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Abstract

This paper describes parallelizing compilers which allow programmers to tune parallel
program performance through an interactive dialog. Programmers specify language
constructs that define sequential processes, such as assignment or for-loops, to be used
as units of computation, while the compiler discovers the parallelism existent in the
source program in terms of these units. Programmers may provide target machine
architectural features used by compilers to coalesce sequential processes, controlling
process granularity and ensuring process load balance.

1 Introduction

This paper describes two techniques used by an algebraic parallelizing compiler for program
optimization. These techniques allow the programmer to control the granularity of
the sequential processes executing a parallelized program and to find opportunities for
parallelization and optimization between these processes. The programmer may specify
units of computation describing the kind of computations, such as assignment statement,
inner-loop-body, inner-loop, if-then-else, etc., that will be executed sequentially, as units, in
the parallelized code. The programmer may additionally determine the minimum number
of units to be used to create a sequential process. This allows the programmer to modify
the granularity of the processes used in the dynamic scheduling of the program.

We also present in this paper a technique based on the formal methods of temporal
logic and model checking to locate opportunities for optimization and parallelization in a
program. Model checking is traditionally used to verify properties of concurrent and real-
time systems. The properties to be verified are expressed by temporal logic formulas. A
model checking algorithm determines the satisfiability of these formulas on the semantic
model of the system represented as a labeled directed graph, called a model or Kripke
structure [3]. Hence, by representing a source program as a model, and describing the
conditions necessary for a particular optimization or parallelization as a temporal logic
formula, the model checker can discover all locations in the program model that satisfy
the formula and thus are candidates for the optimization. Thus, by providing a formal
methodology to deal with program optimization, the compiler developer does not need to
write code to discover optimization opportunities, only formulas that describe the required
conditions. This simplifies the implementation of program optimizations and encourages
more experimentation by the compiler developer with various optimizations thus improving
the quality of the compiler. While we use this technique for parallelization, practically all
other types of program analysis can be done with model checking.

∗This work was partially supported by the grant NGT-51321 from the NASA Jet Propulsion Laboratory.
†Department of Computer Science, University of Iowa, Iowa City, IA

1



2

2 Process graph and model representations

The intermediate representations of the source program used by our parallelizing compiler
are the process graph and the process model. The process graph is a directed graph in
which nodes represent computations found in a source program and edges represent control
and data dependency relationships between the computations. The process graph is not a
traditional control flow graph whose edges direct the flow of control from one computation
to the next. The nodes of a process graph represent sequential processes, i.e., stand alone
computations, and the edges represent a minimal set of restrictions on the execution order
of the computations required to ensure a correct execution of the computation represented
by the graph.

To determine how a source program is broken into the pieces that are represented by the
nodes of a process graph we define units of computation to be the types of computations
that the programmer chooses to be executed sequentially. The constructs in the source
program that are not units of computation are either too lightweight to stand as individual
processes and must be combined with other program constructs, or have as their components
units of computation and are therefore represented as graphs whose nodes are units of
computation and edges are control and data dependencies between the nodes. Thus, while
a unit of computation executes sequentially, it may perform in parallel with other units
of computation in the process graph under the constraints imposed by the control and
data dependency edges. For example, if assignment statements are units of computation,
then an assignment statement in a source program will be represented as a node, whereas
the expression on its right hand side is too lightweight to be a process; a sequence
of assignment statements is represented as a collection of nodes each representing the
individual assignment statements and edges representing the control and data dependencies
between them. Since computations are represented by language constructs, the language
specification rules defining valid language constructs allow us to formally define a unit of
computation. That is, a unit of computation is any valid construct recognized by one of
the specification rules marked by the programmer as defining units of computation. Hence,
the programmer specifies which rules generate units of computation, and the compiler in
turn generates sequential code from any construct recognized by these rules. By allowing
the programmer to specify which constructs will be defined as units of computation the
programmer can control the granularity of the processes executing the parallel program
generated by the compiler. The processes represented by the nodes in the process graph
are the smallest possible processes allowed by the programmer with respect to the specified
units of computation. In addition, the programmer is allowed to modify the set of units of
computation. Therefore, the compiler and programmer can engage in a dialog in which the
programmer modifies the units of computation and the compiler displays the new process
graph. This provides the programmer with immediate feedback about the structure of the
parallel program and gives him or her the opportunity to adjust the process granularity.

A node in the process graph is represented by the tuple <Types, State, T ransition>

where Types is the set of data types of the variables and constants used in the computation,
State describes the variables, their types, and possible values, and Transition describes
the computation of the node as a transition system. We use VW (n) and VR(n) to denote
the set of variables written and read by node n, respectively.

In the construction of graphs from nodes and other component graphs, we use two types
of edges: those which define control dependency relationships and those which define data
dependency relationships between units of computation. The simplest control dependency
edges are labeled with ≺ and have as their source or target node one of the two special non-
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computation nodes called entry (labeled e) and exit (labeled x) which mark the beginning
and ending of a computation represented by a process graph.

A data dependency edge describes restrictions on the execution order of node compu-
tations caused when two computations access the same data. That is, a data dependency
edge occurs between two nodes n1 and n2 if an instance of the computation at n1 accesses
the same variable or array element as an instance of n2, at least one of these accesses is
a write access, and the instance of n1 executes before the instance of n2 in a sequential
execution of the program. A data dependency [1, 5] is classified as (1) a data flow depen-

dency, and is denoted by n1
f
→ n2, if VW (n1) ∩ VR(n2) 6= ∅, (2) a data anti dependency,

and is denoted by n1
a
→ n2, if VR(n1) ∩ VW (n2) 6= ∅, or (3) a data output dependency, and

is denoted by n1
o
→ n2, if VW (n1) ∩ VW (n2) 6= ∅. When arrays are accessed, the decision

is more complicated than simple set intersection; a set of linear equations derived from the
array index expressions must be solved [1]. The distance of a data dependency between
two instances of computations n1 and n2 enclosed in loop ` is the number of iterations of
loop ` between the instance of n1 and the instance of n2. If all instances of n1 and n2 that
cause the data dependency have the same distance, the dependency is referred to as a con-
stant distance data dependency, otherwise it is a non-constant distance data dependency.
Data dependencies that have a distance of one or more are “carried” across loop iteration
boundaries and are called loop carried data dependencies. When n1 and n2 are not in the
same loop nest, the dependency is a loop crossing data dependency since it crosses from
one loop nest into another.

In constructing graphs from nodes and component graphs, we restrict our presentation
here to functional, branch, and enumerated loop compositions which correspond to
sequential, if-then-else, and do-loop compositions in the source language. The simplest
graph construction is the functional composition of two unit of computation nodes n1 and
n2, which results in a graph of 4 nodes: e, x, n1 and n2, and control dependency edges:

e
≺
→ n1, e

≺
→ n2, n1

≺
→ x, and n2

≺
→ x. We refer to this as functional composition since

the computation computed by the graph is the functional composition of the two transition
functions on nodes n1 and n2. If g1 and g2 are process graphs then g1 ⊕ g2 is a the graph
representing the functional composition of the computations represented by g1 and g2 and
has the shape in Figure 1(a).
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Fig. 1. Functional (a), Branch (b), and Enumerated Loop (c) process graph compositions

If there is a data dependency from a node n1 of g1 to a node n2 of g2 requiring the

sequential execution of some component nodes, a data dependency edge is added, n1
d
→ n2,

d ∈ {f, a, o}, which ensures the correct execution order of the computations at the nodes.
Since there are no control dependency edges only the data dependency edges restrict the
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execution order of the computations, thus the process graph exposes a high degree of
parallelism The edges of the process graph represent the minimal set of restrictions on
process execution order.

Branch composition of graphs g1 and g2 and predicate p has the shape in Figure 1(b),
where true and false are control dependencies.

An enumeration loop represents the repeated execution of a computation with different
values associated with the loop index variable. The enumerated loop composition creates a

graph in the shape in Figure 1(c) where h
i:l..u
−→ g represents the simultaneous instantiation

of all iterations of the loop body. Thus, we add data dependency edges to ensure correct
execution order of the loop iterations. Note that the lack of control dependency edges
between nodes of g is reminiscent of the lack of control dependency edges between nodes in
a functional composition. In both cases they are not necessary since the data dependency
edges which are added ensure a correct execution sequence of the computations.

Our process graphs are significantly different from most program flow graphs found
in optimizing and parallelizing compilers [5]. First, nodes do not represent basic blocks -
segments of target code that contain no branching statements. The nodes of a process graph
represent source language constructs and their creation is controlled by the programmer
by defining the set of units of computation. This allow the programmer to control the
granularity of the sequential processes executing the parallel program. We also provide
descriptive data dependency edges so that the control dependencies implicitly provided by
the textual layout of the computation can be marked as irrelevant to the execution order
of the statements in the program.

Process graphs are, however, very similar to the Kripke structures used in model
checking. In fact, by representing some of the information labeling the nodes and edges in
the process graph as atomic logical propositions, the projections of our graphs containing
the nodes, edges, and propositions, which we call process models, are Kripke structures.
Thus, many of the questions that optimizing and parallelizing compilers ask about programs
can be represented as temporal logic formulas. These questions can then be answered by
a model checking algorithm. The node propositions we use and their meaning are listed
below:

`n - unique label for node n unit - unit of computation nodes
e - entry nodes branch - branch condition nodes
x - exit nodes enum - enumerated loop header nodes

The edge propositions we use and their meaning are listed below:

≺ - control dependency (dep.) D`,0 - constant distance data dep. with
true - true branch control dep. distance 0 for enum loop node `

false - false branch control dep. D`,+ - constant distance data dep. with posi-
enum - enum control dep. tive distance for enum loop node `

f - data flow dep. D`,? - non constant distance data dep.
a - data anti dep. for enum loop `

o - data output dep. D`,X - data dep. that crosses loop
V var - data dep. on variable var boundary `

3 Temporal logic and model checking

Model checking is a formal verification technique which checks the correctness, according
to some specification, of a system represented as a proposition labeled directed graph,
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called a model or Kripke structure. Models used by our compiler are directed multigraphs
whose nodes and edges are labeled with atomic propositions. Models have the form
M = <N, E, Pn:APn → 2N , Pe:APe → 2E> where N is a set of finite nodes, E is a
finite set of edges, APn maps node propositions to the set of nodes on which they hold,
and APe maps edge propositions to the set of edges on which they hold. Since our models
are multigraphs and thus may have multiple edges between the same two nodes, the source
and target nodes of an edge may not uniquely identify the edge, thus we use the notation
source(e) and target(e) to identify the source and target nodes respectively of an edge
e. Also, a path n0, e0, n1, e1, n2, ... is the sequence of nodes ni and edges ei such that
∀i ≥ 0, ni = source(ei) ∧ ni+1 = target(ei) ∧ ei ∈ E. Since the properties of a system are
specified by temporal logic formulas written over the propositions which label the model
M, the process of model checking a temporal logic formula f over a model M determines
on which nodes in the model the temporal formula holds. The temporal logic used in this
paper is CTLe [4], an extension to CTL (Computational Tree Logic) developed by Clarke,
Emerson and Sistla in [2]. CTLe formulas are recursively constructed from CTL formulas
extended with CTLe edge formulas which quantify the paths examined by the temporal
operators. This allows formulas to be written over the propositions on the nodes and edges
of the model.

CTLe edge formulas are logical formulas over the edge propositions and are defined by
the following rules:

1. true, false and any atomic edge proposition ape ∈ APe are CTLe edge formulas.
2. if f1 and f2 are CTLe edge formulas, so are ¬f1, f1 ∨ f2, and f1 ∧ f2.

If an edge e ∈ E satisfies an edge formula f for a model M we write M, e |= f or e |= f .
Satisfaction of edge formulas is defined below:

e |= ape iff e ∈ Pe(ape)
e |= ¬f iff not e |= f

e |= f1 ∧ f2 iff e |= f1 and e |= f2

e |= f1 ∨ f2 iff e |= f1 or e |= f2

CTLe formulas are similar to those used in [2] and are defined by the following rules:

1. true, false and any atomic node proposition apn ∈ APn are CTLe formulas.
2. if f1 and f2 are CTLe formulas, so are ¬f1, f1 ∨ f2, and f1 ∧ f2.
3. if f1 and f2 are CTLe formulas, and fe is a CTLe edge formula, then AX{fe}f1,

EX{fe}f1, A[f1U{fe}f2], and E[f1U{fe}f2] are also CTLe formulas.

The formula AX{fe}f1 (EX{fe}f1) is satisfied on a node if all (one or more) successors
satisfy f1 and the edges to these successors satisfy the edge formula fe. The formula
A[f1U{fe}f2] ( E[f1U{fe}f2] ) is satisfied on a node if on all (one or more) paths beginning
on this node there is a node on which f2 holds, f1 holds on all nodes before this node, and
each intermediate edge in the path satisfies fe.

The satisfaction of a CTLe formula f on a node n ∈ N in a model M is denoted
M, n |= f or n |= f . The satisfaction rules of these CTLe formulas are given by:
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n |= apn iff n ∈ Pn(apn)
n |= ¬f iff not n |= f

n |= f1 ∧ f2 iff n |= f1 and n |= f2

n |= f1 ∨ f2 iff n |= f1 or n |= f2

n |= EX{fe}f1 iff ∃e ∈ E, n = source(e) ∧ e |= fe ∧ target(e) |= f1

n |= AX{fe}f1 iff ∀e ∈ E, n = source(e)⇒ (e |= fe ∧ target(e) |= f1)

n |= A[f1 U{fe} f2] iff ∀ paths (n0, e0, n1, e1, n2, . . .), n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)]]
n |= E[f1 U{fe} f2] iff ∃ a path (n0, e0, n1, e1, n2, . . .), n = n0 and

∃i[i ≥ 0 ∧ ni |= f2 ∧ ∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)]]

To illustrate the model checking of CTLe formulas, we provide an example of a model
in Figure 2 labeled with node propositions P and Q and edge propositions a, b, and c.
Node 1 satisfies the formula EX{a∨b}P since node 2 satisfies P and an edge from 1 to 2
satisfies a ∨ b, but it does not satisfy AX{true}Q since although all edges will satisfy true,
node 2 does not satisfy Q. Node 3 satisfies A[Q U{b}P ] because on both paths (3,5,6) and
(3,6) from node 3 Q holds until P holds, and b holds on all edges on those paths.
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Fig. 2. CTLe example

4 Discovering optimization opportunities

During the compilation of the source program, the parallelizing compiler analyzes the
process graph and process model of the source program looking for opportunities to
optimize and parallelize the source program. We propose a technique for this analysis
which eliminates the need for writing code. Instead, a compiler writer can write temporal
logic formulas which describe the conditions required for a particular optimization or
parallelization. This provides a concise, formal, and powerful way to describe optimization
opportunities, it simplifies compiler writing by replacing the writing of code with the writing
of formulas thus encouraging the compiler developer to experiment with more optimizations.
In this section we present a simple code fragment and some CTLe formulas used to locate
optimization opportunities in the process model.

One fundamental question a parallelizing compiler may ask is if the iterations of an
enumerated loop are independent, implying that they can be executed concurrently. We
consider this question on the simple loop in Figure 3. An enumerated loop has independent
iterations if there are no loop carried data dependencies between the nodes representing the
computations of the loop body. That is, an enumerated loop, with loop header node ` has
independent iterations if all unit labeled direct and indirect successors of the loop header
node reachable by a path whose edges are labeled by a control dependence ≺ do not have
any successors reachable by a loop carried data dependency edge labeled with D`,+ or D`,?.
These requirements can be stated as a CTLe formula which is tested for satisfaction on the
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`1: do i = 1, 100

`2: if c[i] > 0 then

`3: x = c[i]

else

`4: x = - c[i]

`5: a[i] = b[i] * x

end do
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Fig. 3. Source program and process model

node `1 in the process model in Figure 3. That is, loop `1 has independent iterations if

`1 |= enum ∧A [ true U{≺} (unit ∧ ¬EX{D`1,+ ∨ D`1,?} true) ](1)

The model checker would report that the node `1 does not satisfy this CTLe formula. The
data dependencies on scalar variable x prevent the parallelization of this loop as it now
stands.

A common transformation which may enable loop parallelization is scalar expansion
in which a scalar variable is expanded into an array such that the output of the program
does not change but data dependencies on the scalar disappear. If the scalar, x, is written
before it is read in all iterations of the enclosing loop `1, it can be expanded into an array
indexed by the loop index variable, i.e. x[i]. We say that the variable x is expanded over
loop `1. The semantics of the loop do not change, and the loop carried data dependencies
disappear since each iteration of the loop works on its own array element which replaces
the scalar. Scalar expansion over a loop ` is possible if there are no loop ` carried data
flow dependencies on the scalar. (For simplicity, we assume the scalar is not used elsewhere
in the code. This assumption can of course be removed by modifying the CTLe formula
below.) The presence of a loop ` carried data flow dependency would indicate that the
scalar is written in one iteration and read in a later iteration thus preventing the scalar
expansion. We can again write these requirements as a CTLe formula. That is, the scalar
x can be expanded over loop `1 if

`1 |= A [ true U{≺} (unit ∧ ¬EX{f∧V x ∧(D`1,+∨D`1,?)}true) ](2)

This formula is similar in structure to the previous iteration independence test and simply
ensures that each unit node in the body of the loop ` does not have an ` loop carried data
flow dependency on variable x. Node `1 satisfies this formula, thus the scalar variable could
be expanded over the enumerated loop `1. After expanding x over the loop `1 there would
be no loop carried dependencies in `1 and the loop would pass the iteration independence
test in (1). Hence, the loop iterations could be executed concurrently.

Strictly speaking, a CTLe formula must be written over the propositions which occur
in the model as was the case in the formulas above. However in the compiler, formulas
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must be specified such that they will work for all source program models which will contain
different propositions characterizing different constructs specified by the same specification
rule. Therefore we specify temporal logic formulas as formula macros attached to the source
language specification rules. During the compilation process when the compiler recognizes
a construct specified by a rule r it expands the formula macros attached to r into CTLe
formulas. This allows propositions appropriate to the program constructs or circumstance
to be “plugged-into” the CTLe formulas using them as parameters of the formula macro
that generates these formulas. For example, in testing for scalar expansion of the scalar
whose name is referenced by the name the scalar over the loop whose label is referenced
by the name the loop, we would obtain the appropriate formula as seen in (2) by plugging
the appropriate propositions into the formula macro

A [ true U{≺} (unit ∧ ¬EX{f∧$var(the scalar)∧($Dist+(the loop)∨$Dist?(the loop))}true) ]

where, in the example above, $var(the scalar) expands into the proposition V x, $Dist+
(the loop) expands into the proposition D{`1,+}, and $Dist?(the loop) expands into the
proposition D{`1,?}. Thus, the formula macro can be expanded into the appropriate CTLe
formula for any source program. While the formulas we have written here are certainly
too restrictive in that they may reject loops for parallelization that could be parallelized, it
is the process of writing formulas to detect optimization and parallelization opportunities
that we want to emphasize. To find more parallelizable loops, we need only modify the
CTLe formulas that detect them. We do not modify code to detect them.

5 Conclusions

We have presented a formal technique for program optimization by the compiler where pro-
cess granularity is controlled by the programmer at the source language level. Programmers
interact with the compiler specifying the computation contents of the nodes of the model.
The optimizations are specified by the compiler designer using formula macros attached
to the specification rules. The compiler constructs the process model of the program and
expands formula macros into temporal formulas. A model checker verifies these temporal
formulas checking for optimization opportunities. An experimental version of this compiler
using Fortran-90 as the source language is under development.
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