. The trans-
formations that add the declarations and occurs-on declarations are done in
a similar manner. These transformations are additive and do not impede or
conflict with other additive global transformations of the kind described in
Section 1.1 since it only adds declarations and attribute definitions to produc-
tions. (It is the responsibility of the developer of the global transformation to
ensure that it can in fact be composed with other extensions. Name clashes
are the primary concern but these are easily handled as the implementation
of Silver uses fully-qualified names based on unique module names.)

Silver is designed for certain types of extensibility in order to support global
transformations that add new constructs into the object grammar (e.g. Sim-
pleC). The extension points which allow this are implemented by a pair of
productions, one that collects the new constructs, and one used in construct-
ing the translation to core Silver. For production declarations, these two pro-
ductions (prodDcl and prodDcl expanded) are shown in Fig. 8. The concrete
production prodDcl is used by Silver’s parser to construct the original tree of
the object grammar. (In Silver, unlike SimpleC, we perform semantic analysis
on the concrete syntax tree.) The tree of the func call production in Fig. 1,
for example, is constructed using this production. The production prodDcl has
a collection attribute moreStmts that collects all the new attribute definitions
that are to be added by global transformations, such as those defined in the
pattern matching extension. The production modifier on this attribute decla-
ration indicates that it is visible on all aspect productions on prodDcl. As we
will see in Fig. 9, the grammar defining pattern matching has a prodDcl as-
pect production that contributes to this collection attribute the definitions of
prodName and childList. The statements collected in moreStmts are folded
together using the sequence production prodStmtsSeq. These and the existing
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grammar silver:exts:patternmatching ;
aspect production prodDcl
p::AGDcl ::= ’abstract’ ’production’ n::Id sig::Signature

b::ProdStmts
{ moreStmts <- “ sig.lhs.name.prodName = n.lexeme;” ;

moreStmts <- “ sig.lhs.name.childList = sig.rhs.childList;” ; }

Fig. 9. Adding object language declarations for pattern matching.

statements in the body of the production in the original AST (named b) are
combined to form the set of production statements that appear in the trans-
lation to core Silver. The second production in the pair, prodDcl expanded,
uses these as the body of the production-declaration tree that the “collecting”
production prodDcl forwards to. For the funcType production of SimpleC in
Fig. 4, this forwarded-to tree forms its translation to core Silver and is the
result of the global transformations. It is shown in Fig. 7.

Fig. 9 shows a small part of the silver:exts:patternmatching grammar
module that specifies the global transformation that adds definitions of the
new attributes to the existing object grammar productions. This is accom-
plished by an aspect production on prodDcl that adds the new attribute
definitions to the moreStmts attribute using the collection operator <-. We
give a stylized specification of the actual productions; in between the double
quotes (“...”) elements in typewriter font depict the concrete syntax of the
attribute definition statements being added to the collection attribute and
elements in italics are instantiated with values from the production. The ac-
tual specification builds Silver constructs explicitly using the productions that
define the Silver language. The composition of the core Silver grammar and
the pattern matching grammar has the effect of adding attribute definitions
for attributes prodName and childList to each production declaration of an
object language specification. Note that in defining contributions to collection
attributes like moreStmts the developer must take care not to introduce any
new attribute dependencies that might cause a circular attribute dependency.

3.3 Concise Concrete Syntax

The concrete syntax specifications in Fig. 2 are quite verbose. The reason for
this is that concrete productions allow one to define attributes in the same
way as one does on abstract productions. This general expressiveness is quite
useful in language specifications in which semantic analysis (that is, attribute
evaluation) is performed on the concrete syntax and no separate abstract
syntax tree is constructed. The specifications for Silver itself make use of
this. In other languages it is often more useful to define a separate abstract
syntax for semantic analysis. For such languages, the expressiveness of Silver
concrete productions is not needed and a much more concise mechanism for
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grammar edu:umn:cs:melt:simplec;

start Prog_c ast Prog ;
FunDcls_c ast Dcls ; FunDcl_c ast Dcl ;
Dcls_c ast Dcls ; Dcl_c ast Dcl ;
Stmts_c ast Stmt ; Stmt_c ast Stmt ;
Type_c ast Type ; Expr_c ast Expr ;

Prog_c ::= FunDcls_c { program($1) }
FunDcls_c ::= FunDcl_c FunDcls_c { dcls_cons($1, $2) }

| FunDcl_c { dcls_one($1) }
Stmts_c ::= Stmt_c Stmts_c { stmt_seq($1, $2) }

| Stmt_c { $1 }
Stmt_c ::= ’while’ ’(’ Expr_c ’)’ Stmt_c { while($3,$5) }

| Id_t ’=’ Expr_c ’;’ { assign($1,$3) }
| ’{’ Dcls_c Stmts_c ’}’ { block($2,$3) }

Dcls_c ::= Dcl_c Dcls_c { dcls_cons($1,$2) }
| { dcls_none() }

Dcl_c ::= Type_c Id_t ’;’ { var_dcl($1,$2) }
Type_c ::= Int_kwd { int_type() }
Expr_c ::= IntLit_t { intconst($1) }

| Id_t { idref($1) }
| Expr_c ’&&’ Expr_c { logical_and($1,$3) }
| Expr_c ’||’ Expr_c { logical_or($1,$3) }
| ’!’ Expr_c { logical_not($2) }

Fig. 10. Concise concrete syntax specification for SimpleC.

writing concrete syntax specifications can be introduced.

In this section we describe just such an extension. It provides notations similar
to those found in Yacc [26] and other parser generator tools that supports a
single un-named synthesized attribute typically used to construct the abstract
syntax tree of the program being parsed. The specification of a portion of the
concrete syntax of SimpleC, but not the specification of terminal symbols, can
be seen in Fig. 10.

Nonterminals that are used in the concrete syntax grammar specify the non-
terminal (or more generally, Silver type expression) used in the abstract gram-
mar to which they map. For example, the concrete syntax nonterminal Expr c

maps to the nonterminal Expr used in the abstract grammar in Fig. 1. This
mapping is indicated by the ast clause on the abbreviated nonterminal decla-
rations. Terminal symbols are used in both the concrete and abstract syntax
and thus the identity mapping is used for these.

The concrete productions are written in more concise notation since produc-
tions do not need to be named and since names are not associated with the
nonterminals and terminals in the production. The single synthesized attribute
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that is computed on these production is defined by the expression in brackets
following the production. Here, the familiar $i notation is used to indicate the
synthesized attribute computed on the ith symbol on the right-hand side of
the production.

Using forwarding the constructs in Fig. 10 translate to core Silver language
constructs similar to those in Fig. 2. The synthesized attributes (e.g. ast Expr c)
for constructing the AST are automatically generated by the extension during
translation of the new notation to core Silver constructs.

3.4 Data-flow analysis in Silver

This section describes a language extension to Silver that does not add general
purpose features, such as the pattern matching constructs in Section 3.2, but
instead adds constructs that are domain-specific. In this case, for the domain
of analysis of imperative programs.

When writing the specifications of imperative languages such as SimpleC, it
would be useful to be able to specify certain well-known and verified data-flow
analyses (such as detection of “dead” code) in a high-level and declarative way,
without having to implement them directly. One such declarative framework is
that of temporal logic. Data-flow properties may be specified as temporal logic
formulas which are model-checked on the control flow graphs (CFGs) to obtain
the results of the analysis [42,39]. For example the following optimization, with
a trigger condition expressed as a formula in the temporal logic CTL-FV [31],
performs dead-code elimination:

s : x := expr ⇒ skip if s |= AX A [¬use(x) W (def(x) && ¬use(x)) ]

The optimization removes the assignment x := expr if the side-condition holds
on the corresponding node s in the CFG of the program. The formula is true if
there is no path from s to any future state where the variable x is used and has
not been redefined. More precisely, the formula is true if on all next (AX) states
from s, on all paths (A), x is either never used, or it is not used until it is defined
(again), with the new definition not using the old value. This optimization is
only valid if expressions do not have side-effects. We could add an analysis to
determine which functions are side-effect-free and incorporate that into this
optimization but we leave it out here to simplify the presentation.

In this section, we describe an extension to core Silver that allows the com-
piler writer to transcribe well-known and verified 2 data-flow analyses such

2 Previous work [32] has shown how to prove the correctness of transformations
such as the one mentioned here.

20



synthesized attribute def :: String occurs on Stmt ;
synthesized attribute uses :: [String] occurs on Stmt, Expr ;

cfg nodes Stmt, Expr;
cfg attributes def, uses;
synthesized attribute entry:: CFG_Node occurs on Stmt;
inherited attribute succ :: CFG_Node occurs on Stmt;

aspect production assign s::Stmt ::= x::Id expr::Expr
{ s.entry = cfg s [s.succ];
s.def = x.lexeme; s.uses = expr.uses; }

aspect production stmt_seq s::Stmt ::= s1::Stmt s2::Stmt
{ s.entry = s1.entry; s1.succ = s2.entry; s2.succ = s.succ; }

aspect production while w::Stmt ::= cond::Expr body::Stmt
{ w.entry = cfg cond [body.entry, w.succ];
body.succ = w.entry ; }

Fig. 11. Constructing CFGs for programs in SimpleC

as the one above directly into their Silver language specification. The results
of the analysis can be used in an integrated way with other analyses such as
type checking, which are typically done on the abstract syntax trees of pro-
grams. There is thus a single declarative framework for doing multiple kinds
of analyses.

The extension adds constructs that allow the compiler writer to specify how
the CFG is to be created from the AST. The nodes of the CFG are labelled
with values obtained from attributes on the corresponding nodes of the AST.
The decorating attributes depend on the formula to be model checked. The
syntax of core Silver is extended to include temporal logic formulas and con-
structs that evaluate the formulas on nodes in the CFG. The results of eval-
uating the formulas are obtained by external system calls to model checkers
(NuSMV [8] in the case of CTL) and are returned and available to the rest of
the attribute grammar.

Fig. 11 shows part of the specification in this extended version of Silver that
creates control flow graphs for programs in SimpleC. The cfg nodes construct
is used to specify which type of AST nodes may be used to construct the CFG
(in this case Stmt and Expr). Each Stmt node in the AST is associated with a
subgraph in the final control flow graph. On assignments, this subgraph is just
the single CFG node created for the assignment. On while loops, this subgraph
consists of the CFG node created for the condition (Expr) and the subgraph
corresponding to the body of the loop. To compute the CFG and link the
various subgraphs together, two attributes, entry and succ, are defined. The
synthesized attribute entry is defined on a statement to point to the entry
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node of the subgraph of the CFG for that statement. The inherited attribute
succ on a statement stores the (pointer to the) node which will follow its CFG
subgraph. New CFG nodes are created using the cfg keyword with the syntax

cfg 〈corresponding AST node〉 〈successor nodes〉

For example, the entry node of the subgraph of the while loop is a new node
constructed from the conditional expression cond. This node has as its suc-
cessors the entry node of the subgraph corresponding to the body of the while
loop, and the successor node of the while loop itself. Finally, body’s CFG sub-
graph is succeeded by cond’s CFG node, since control flows from the body of
the loop back to the conditional expression.

The specification also uses the cfg attributes construct to specify which
attributes decorating the AST nodes will also be used in the data-flow analy-
sis and must thus label the nodes in the CFG. The values of these attributes
are used to generate the actual CFG (model) that is processed by the exter-
nal model checker. Here the values of the string-valued attribute def, (which
contains the name of the variable (if any) assigned at a particular node) and
the attribute uses of type [String] (containing the names of variables used
at a particular node) are specified as labelling the nodes of the CFG. The
values of these attributes are used in the the temporal logic formula that is
the trigger of the optimization that performs dead code elimination. The fact
that def and uses have been declared as attributes that decorate the CFG
nodes implies that they must decorate all AST nonterminals declared as CFG
nodes (in this case Stmt and Expr).

Fig. 12 shows code that includes the dead-code elimination optimization men-
tioned at the beginning of this section. The optimization is specified in the
assign aspect in the definition of the attribute opt stmt which stores the “op-
timized statement”. It is defined to be either the skip statement or the original
assignment statement, based on whether the boolean-valued model checking
expression evaluates to true. The syntax of the model checking expression is
M, s |= f , where M , s and f are the model, state and formula respectively.
Here, the state corresponding to the assignment node in the NuSMV model
is model checked against the CTL formula which is true if the assignment
is dead. It may be noted that the optimization described at the beginning
of this section can be transcribed nearly word-for-word into the Silver code.
The formula in the assign production is instantiated for each assignment in
the program with the lexeme of the identifier being assigned to. Thus for the
assignment a = 0;, the formula

AX A [!(a in uses) W (def == a && !(a in uses)) ]

is generated and translated into its NuSMV representation and sent to the
model checker along with the NuSMV representation of the model CFG. These
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autocopy attribute smv_model :: SMV_Model occurs on Stmt ;

aspect production func_decl f::Dcl ::= f::Id args::Params body::Stmt
{ body.smv_model = smvmodel body.entry

[def ranges over f.all_vars,
uses ranges over powerset of f.all_vars];

}

aspect production assign s::Stmt ::= x::Id expr::Expr
{ s.opt_stmt = if s.smv_model, s.entry |=

AX A [!(x.lexeme in uses) W
(def == x.lexeme && !(x.lexeme in uses)) ]

then skip () else s;
}

Fig. 12. An optimization that performs dead-code elimination triggered by a side–
condition specified in CTL.

new constructs are translated using forwarding into pure non-extended core
Silver code containing Silver system calls that call the model checker. This
process is not described in detail here as it is similar to the process used by
the pattern matching extension. Further details can be found in a previously
published workshop paper [46].

The NuSMV model is created in an aspect to the func dcl production (only
intra-procedural data-flow analysis is performed here) using the smvmodel

keyword, which takes the initial node of the CFG and the ranges of the at-
tributes that label the CFG nodes. The initial node of the CFG will be the
initial node of the body of the function. The ranges need to be given here as
NuSMV requires that model specifications specify the (finite) domains of all
state variables. Here the attribute all vars stores the list of all variables in
the function. The inherited attribute smv model passes the NuSMV model to
all parts of the syntax tree so that it can be used to perform data-flow analysis
wherever needed.

While this section presented only one example of a logic (CTL) and its model
checker (NuSMV), extensions using other logics and model checkers can also
be easily written. In fact, they can be combined to allow the compiler writer
to use different logics to specify different data-flow properties within the same
grammar. This approach thus provides a flexible and high-level way to specify
and use the results of data-flow analyses in a language specification, one closely
integrated closely with the rest of the (syntax-tree driven) attribute grammar
specification.
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grammar silver:full;

import silver:core with syntax hiding cast_cs anyType_cs;

import silver:exts:convenience with syntax;
import silver:exts:collection with syntax;
import silver:exts:patternmatching with syntax;
import silver:exts:list with syntax;
import silver:exts:concise_concrete_syntax with syntax;

abstract production main m::Main ::= args::String
{
forwards to silver_driver(args, parse);
}

Fig. 13. Composition of grammars to create silver:full.

3.5 Composing core Silver and its extensions to create full featured Silver

To build a full-featured extended version of Silver that has the convenience ex-
tensions such as the with-clause and autocopy inherited attributes, collection
attributes, pattern matching, and type-safe polymorphic lists we compose the
core Silver language and these extensions in the Silver specification in Fig. 13.
This specification composes the attribute grammars that are imported and
composes their concrete specifications (when imported with the with syntax

clause). The semantics of import are as if the imported grammar (but not what
it imports) was textually included directly in the importing file. The hiding

clause is a mechanism for excluding certain items from being imported into a
grammar specification. This is used above to ensure that silver:full is type-
safe by not importing into the grammar the concrete syntax of the type-unsafe
constructs AnyType and cast.

The main production plays a role that is similar to main in C and takes
the command line arguments as its String-type parameter. This production
forwards to the Silver driver production that controls compilation of Silver
grammars. It passes this its arguments and the parser that recognizes the
language composed of the concrete syntax specifications that are imported.

The specifications shown throughout this section have by necessity been rather
brief and we have omitted some non-critical aspects of Silver, its extensions,
and their implementation. The complete specifications for Silver and it exten-
sions can be found at www.melt.cs.umn.edu.
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4 Related Work

There are many ways to implement DSLs [37] and Silver is not the only declar-
ative system that supports modular language design. Modular language def-
inition and extensibility have received much attention from the AG commu-
nity [19,27,20], to mention just a few. Some systems are guided by functional
programming ideas and use, in essence, higher-order functions as attributes in
their quest for modular specifications [17,1]. Others are inspired by the object-
oriented paradigm and employ inheritance to achieve a separation of con-
cerns [24,36]. Well-defined circular attributes [16] and generic attributes [38]
have also been studied.

Well-developed AG systems such as LRC [30], JastAdd [14], Eli [22], and
UUAG [2] support a wide range of useful attribute grammar features such
as JastAdd’s reference attributes for retrieving attribute values from remote
nodes in the tree and Eli’s constituents for easily collecting information from
nodes in a production’s sub-trees. However, these systems do not support for-
warding and thus the modularity and ease-of-composition of language features
specified as AG fragments are often achieved by writing attribute definitions
that “glue” new fragments into the host language AG. To the best of our
knowledge, JastAdd is the only AG tool that allows for the implicit specifi-
cation of semantics by translation to a host or core language. This is done
by the application of (destructive) rewrite rules. But attributes values are
returned from the rewritten trees only, and thus one cannot both implicitly
(via forwarding) and explicitly (via attribute definitions) specify the relevant
semantics of new language constructs. Note that local attributes can be com-
puted during rewriting to drive the rewriting process. These rewrites are not
restricted to ensure composability and thus can be used in a wider variety of
applications.

The general purpose features of pattern matching and polymorphic lists added
to Silver are not strictly necessary in Turing complete AG systems with higher-
order attributes. They are also not found in AG systems that have a “back-
door” to the implementation language. This approach is taken by JastAdd
(implemented in Java), Eli [22] (implemented in C), and others. But this can
lead to an AG system that has a “split-personality” in that part of the problem
is solved as an AG and part in the implementation language. Furthermore,
one should avoid side-effecting computations in the implementation language
as these can be difficult to reason about. One also needs to be careful that
the computations written in the implementation language do not introduce
additional attribute dependencies that are not visible to an analysis, like cir-
cularity detection, as these may invalidate the results of the analysis. For
general purpose tasks, the back-door approach is not necessarily a bad idea.
But it provides no support for adding additional domain-specific constructs,
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such as those for pattern matching or collection attributes.

More generally, there are other approaches for specifying languages and lan-
guage extensions. Embedded domain-specific languages [25,34] and macro sys-
tems (whether traditional syntactic [7,33], hygienic [29,9] or programmable [51])
allow the addition of new constructs to a language but they lack an effective
way to specify semantic analysis and report domain-specific error messages.
Some modern macro systems [4,3] however do a better job at this. Other well-
developed declarative systems based on term rewriting include ASF+SDF [43]
which has been used in many applications. Another is Visser’s JavaBorg[6] that
allows one to extend a host language by adding concrete syntax for objects.
This system is based on StrategoXT [49] and uses strategies and term rewrit-
ing to process programs. Specifying semantic analyses, like error checking, as
rewrite rules are less straightforward than it is using attributes and it is not
clear that different extensions can be as easily combined.

Intentional Programming originated in Microsoft Research and proposed for-
warding in a non-attribute grammar setting. The original work and some more
recent work [41] uses a highly-developed structure editor for program input
since traditional LR parsing of extensible languages was not seen as viable.
But as mentioned, our context-aware scanning approach [48], which is used
in an LR-parser, reduces the likelihood of parse table conflicts. This makes
it possible to “certify” language extensions to provide a guarantee that when
several independently certified extensions are later composed, there will be on
conflicts in the parse table for the composed concrete syntax grammar. This
is done by imposing a modest set of restrictions on concrete syntax that can
be added to the host language [40]. We believe that this makes the use of
LR-parsers viable for extensible languages.

Parsing expression grammars [18,23] have recently gained some attention and
they are closed under composition, but the order in which they are composed
can have an effect on the language that is recognized. This is another parsing
technique that may be used in extensible language systems. Similarly, other
work [12] based on meta-object protocols for language extension uses the GUI
facilities in Eclipse for program input.

5 Discussion

We have introduced Silver, a full-featured extensible attribute grammar spec-
ification language that has been used to define implementations of and ex-
tensions to Java 1.4 [47], a subset of Lustre [21], and Silver itself. Different
full-featured versions of Silver are implemented as the composition of a core
Silver language and various general purpose and domain-specific language ex-
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tensions. Silver supports the specification of composable local and additive
global transformations. Higher-order attributes, forwarding, and collection at-
tributes have not previously been available in a single AG system and were
initially developed by different research groups. While none of these features
are themselves new, a framework in which one can easily combine different
general purpose and domain-specific features is. It is their combination and
means of application that form the mechanisms that implement our extensible
language methodology. These general-purpose and domain-specific additions
to core Silver reflect the need for language evolution. In Silver, the evolution
is achieved by adding these new features as modular extensions to the host
language, core Silver.

Silver’s ability to specify both local and additive global transformations is
quite useful in implementing expressive language features. Forwarding pro-
vides a significant degree of flexibility in determining which semantics and
translations (also implemented as a set of attributes) are defined explicitly
and which are defined implicitly. A macro-like extension would define no syn-
thesized attributes and get all semantics defined by the forwards-to construct.
Forwarding and collection attributes allow the host language designer to build
extension points that language extensions use to implement the additive global
transformations that are often needed for more powerful language extensions.

Although we have demonstrated how several interesting enhancements to Sil-
ver can be implemented as language extensions, not all changes can be so
easily accomplished. Consider adding ML-style type-inference as a language
extension. While it is relatively straightforward to define new attributes that
implement type-inference, integrating this into an existing typed language re-
quires changes to how existing constructs know what their type is; that is,
what attribute, an existing one, or a new one, contains the type representa-
tion for a construct. Silver does not have ML-style type-inference and it is
not part of the polymorphic list extension. Thus, the empty list expression
explicitly specifies the type of the list elements.

Circular attributes are another attribute grammar feature that is difficult to
add as a language extension. Eva Magnusson’s Ph.D. thesis [35] provides inter-
esting examples of the use of circular attributes - one computes the nullable,
first, and follow sets for a context-free grammar used in parser construction.
Circular attributes can be seen as changing the fix-point operation used in the
attribute evaluator. This is a significant change to the semantics of the core
language and is probably best done in the underlying AG evaluator and not
as a language extension.
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