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Abstract—This paper describes a compiler extension to our
prototype extensible C translator that adds new features for
parallel execution of matrix operations and shows their applica-
tion to problems in spatio-temporal data mining. The extension
provides new language features for constructing new matrices,
mapping functions over elements of a matrix, and accumulating
operations that, for example, can sum values in a matrix. It also
provides the appropriate semantic analysis to check for errors
before translating the constructs down to parallel C code.

The extension also provides features that let the programmer
indicate how the extension translates these matrix constructs
down to C code. Programmers seeking higher levels of perfor-
mance can specify how the underlying for-loops are structured
so that code using, for example, loop-tiling techniques or vector
processors, is generated.

In general, compiler extensions supported by our approach
allow new domain-specific syntax and semantic analyses to be
easily added to the host language. Specifications of the host C
language and the extensions are composed to create a custom
translator that maps extended C programs down to plain (par-
allel) C code, checking for domain-specific errors and applying
high-level domain-specific optimizations in the process.

I. INTRODUCTION AND MOTIVATION

Modern computer architectures require parallel programs
to make efficient use of their capabilities. But programming
for multi-core and many-core processors (which may also
have short vector processors in each core) can be a daunting
task. Furthermore, scientists and programmers have different
performance needs and are willing to put in varying degrees of
effort to achieve their desired performance. Some programmers
are more casual in their needs; they want reasonable parallel
performance but not at the expense of writing parallel code
by hand and understanding all the obstacles for creating effi-
cient parallel programs. Others are more aggressive users that
demand very high performance. They are often more willing
to work quite hard to achieve this higher level of performance
by writing and modifying their programs to explicitly take
into account processor features such as vector processing
capabilities or address issues such as cache performance.

As multi-core and many-core architectures become more
prevalent, programming language designers continue to search
for useful programming abstractions, analysis, and optimiza-
tions that will make programming for these architectures a
more productive and less error-prone process for both the
casual and more aggressive users. For the casual user, lan-
guages strive to relieve the programmer from dealing directly

with issues that arise when writing parallel code and instead
provide high-level language constructs from which parallel
code is automatically generated. For the more aggressive users
programming abstractions that explicitly expose parallelism
may be required, but these are typically easier to use and less
error-prone than basic threads and locks.

There are many domain-specific languages and extensions
to general purpose languages that provide language constructs
from which parallelism can be easily detected and exploited,
as compared with traditional nests of for-loops. These include
language such as Single Assignment C (SAC) [1], SISAL [2],
and nested data parallelism languages such as NESL [3]. Other
languages, such as Cilk [4] and Yada [5], provide abstractions
that allow programmers to explicitly express the parallelism
in the program, but at a higher and less error-prone level of
abstraction than traditional threads and locks.

Of course, no one has found the ideal set of programming
abstractions to suit all users, since users needs are quite di-
verse. The problem is further complicated by the fact that both
the architectures used and many of the problem domains using
them are rapidly changing. The challenges to programmers
are further complicated since it is difficult to evaluate and
to experiment with these “whole language” approaches. One
cannot easily try one and move to another if it is not sufficient.
It is often clumsy to write applications that make use of
multiple forms of parallelism as implemented in these different
systems. Furthermore, programmers may desire new domain-
specific abstractions for other programming problems such as
matrix processing. MATLAB, for example, has nice features
for this, but using MATLAB code in combination with other
systems can also be rather clumsy.

In our view, a potential solution to this problem is ex-
tensible languages that allow programmers to customize their
languages by easily importing new language features into their
compiler/translator. Here, these new features are for parallel
programming. Extensible languages allow programmers to
more easily experiment and evaluate new language features,
packaged as language extensions. Our work has focused on
automatically composable language extensions so the pro-
grammer need not be an expert in programming language
design and implementation to use them.

In this paper, we describe our work in developing compos-
able language extensions that we have implemented for a rather
complete subset of ANSI C called CMINUS. Some of these
extensions are general-purpose in nature; they add a notion of



tuples and reference counting pointers that automatically free
their data. Others are domain-specific and are directed at ma-
trix processing. Both types of extensions provide new syntax
and semantic analyses to the language before translating the
added features down to plain C code (for eventual compilation
to executable form by a traditional compiler).

Section II provides some background our our approach to
extensible compilers and languages. In Section III we discuss
a compiler extension that adds MATLAB-like matrices and
operations over them to the C host language; Section IV shows
how these new language features can be used in a spatio-
temporal data mining applications. This is an extension of
work previously reported in an exploratory workshop paper [6].
Section V describes a language extension that gives the pro-
grammer a great deal of control over the type of C code that
is generated from the matrix operations. This extension allows
programmers to explicitly transform the generated for-loop
structures to, for example, implement a tiling over 2D data.
Section VI describes modular analyses that can be applied
to the declarative specifications of language extensions, by
the extension author, to ensure that independently-developed
language extensions will in fact be composable. Section VII
describes related work and Section VIII concludes and dis-
cusses some future work.

II. EXTENSIBLE LANGUAGES AND COMPILERS

Classically, languages are constructed by a centralized
group of developers so that all components of the language
work well together. Programmers can construct libraries which
can be used by others to complete tasks in faster or more
efficient ways, and, critically, any user is free to include or
import any collection of libraries because the language ensures
that these libraries do not interfere with one another.

The novelty of this work is that programmers are able
to use multiple independently developed language extensions
in a manner not unlike how they traditionally use multiple
independently developed libraries. This is possible because of
how the host language and its extensions are implemented and
composed. Extensible languages are defined by two primary
components: a specification for a host language and a set of
specifications for the extensions to that host language. The
extensions are constructed by independent parties focusing
on their own domain-specific language extensions that may
introduce new syntax (notations), semantic analyses (error
checking), and optimizations to the host language and its
translator. These extension developers need have no knowledge
of one another. As with traditional libraries, the programmer
using an extensible language is free to choose the set of
extensions that fits his or her problem at hand and direct a
set of compiler-generating tools to compose the extensions
with the host language and construct the compiler for their
customized language. The programmer is not required to have
any knowledge of the language composition process.

Automatic composition of language extensions raises a
number of challenges. We use attribute grammars [7], [8] and
context-aware scanners [9] with LR parsers [10] to specify
host languages and language extensions since these formalisms
naturally compose. Furthermore we have developed modular
analyses of these formalisms that provide strong guarantees

1 i n t main ( i n t argc , char ∗∗ a rgv ) {
2 Matrix f l o a t <3> mat = r e a d M a t r i x ( ” s s h . d a t a ” ) ;
3 i n t m = dimSize ( mat , 0 ) ; / / L a t i t u d e d i m e n s i o n
4 i n t n = dimSize ( mat , 1 ) ; / / L o n g i t u d e d i m e n s i o n
5 i n t p = dimSize ( mat , 2 ) ; / / Time d i m e n s i o n
6 / / Compute t e m p o r a l means u s i n g wi th−l o o p s
7 Matrix f l o a t <2> means =
8 with ( [ 0 , 0 ] <= [ i , j ] < [m, n ] ) genarray ( [m, n ] ,
9 / / Compute t e m p o r a l mean f o r l o c a t i o n i , j

10 ( with ( [ 0 ] <= [ k ] < [ p ] )
11 f o l d ( + , 0 . 0 , mat [ i , j , : : ] ) / p ) ) ;
12 w r i t e M a t r i x ( ” means . d a t a ” , means ) ;
13 re turn 0 ;
14 }

Fig. 1: Temporal Mean Algorithm in Extended CMINUS

that programmer-selected language extensions will compose
with the host language to form a working compiler for
their customized language [11], [12]. These formalisms are
described in greater detail in Section VI.

Because multiple language extensions can be easily and
reliably imported into a general purpose host language such
as C, the programmer is much freer to experiment with new
language abstractions. He or she can carry out this experi-
mentation and evaluation in their production code instead of
on a small toy problem. In some part of their application
a new feature from a language extension can be used; the
extended translator (generated from the user chosen extension
specifications) will check this extended program for errors and
translate it down to plain C code, which can then be compiled
for execution by a traditional compiler. The extended translator
slips into the existing development process as just another step
in the compilation process. Based on the results of this effort
the programmer can continue to use the extension or easily
abandon the extension; either way the cost of the experiment
is rather low.

III. MATRIX EXTENSIONS TO CMINUS

A great deal of scientific code is written in MATLAB
due to its expressive language features such as multiple-
element indexing and flexible support for matrices of arbitrary
rank, which makes the code more concise and easier to both
construct and understand than if done in a general purpose
language like C or FORTRAN. We provide an implementation
of a subset of C as the “host” language, with extensions that
support many of the useful features found in MATLAB, Single
Assignment C [1], and other general purpose languages.

Our recurring example is shown in Fig. 1, which takes a
three-dimensional matrix mat composed of sea surface height
data split by latitude, longitude, and time, and computes for
every measured point on the ocean’s surface the average sea
height over time. The averages are computed in lines 10-11
via the fold with-loop and every location in mat is visited by
the genarray with-loop, both of which are defined below.

A. Matrix Extension

First, we have a domain specific extension which adds
many features that can be found in MATLAB and SAC.
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1) Matrix Type: The first thing we have added is a new data
type to our host language’s type system, which is for matrices.
A variable can be declared as a matrix by using the following
type expression:

TypeExpr ⇒Matrix (int | bool | float) ‘<’ Integer ‘>’

After the keyword “Matrix” is a type that specifies the type of
the matrix elements, followed by an integer literal specifying
the number of dimensions. As of now, matrices can only
contain integers, booleans, or floating point numbers. Consider
line 2 of Fig. 1, where this syntax is used to declare a
three-dimensional matrix mat containing floats read from
”ssh.data”.

2) Arithmetic: Next, we have overloaded the arithmetic
and comparison operators in the host language based on
argument types, allowing these operators to be used for matrix
arithmetic. Our extended type system is able to verify that
these operations are only performed on matrices of the same
type and rank. Additionally, we are able to perform arithmetic
between matrices and scalar values. For the multiplication
operator, we have added another operator to denote element
wise multiplication as opposed to matrix multiplication in
the linear algebra sense. All other operators are all element
wise operators. The assignment operator is also overloaded
for matrices.

3) Matrix Indexing: We have implemented our matrix
indexing in the style of MATLAB. This includes the following
variations (where end denotes the last element in the given
dimension):

(a) Standard matrix indexing which extracts a single element
– data[6, 4, 1] returns a scalar.

(b) Range indexing which extracts a contiguous block of cells
– data[0 :: 4, end − 4 :: end, 0 :: 4] returns a 5 × 5 × 5
matrix, where end is the index of the last element in the
matrix in that dimension.

(c) Whole dimension indexing, marked by ::, which extracts
the entire dimension selected – data[0, end, ::] returns a
vector of size dimSize(data, 2), where dimSize(m, d) is
the size of dimension d in matrix m.

(d) Logical indexing which selects a possibly non-contiguous
submatrix based on an array of booleans generated by
element wise operators – data[v%2 == 1, ::, 0] returns a
n×dimSize(data, 1) matrix where v is a one-dimensional
matrix, v%2 == 1 returns a one-dimensional boolean
matrix of the same size as v with n true values such that
the ith element is true if and only if v[i]%2 == 1

These various methods of matrix indexing can be used in
any combination for a matrix of arbitrary rank. Additionally,
this sort of matrix indexing can be used both on the left hand
and right hand side of an assignment operator.

Looking back at Fig. 1 we can see in line 11 inside the
body of the innermost with-loop that for every point (i, j) we
are extracting a chunk of mat along the third dimension. This
returns a one-dimensional matrix of length equal to the size
of the third dimension of mat.

4) With-Loop: The next feature we have implemented is
the with-loop from the Single Assignment C (SAC) language.
The with-loop has the syntax specified in Fig. 2.

WithLoop ::= with ‘(’ Generator ‘)’ Operation
Generator ::= ‘[’ ExprList‘]’ ROp ‘[’Id (‘, ’Id)∗ ‘]’

ROp ‘[’ ExprList ‘]’
ROp ::= ‘ < ’ | ‘ <= ’

Operation ::= genarray ‘(’ ‘[’ ExprList ‘]’ ‘, ’ Expr ‘)’
| fold ‘(’ FoldOp ‘, ’ Expr ‘, ’ Expr ‘)’

FoldOp ::= ‘ + ’ | ‘− ’ | ‘ ∗ ’ | ‘/’ | ‘&&’ | ‘||’ | Id
ExprList ::= Expr ( ‘, ’ Expr )∗

Fig. 2: EBNF With-Loop Syntax

1 Matrix f l o a t <2> means ;
2 f o r ( i n t i = 0 ; i < m; i ++) {
3 f o r ( i n t j = 0 ; j < n ; j ++) {
4 f l o a t sum = 0 . 0 ;
5 f o r ( i n t k = 0 ; k < p ; k ++) {
6 sum = sum + mat [ i , j , k ] ;
7 }
8 sum = sum / p ;
9 means [ i , j ] = sum ;

10 }
11 }

Fig. 3: Lines 7-11 of Fig. 1 Expanded With For Loops

The Generator portion specifies a set of indices to operate
over, and the Operation portion specifies what is to be done
over those indices. The number of expressions in both the
upper bound and lower bound should match the number of Id’s
provided, which should also match the number of dimensions
provided in the Operation . Our extended semantic analysis
checks that these criteria are met and can produce error
messages if necessary. A with-loop Operation is either a
genarray or a fold .

fold(foldOp, baseVal , expr) extracts the elements speci-
fied by the generator and folds them up using the foldOp
operator, starting with the value baseVal . Again, in Fig. 1 we
can see in lines 10-11 we are adding up all elements along the
third dimension of mat by folding the operator + over them.
We then divide by the total number of elements p to compute
the mean.

genarray(shape, expr) generates a new matrix with size
and rank according to that of shape , where each element in
the set of indices specified by the generator is equal to expr
and 0 elsewhere. We see an example of this in Fig. 1 in lines 8-
11, where we are generating a matrix of size m×n where each
point in the matrix is defined by the inner fold loop for every
location [i, j]. Note that the shape used in the operation may
differ from the indices defined in the generator, however, the
shape in the operation must be a superset of the indexes in the
generator, which is something that can be checked at runtime.
The idea behind this is that the programmer can perform these
operations on subsets of a matrix, rather than being forced to
fill out the whole matrix.

An approximate translation of the internal expansion of
lines 7-11 from Fig. 1 is shown in Fig. 3. By approximate,
we mean that non-critical code such as reference counting
(described in Section III-B) was omitted for demonstration
purposes. Notice that the outer genarray has been replaced
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Matrix i n t <2> connComp ( Matrix f l o a t <2> s s h ){
Matrix i n t <2> l a b e l s =

i n i t ( Matrix i n t <2>, 721 , 1 4 4 0 ) ;
f o r ( i n t i = −100; i < 100 ; i ++){

Matrix bool<2> b i n a r y = s s h < i ;
. . . / / compute c o n n e c t e d components

}
re turn l a b e l s ;

}

i n t main ( i n t argv , char ∗∗ a rgv ) {
Matrix f l o a t <3> s s h =

r e a d M a t r i x ( ” s s h . d a t a ” ) ;
Matrix i n t <1> d a t e s =

r e a d M a t r i x ( ” d a t e s . d a t a ” ) ;
s s h = s s h [ : : , : : , d a t e s >= 0 1 0 1 2 0 0 0 ] ;
Matrix i n t <3> l a b e l s =

matrixMap ( connComp , ssh , [ 0 , 1 ] ) ;
w r i t e M a t r i x ( ” e d d y L a b e l s . d a t a ” , l a b e l s ) ;

}

Fig. 4: Connected Component Matrix Map Example

with two nested for loops, each iterating over one dimension
of mat. The inner fold has been replaced with a loop which
adds each sea height for location [i, j], divides it by p (the
number of time steps), and copies the value into means. A
library implementation of this would likely evaluate the result
of the with-loops into a temporary variable which is then
copied into means. Our language extension is able to interact
with the assignment and both with-loops and thereby move the
assignment and avoid an extraneous copy.

Additionally, the matrix indexing in line 11 of Fig. 1 which
originally returned a one-dimensional matrix was removed in
the generation of Fig. 3. This was driven by a set of high-level
optimizations which observed that the fold iterated across one
dimension of mat and there was no need to iterate over a
copied slice of mat . This optimization is also not possible via
libraries, as high-level and invasive optimizations such as this
cannot be applied across separate libraries.

The with-loop provides our extended language a concise
way for specifying complex matrix operations. Also, because
of the semantics of the generator we have a unique set of
elements to access allowing us to perform these operations in
parallel, which is discussed in further detail in Section III-C.

5) Matrix Map: Lastly, we describe a matrix-map con-
struct, which is quite similar to the with-loop in that it
allows the programmer to map a function over a matrix, but
this allows one to compute over ranges of a matrix, rather
than element by element. More specifically, the programmer
specifies what dimensions he or she would like to apply the
function to, and then the rest of the dimensions are implicitly
iterated over. The syntax for the matrix map is

Expr ⇒ matrixMap ‘(’ Id ‘, ’ Expr ‘, ’ ‘[’ ExprList‘]’ )

Fig. 4 shows an example to help clarify this idea. The goal
of this sample program is to take a three dimensional spatio-
temporal data set, where for each point in time, we want to
label all connected components in space.

f o r ( i n t i = 0 ; i < dimSize ( ssh , 2 ) ; i ++){
r e s u l t [ : : , : : , i ] = connComp ( s s h [ : : , : : , i ] ) ;

}

Fig. 5: Semantically equivalent code fragment.

To accomplish this, we have written a function, connComp,
which takes in a two dimensional matrix and labels all con-
nected components. We then map this function, using the ma-
trixMap, over the three dimensional matrix, specifying that we
want this function applied to the first and second dimensions
(denoted by [0, 1]) and then a loop iterating over the third
dimension is generated. This can intuitively be thought of
as the following few lines of semantically equivalent code in
Fig. 5.

This however, becomes much more complicated as the
matrix indexing generates more loops, and since this can be
run in parallel, we actually lift this out into a new function
so that the spawned threads can get direct access to it. One
important thing to note here is that when using the matrix-
map, the result is always the same size and rank as the matrix
getting mapped over, though a generalization of this extension
that removes this restriction is being developed.

At first glance, these abstractions may seem general pur-
pose and not specific to the spatio-temporal data mining
domain. While this may be true, we designed this language
extension with a number of data mining applications in mind.
These abstractions have previously been shown to work well
in general, however, we found them to be especially useful in
our applications.

B. General Purpose Extensions

In addition to these domain-specific extensions, we have
also added a few general purpose extensions. The first is a
notion of tuples similar to what is done in the functional
languages such as ML and Haskell. In MATLAB, one can
return multiple arguments from a function, which is a common
operation. Tuples give us a way of doing this same thing;
however, they are more general and can be used universally,
rather than only with functions. The features provided with the
tuple extensions are tuple declaration ((int, float, bool) t;),
anonymous creation (return (x, y, z);), and tuple assignment
((a, b, c) = f();), along with the expected semantic analyses
for each.

A second general purpose extension that we have added
is the reference counting pointer. Reference counting provides
us a way of automatically managing memory. The idea is that
we attach an extra 4 bytes to every piece of memory that gets
allocated as a reference counting pointer, and use this extra
4 bytes to keep track of how many live references there are
to that block of memory. If another variable also becomes a
reference for that same piece of data, then we increment this
counter by one. Anytime a variable goes out of scope, or gets
assigned a new piece of data, then we decrement its reference
counter by one. If a reference counter ever reaches zero, then
we free that data.
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Fig. 6: [13] Rendering of a Cyclonic Ocean Eddy.

C. Parallel Code Generation

The with-loop and matrix-map extensions specify regular
computations that can be easily parallelized with the expec-
tations of near linear speedup. Here we discuss an automatic
parallelization based on Pthreads. In Section V, we use user-
directed transformations to parallelize and optimize with-loops.

A naive translation to Pthreads will not achieve linear
speedup. First, there is the issue of thread management over-
head. Most multi-threaded programs adopt the fork-join model,
where threads are spawned when they are needed, and then
destroyed as soon as that parallel computation is done. If there
is a lot of disjoint parallel computation to be done, then the
program pays the price of creating and destroying threads each
time. To mitigate this problem, we have adopted the enhanced
fork-join model from SAC [14] where we spawn the necessary
number of threads (indicated by a command line argument) at
the beginning of program execution and send them straight
into a spin lock where they sit idle until some parallel work
is to be done. When a parallel construct is encountered by
the main thread, it flips the condition that keeps the threads
spinning, which releases all of them at once to execute the
work in parallel. As soon as each thread is done, it passes
through a stop barrier and goes right back into the spin lock.
The main thread then waits in the stop barrier until all threads
have completed their work.

Another problem that needed to be dealt with was memory
management. To take care of this problem we build the
underlying implementation of matrices on top of the reference
counting pointers described in section III-B. This sort of
memory management works well in this setting, as most
allocations made are relatively infrequently and are large
compared to those made in say a functional programming
language. In addition, we were faced with related memory
allocation challenges. The issue is that some implementations
of malloc are naı̈vely implemented using a mutex lock to deal
with contention over the heap. More recent implementations
separate the heap into “arenas” as soon as contention is
detected [15], however results shown in [16] show that these
“off the shelf” memory allocators do not scale well in this
setting. We briefly explored the use of the Hoard allocator;
however, as noted in [16], when allocation requests exceed a
certain threshold, they are mapped directly to virtual memory
using mmap and munmap which incurs significant overhead.

The basic idea behind our memory allocator is to create
a separate heap of a fixed size for each thread at the time of
program creation. Each thread only requests memory from its
personal heap. If its heap ever becomes depleted, then a new
block of memory of the same fixed size is added to its heap’s
free list, unless the requested size is greater than the fixed
size, in which case the requested size is added to the heap and
immediately given to that thread.

D. Compiler Extension Implementation

To create a language extension such as this one, the
extension developer must define both the concrete syntax and
abstract syntax of the constructs as context free grammar rules.
The concrete syntax is combined with that of the host language
and other user selected extensions and given to our parser
generator [9] to build the scanner and parser for the extended
language. With the abstract syntax, the extension author also
specifies the semantic analysis for the new constructs in the
form of attribute grammar rules. These are used to define type
checking and other error checking as well as the translation of
the construct down to plain C code in the host language.

IV. OCEAN EDDY APPLICATION

We now shift our focus to a more specific application
within spatio-temporal data mining: identifying and tracking
ocean eddies. Mesoscale ocean eddies are rotating pools of
water in the ocean spanning tens to hundreds of kilometers
which can last anywhere from a few days to several months.
Ocean eddies are an important phenomenon to monitor as they
dominate the ocean’s kinetic energy and are responsible for the
transport of heat, salt, nutrients, and energy across the oceans
[17].

Fig. 6 is a NASA image [13] showing that the rotating
nature of ocean eddies makes them identifiable in sea surface
height (SSH) data, as it causes the center of the eddy to be
lower in height compared to its perimeter. One can identify
ocean eddies algorithmically by iteratively thresholding the
SSH data and searching for connected components that satisfy
certain criteria that are typical of ocean eddies. The problem
with this is that it is susceptible to noise in the sea surface
height data collected from satellites. One problem with this
is that the detection algorithm will miss an eddy for a given
time frame, which can have significant impacts on the tracking
results [18].

One way to circumvent this issue is to incorporate time
into the detection scheme. As ocean eddies travel along a path,
they leave a signature in the SSH data over time. In Fig. 7 we
see such a signature. The graph shows the SSH time series
(solid black line) for a given point on the ocean surface over
some number of weeks. What has happened is an eddy traveled
through this point, causing the sea surface height to lower, and
then as the eddy passed through the point it began to rise again.
Both before and after the eddy passed through, there are small
“bumps” in the time series, these can be attributed to both the
restlessness of the ocean, and inaccurate noisy readings from
the satellites. We can quantify these signatures left by eddies
in the SSH data by searching for two local maxima in each
direction of a local minima, and computing the “area” between
that trough and an imaginary line going from peak to peak, as
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Fig. 7: Sea surface height profile of a single point affected by
an ocean eddy over time and computed areas.

seen in Fig. 7. Large areas will then correspond to segments
of the time series (troughs), that underwent substantial drops
and rises, and those that are shallow, such as the first two and
last segments, can be associated with noise. Each point in the
trough is then assigned this area, which serves as a way of
ranking locations on the map by how likely it is that what is
being detected is actually an eddy and not an illusion created
by noise.

Fig. 8 shows how we can encode such an algorithm
using our version of C extended with the language extensions
described above. What we have is a function, scoreTS, that
computes a score for every point in a given time series. In the
main function of the program, we map this scoring function
over each point in space, applying it to all elements in the
third dimension as seen in line 58 (recall dimensions begin at
0, so 2 corresponds to the third dimension).

Within the scoring function, we begin by trimming off
the beginning of the time series until we reach our first local
maxima. We then continually cut out a chunk of the time series
as extracted by the getTrough function, and compute the area
of that trough using the computeArea function. Each point on
that trough is then assigned the computed area, and put back
into the original time series.

The getTrough function simply begins by starting at the
first local maxima, and then walks over the time series until it
encounters another local maxima, returning this sub-sequence
of the data, the beginning index, and the ending index in the
form of a tuple.

The computeArea function then computes the equation of
a line based off of the two local maxima. In line 27 we compute
the dotted line seen in Fig. 7 first by creating a one dimensional
array containing the elements between zero and the length of
areaOfInterest , which then gets multiplied by the slope of
the line, and added to the y-intercept. In lines 28-32, we then
compute the area by subtracting the trough from this line, and
sum the differences using a with-loop; lastly, we create an
array the same length of the areaOfInterest where each point
is the computed area.

1 ( Matrix f l o a t <1>, i n t , i n t )
2 ge tTrough ( Matrix f l o a t <1>t s , i n t i ) {
3 i n t b e g i n n i n g = i ;
4 i n t n = dimSize ( t s , 0 ) ;
5 / / Walk Downwards
6 whi le ( i +1 < n && t s [ i ] >= t s [ i + 1 ] )
7 i = i +1 ;
8 / / Walk Upwards
9 whi le ( i +1 < n && t s [ i ] < t s [ i + 1 ] )

10 i = i +1 ;
11 / / Re tu r n t h e t r o u g h
12 re turn ( t s [ b e g i n n i n g : : i ] , b e g i n n i n g , i ) ;
13 }
14
15 Matrix f l o a t <1>
16 computeArea ( Matrix f l o a t <1> a r e a O f I n t e r e s t ) {
17 f l o a t y1 = a r e a O f I n t e r e s t [ 0 ] ;
18 f l o a t y2 = a r e a O f I n t e r e s t [ end ] ;
19 i n t x1 = 0 ;
20 i n t x2= dimSize ( a r e a O f I n t e r e s t ,0 )−1 ;
21 / / compute s l o p e
22 f l o a t m = ( y1−y2 ) / ( ( f l o a t ) ( x1−x2 ) ) ;
23 / / compute y i n t e r c e p t
24 f l o a t b = y1 − m∗x1 ;
25 Matrix f l o a t <1> Line = ( x1 : : x2 )∗m+b ;
26
27 f l o a t a r e a = with ( [ x1 ] <= [ i ] < [ x2 ] )
28 f o l d ( + , 0 . 0 , l i n e−a r e a O f I n t e r e s t ) ;
29
30 re turn
31 with ( [ 0 ] <= [ i ] < [ d imSize ( Line , 0 ) ] )
32 genarray ( [ d imSize ( Line , 0 ) ] , a r e a ) ;
33 }
34
35 Matrix f l o a t <1>scoreTS ( Matrix f l o a t <1> t s ) {
36 Matrix f l o a t <1>s c o r e s =
37 i n i t ( Matrix f l o a t <1>, d imSize ( t s , 0 ) ) ;
38 i n t i = 0 ;
39 whi le ( t s [ i ] < t s [ i + 1 ] ) / / t r i m m i ng
40 i = i +1 ;
41 i n t n = dimSize ( t s , 0 ) ;
42 i n t b e g i n n i n g ;
43 Matrix f l o a t <1> t r o u g h ;
44 whi le ( i < n−1) {
45 ( t rough , b e g i n n i n g , i )
46 = ge tTrough ( t s , i ) ;
47 s c o r e s [ b e g i n n i n g : : i ]
48 = computeArea ( t r o u g h ) ;
49 }
50 re turn s c o r e s ;
51 }
52
53 main ( i n t argc , char ∗∗ a rgv ) {
54 / / Shape o f SSH : 721 x 1440 x 954
55 Matrix f l o a t <3> d a t a
56 = r e a d M a t r i x ( ” s s h . d a t a ” ) ;
57 Matrix f l o a t <3> s c o r e s ;
58 s c o r e s = matrixMap ( scoreTS , da t a , [ 2 ] ) ;
59 w r i t e M a t r i x ( ” t e m p o r a l S c o r e s . d a t a ” , s c o r e s ) ;
60 re turn 0 ;
61 }

Fig. 8: Ocean eddy scoring implementation.
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1 means = with ( [ 0 , 0 ] <= [ i , j ] < [m, n ] )
2 genarray ( [m, n ] ,
3 with ( [ 0 ] <= [ k ] < [ p ] )
4 f o l d ( + , 0 . 0 , mat [ i , j , : : ] ) / p )
5 transform
6 s p l i t j by 4 , j i n , j o u t ,
7 v e c t o r i z e j i n ,
8 p a r a l l e l i z e i ;

Fig. 9: Temporal mean algorithm written with programmer
specified transformations.

V. EXPLICIT PROGRAM TRANSFORMATION AND
OPTIMIZATION EXTENSION

Certainly, some users may be content with the performance
achieved by systems and tools that generate parallel code with
little or no explicit specification of the parallelism in their
programs. For example, the performance of the parallel code
generated from the matrix constructs described above scales
nearly linearly with the number of cores on the machine with
two 6-core processors on which we have tested it and this may
be satisfactory to some users. But there are other users that
are looking for a higher level of performance than is typically
achieved by such automated approaches. Unfortunately, when
these automatic systems do not provide the requisite perfor-
mance the programmer is typically left to abandon the system
entirely and write their parallel code by hand.

Modern compilers are capable of performing sophisticated
transformations over nested for-loop computations to expose
parallelism, restructure nested loops (e.g. to tile the data to
provide better cache behavior), or to vectorize inner loops to
use vector processing units. But the problem is that they often
do not perform these transformation in a way the generates
the highest performing code. Systems such a Halide [19],
[20], CHiLL [21], [22], and CFD Builder [23], [24] allow
programmers to indicate what compiler transformations should
be performed to direct the compiler in generating the desired
code. This gives the sophisticated programmer control of
the generated code without having to write all that (often
convoluted and intricate) code manually.

The matrix language constructs in the compiler exten-
sion described earlier generate the same type of nested for-
loops that these compiler transformations typically target, but
sometimes fail to optimize as much as desired. We have
thus extended the matrix processing constructs to allow the
programmer to specify what transformations should be made
to the underlying for-loops to maximize performance. Consider
again the nested with-constructs in Fig. 1. These with-loops are
shown again in Fig. 9 but with sample explicit transformations
specified. The language extension uses these specifications to
transform the generated for-loops.

The process of transforming this code fragment to plain
C code begins by expanding the with-loops into the for-loops
shown in Fig. 3 and then applying the transformations in the
order in which they appear. The result of the expansion and
split transformation is shown in Fig. 10. Here we see that
the loop indexed by j has been split into two loops. The
transformation also replaces instances of j with the appropriate

1 f o r ( i =0 ; i<m; ++ i ) {
2 f o r ( j o u t =0; j o u t ∗4<n ; ++ j o u t ) {
3 f o r ( j i n =0; j i n <4; ++ j i n ) {
4 sum = 0 . 0 ;
5 f o r ( k =0; k<p ; ++k ) {
6 sum = sum + mat [ i , j o u t ∗4+ j i n , k ] ;
7 }
8 means [ i , j o u t ∗4+ j i n ] = sum / p ;
9 }

10 }
11 } transform
12 v e c t o r i z e j i n ,
13 p a r a l l e l i z e i ;

Fig. 10: Temporal mean algorithm after expansion and appli-
cation of split transformation.

1 f l o a t ∗ s t a g e p =
2 ( f l o a t ∗ ) mm malloc (4 ∗ s i z e o f ( f l o a t ) , 1 6 ) ;
3 f o r ( i =0 ; i <4; ++ i ) { s t a g e p [ i ] = ( f l o a t ) p ; }
4 c o n s t m128 p = mm load ps ( s t a g e p ) ;
5
6 f l o a t ∗ z e r o s =
7 ( f l o a t ∗ ) mm malloc (4 ∗ s i z e o f ( f l o a t ) , 1 6 ) ;
8 f o r ( i =0 ; i <4; ++ i ) { z e r o s [ i ] = 0 . 0 ; }
9

10 #pragma omp p a r a l l e l f o r p r i v a t e ( i , j , k , q )
11 f o r ( i =0 ; i<m; ++ i ) {
12 f o r ( j o u t =0 ; j o u t ∗4<n ; ++ j o u t ) {
13 m128 sum = mm load ps ( z e r o s ) ;
14 f o r ( k =0; k<p ; ++k ) {
15 m128 temp =
16 mm load ps (&( mat [ i , j o u t ∗4 , k ] ) ) ;
17 sum = mm add ps ( temp , sum ) ;
18 }
19 sum = mm div ps ( sum , p ) ;
20 f l o a t q [ 4 ] a t t r i b u t e ( ( a l i g n e d ( 1 6 ) ) ) ;
21 mm store ps ( q , sum ) ;
22 means [ i , j o u t ∗4 , 0 ] = q [ 0 ] ;
23 means [ i , j o u t ∗4 , 1 ] = q [ 1 ] ;
24 means [ i , j o u t ∗4 , 2 ] = q [ 2 ] ;
25 means [ i , j o u t ∗4 , 3 ] = q [ 3 ] ;
26 }
27 }

Fig. 11: Temporal mean algorithm after all transformations.

expression jout ∗ 4 + jin . (To keep the example simple we
have assumed that the dimension n is a multiple of 4.)

Next, the jin loop is vectorized and the outer loop par-
allelized using an OpenMP pragma, as shown in Fig. 11.
To vectorize this code, we use Intel’s SSE which uses 128
byte vectors. We fill each vector with 4 32-bit single-precision
floating point numbers. These parameters can be set differently
for different systems. Note the addition of many new variables
involved in loading data into vectors before the averaging
computation and receiving stores afterwards. These have been
floated above the outermost for loop because they are un-
changed by the loops. It should be clear that the transformation
between Fig. 10 and Fig. 11 is a complex one, especially
compared to adding the programmer specified transformation.
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This extension, as in Halide, CHiLL, and CFD Builder,
gives the programmer a great deal of control over the generated
code. Users of it are expected to be somewhat more sophis-
ticated developers than those using the earlier extensions that
automatically generate parallel C code. This control allows
programmers to experiment with different loop structures in
their search for higher performance. They can more easily
experiment with different tile sizes, loop vectorizations, or
approaches to parallelism without having to manually rewrite
their code for each configuration that they would like to try.
Note that we intentionally do not provide any performance
numbers here since the resulting performance is really up to the
programmer to choose the appropriate set of transformations
and any performance numbers are more of an evaluation of
that particular set of transformations as opposed to the general
approach. The papers on Halide [19], [20], CHiLL [21],
[22], and CFD Builder [23], [24] provide a more complete
discussion on how this technique can be used to improve code
performance and provide several performance evaluations.

The implementation of this language extension is similar to
the implementation of the auto-parallelizing matrix construct
extension in that the extension developer must specify the
concrete and abstract syntax of the new constructs, as well
as the attribute grammar specifications that perform basic
semantic analysis for error checking. In this case to detect,
for example, that the loop indices in the transformations
correspond to loops in the code being transformed.

This extension makes use of higher-order [25] attributes
in Silver to perform the various transformation. These are
attributes that allow code fragments (syntax trees) to be
manipulated and propagated around the syntax tree just like
other attributes. The split transformation, for example, uses
these to extract the body of the loop, modify the appropriate
index variables, and generate the two nested loops that replace
the one being split.

An important feature here is that new transformation spec-
ifications can be easily added, in the same way in which new
independently-developed language extensions are added to the
host language. For example, a transformation specification to
tile two nested loops indexed by x and y can be specified as
two splits and a reorder. After splitting x into xin and xout
and y into yin and yout, a reorder transformation rearranges
the loops into the following order from outermost to innermost:
xout, yout, xin, yin.

VI. BUILDING EXTENSIBLE LANGUAGES AND
COMPOSABLE LANGUAGE EXTENSIONS WITH SILVER

Language translation/compilation can be split roughly into
two steps. First, the text is converted into a syntax tree by using
a scanner and parser. Second, semantic analysis is performed
on the abstract syntax tree to check for semantic errors, and if
there are none, translate the syntax tree into the required output
(e.g. an executable or a host language program). Generating
these tools from a composition of a host language specifica-
tion and several independently-developed language extension
specifications presents a number of interesting challenges.

A. Scanning and Parsing

A scanner converts text into a stream of tokens based on a
set of regular expressions for terminal symbols (keywords, lit-

eral integers, variables, etc). This stream of tokens is supplied
to the parser which generates the syntax tree according to a
context-free grammar specification that defines the language
syntax. Each extension specifies its own regular expressions
for terminals and context free grammar for its added syntax,
the grammar specifications in Silver are similar to, but more
verbose, those shown in Fig. 2.

These syntax specifications for the host language and the
user selected extensions naturally compose, but conflicts may
arise. It is possible that two different languages will want to use
the same keyword (such as “with” in the with-loop construct).
To solve this, Copper, our parser and scanner generator,
constructs a context-aware scanner [9]. Such a scanner uses the
“context” of the parser to determine which of the overlapping
keywords is to be recognized. In cases where context is not
enough, it allows the programmer to add a simple annotation
to determine which extension the keyword is to belong to.
Details of this process can be found in a previous paper [9].

There can also be problems in the parsing of extended
languages in which the composed context-free grammar is am-
biguous. To avoid this problem we require that the composed
grammar be in the LALR(1) [10] class of deterministic (and
thus unambiguous) grammars. The restrictions of LALR(1)
are significantly eased by using a context aware scanner since
overlapping keywords, and more generally, overlapping regular
expressions for terminals, are allowed.

Because the composition of LALR(1) grammars does not
always result in an LALR(1) grammar, an analysis has been
developed that imposes further restrictions on the extension
grammars to ensure that the composition of these restricted
grammars is LALR(1) [11]. The analysis is run by the exten-
sion developer on his or her extension to check that it is in
this restricted class. Formally, this is stated as follows:

(for each i ∈ [1, n]. isLALR(CFGH ∪ CFGE
i ) ∧

isComposable(CFGH , CFGE
i ) )

⇒ isLALR(CFGH ∪
{
CFGE

1 , . . . , CFGE
n

}
)

It is the isComposable check that determines if the extension
grammars are in the more restricted set. The important point
about this analysis is that if the programmer chooses only
extensions that have passed the analysis, then they have a
strong guarantee that the generated scanner and parser for their
chosen set of extensions will be LALR(1) and thus a working
and correct scanner and parser can be generated.

The domain-specific matrix extension does pass this test.
The tuples extension does not, however, since the initial
symbol for tuple expressions is a left-paren, “(“, which violates
the restriction that a unique initial terminal symbol is needed
on extension syntax. The “with” terminal, for example, is such
an initial terminal. Thus the tuples extension will be packaged
as part of the host language. One could modify the tuple
terminals to be “(.” and “.)” and thus be distinguishable from
other symbols in the host language and thus pass this analysis.
For a complete discussion of this analysis and the restrictions
it imposes please see the original paper [11].
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B. Semantic Analysis and Translation

The semantic analysis phase performs type checking, uses
these types to resolve the overloading of operators such as
addition (+) and assignment (=), find and report semantic
errors, and drive the translation of extension constructs down
to plain C code. The language extension described in this paper
perform the same semantic analysis on their added syntax, for
example checking that number of expressions in the upper and
lower bounds of a with-loop are the same.

These analyses are specified by extension developers as
attribute grammar specification in Silver [8], our attribute
grammar system. Attribute grammars (AG) [7] provide a
means for decorating program syntax trees with attributes
describing, for example, the type of an expression, or the C
translation of a statement. These values are computed based
on a set of equations that define attribute values based on other
attributes in the tree.

A challenge arises in that the composition of the extension
AG specifications may not be well-defined (meaning some
attributes do not have defining equations). Silver has a modular
well-definedness analysis, similar in format to the modular
determinism analysis for Copper described above, that exten-
sion designers can run on their extension. It guarantees that
if only extensions that pass this analysis are chosen, then
the composition of them will be well defined. All extensions
described above pass this analysis. Full details of this analysis
can be found in a previous paper [26].

VII. RELATED WORK

There have been many efforts to improve the practice of
scientific software development. These include the develop-
ment of new programming languages and language constructs
allowing one to write programs at a high-level level of ab-
straction, as compared to low-level constructs in languages
such as C and FORTRAN. For example, constructs such as
nested data parallel arrays can be found in domain-specific
languages such as NESL [3] that improve on performance and
the ease of use of flat data parallel arrays found in versions
of FORTRAN. Fortress [27], X10 [28], and Chapel [29]
are entirely new languages that have also been developed.
However, many of these developments have not found as wide
of an audience as they might warrant, for various technical and
non-technical reasons. Sometimes the new constructs that may
be useful to a developer cannot be used because they are spread
across multiple incompatible languages or the domain-specific
language that might be used does not fit into the existing
development process for an existing application.

Thus an extensible approach in which new domain-specific
features, as chosen by the application developer in the same
way that he or she chooses to use different libraries in
traditional development, may be a viable alternative to these
monolithic approaches described above. We are not the only
ones interested in extensible languages and tools. One ap-
proach is to use domain-specific “embedded” languages, in
which domain-specific features are added as libraries but to
host languages that can give these features the same look and
feel of host language features. The DeLite project is a prime
example of this in which the host language is Scala; of note is
the use of a meta-programming technique called lightweight

modular staging [30] which allows the Scala code to analyze
and optimize code. There are also approaches, similar to ours,
in which compilers and translators are generated from some
(composed) declarative specifications of language syntax and
semantics. JastAdd [31], also based on attribute grammars has
been used to develop an extensible Java compiler [32] and
the Spoofax [33] system, based on the Stratego term-rewriting
system [34] has also been used to add domain-specific and
general purpose extensions to Java [35]. These approaches are
similar in spirit to ours, however these tools do not offer the
modular analysis that ensure that the composition will actually
result in a working compiler or translator. They often do work
just fine, though someone with knowledge of language design
is often needed to be involved in the composition process. This
differs from our approach in which we expect non-language
experts to simply pick the extensions that they want to use and
have a guarantee that they will, in fact, work together.

The matrix extension with explicit transformation specifi-
cations in Section V is based on work in Halide [19], [20],
CHiLL [21], [22], and CFD Builder [23], [24]. But these
systems have limited capabilities to be easily extended. Our
aim is to generalize these techniques and implement them in
an extensible manner so new transformation specifications can
be easily added.

VIII. CONCLUSION

Many components of the matrix language extension shown
above are based on MATLAB and the SAC language. Our aim
here is not to claim that these language features are of our
creation or that these are the best ones for this application, but
to demonstrate that such features can be provided to program-
mers as modular, “plug-able”, additions to their programming
language. This is not possible with MATLAB and SAC as they
are monolithic languages not designed to be extended.

Our hypothesis is that by giving programmers the freedom
to choose the (set of) domain-specific features that fit their
task at hand will provide a better solution than requiring
programmers to pick the combination of monolithic, stand-
alone languages that happen to have the language features that
they feel that they need. Our work in progress reported here
shows that interesting language features from existing scientific
and high-performance languages can be added as composable
language extensions.

Our future work is to add to this set of features in
this extension with additional constructs useful in scientific
and high-performance computing, and to provide additional
optimizations of program computations and to the generated
code. We are also interested in language extensions for parallel
programming more generally, beyond matrix programming. To
this end we are also developing a extension that adds Cilk [4]
style parallelism constructs to C. The goal is to determine how
sophisticated run-times, like in Cilk, can be delivered as a
pluggable language extension.

We are now completing ABLEC, a specification of the
full C11 language as a Silver attribute grammar (available
at http://melt.cs.umn.edu/ableC). We will be porting these
language extensions to use that host language specification.
This will enable programmers to experiment with these kinds
of language extensions on existing C applications. This allows
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for an incremental approach to using these tools. Programmers
can easily experiment with an extension or two on an existing
program without having to rewrite the entire program into
another language. This ease of use is a significant advantage
for extensible approaches and one we expect to leverage once
the full C host language is complete and a rich set of extensions
are available for use.
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