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ABSTRACT

We propose a novel framework for predicting the paths of vehicles
that move on a road network. The framework leverages global and
local patterns in spatio-temporal data. From a large corpus of GPS
trajectories, we predict the subsequent path of an in-progress ve-
hicle trajectory using only spatio-temporal features from the data.
Our framework consists of three components: (1) a component that
abstracts GPS location data into a graph at the neighborhood or
street level, (2) a component that generates policies obtained from
the graph data, and (3) a component that predicts the subsequent
path of an in-progress trajectory. Hierarchical clustering is used
to construct the city graph, where the clusters facilitate a com-
pact representation of the trajectory data to make processing large
data sets tractable and efficient. We propose four alternative policy
generation algorithms: a frequency-based algorithm (FreqCount),
a correlation-based algorithm (EigenStrat), a spectral clustering-
based algorithm (LapStrat), and a Markov Chain-based algorithm
(MCStrat). The algorithms explore either global patterns (Freq-
Count and EigenStrat) or local patterns (MCStrat) in the data,
with the exception of LapStrat which explores both. We present
an analysis of the performance of the alternative prediction algo-
rithms using a large real-world taxi data set.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; I.2.11
[Distributed Artificial Intelligence]: Intelligent Agents

Keywords

urban mobility, route prediction, spatio-temporal analysis, GPS,
large-scale data, smart cities, big data

1. INTRODUCTION
The ubiquitous use of mobile devices that store driving-related

spatio-temporal information provides researchers and practitioners
with data that can be used to understand driving patterns in cities,
predict congestion points, and design location-based services for
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drivers. In order to discover characteristic patterns in large spatio-
temporal data sets, we exploit methods that encode spatial relations,
such as topology and direction of travel, as well as temporal rela-
tions. To the urban planner, the methods we propose can be used
to discover common paths and uncover alternative routes that could
help alleviate traffic congestion. Such knowledge can also be used
to sequence and prioritize the maintenance of roads. The future of
smart cities will drive the need for greater use of such technologies.

This paper proposes a framework for trajectory prediction that
involves three components: (1) abstraction from global position-
ing system (GPS) location data into a city graph, (2) graph-based
policy generation which constructs policies from a large data set
of observations, and (3) a prediction process which forecasts fu-
ture vehicle movements based on in-progress paths and on learned
policies. The proposed novel combination of techniques yields pre-
dictions that are an improvement over purely statistical techniques.

Challenges: One challenge is that GPS waypoint data can be
noisy, may have low sampling rates, and can be unevenly distributed
across city regions. Noise is caused by factors such as high rise
buildings, cold starting of data collection, or poor GPS signal re-
ception. Noise may cause the collected trajectories to include lo-
cations that are not in the real trajectories. Hence, if not cleaned,
noisy waypoints used in learning can lead to incorrect predictions.
To address this, we first preprocess the GPS data to clean the data
and extract trajectories of individual vehicles (see Section 6.4).

The uneven density of trajectories across a city makes it harder to
generate data abstractions that accurately represent the geometry of
the road network, even when the amount of data collected is large.
Data abstraction is essential to make efficient predictions, but if
the abstraction underrepresents roads in sparsely covered areas, the
road clusters may be too coarse in those areas and reduce the quality
of the predictions. To alleviate this problem, we use hierarchical
clustering on the trajectory data, clustering together GPS waypoints
that are spatially close.

Approach: After initial preprocessing and location cluster gen-
eration, trajectories are mapped into sequences of location clusters,
connecting with directed edges pairs of clusters that have sufficient
support, and producing a city graph. This representation is used to
learn policies (i.e., a data structure providing probabilistic informa-
tion about the most likely movements between clusters).

For policy learning, we propose several competing algorithms of
varying complexity. Each of the algorithms leverages different as-
pects of the data set to produce policies. Predictions about potential
future paths from the last known location are made using policies
relevant to an in-progress trajectory. The resulting predicted paths
are then scored by comparing with the ground truth path.

Our work combines data mining techniques that discover global
structure in the data by identifying characteristic patterns and data



clusters, and local probabilistic methods that predict short-term routes,
based on past driving trajectories. Global methods learn about
large-scale relationships (i.e., relationships between locations that
are far apart in the road network). Local methods instead learn
about highly localized relationships between locations (e.g. given
the traversal of a specific road, the probability distributions of nearby
and adjacent roads is estimated).

In summary, our main contributions are as follows:

1. We propose a systematic framework for trajectory predic-
tion from a large data set of observations. The framework
provides abstractions to make learning tractable and efficient
given the large number (500,000) of taxi trips in a large city.
The proposed framework could be deployed as a core com-
ponent of an intelligent driver agent (run on-board a vehi-
cle) or used as a centralized aggregation method of real-time
GPS data streams to provide predictions for drivers of the
expected traffic in near-future paths they might take.

2. We make predictions using only the spatio-temporal data stream
from vehicles without using any external features. By not us-
ing additional features, our approach can be easily applied to
other spatio-temporal domains.

3. A key to the success of our data representation is the encod-
ing of direction with location in the clustering process. The
resulting clusters produce shapes that match well the geom-
etry of the physical routes data. This data representation is
very compact and facilitates efficient learning.

4. We propose, analyze, and compare four prediction algorithms
that leverage the global as well as local patterns. FreqCount
and EigenStrat use only global patterns. One algorithm,
LapStrat, uses a mix of global and local structures. MCStrat
uses highly localized patterns. We show experimentally that
LapStrat offers higher prediction performance compared to
the other methods.

Section 2 discusses literature relevant to trajectory prediction.
Section 3 covers the data used and the preprocessing steps, the clus-
tering technique for building a city graph from the trajectories, the
construction of policies from the city graph, and the baseline al-
gorithm FreqCount for policy prediction. Section 4 describes the
experimental setup. Section 5 describes our prediction algorithms.
Results and lessons learned are in Section 6. Concluding remarks
and future work are covered in Section 7.

2. RELATED WORK
Due to data sparseness and the low-sampling rate of trajectory

data, aggregated models of the physical world are needed to facili-
tate generalization between trajectories. Even when a high quality
digital map is available, using a logical description of the world
is useful for prediction. Li et al. [7] utilize a simple abstraction
by partitioning the map of the city using a fixed size rectilinear
grid and use this representation in their passenger-finding strate-
gies. Yuan et al. [12] use a landmark graph to build relationships
between the road segments the taxis traverse frequently. Two nodes
in the graph are connected if trajectories between them are used fre-
quently enough. Their online algorithm finds the fastest route to a
destination at a given departure time.

Observing that grids do not capture the differences in data den-
sity in regions of a traffic network, Liu et al. [8] create regions of a
map using Connected Components Labeling, an image-based edge
detection algorithm that takes a road map (similar to Figure 1) as
input. This representation is conceptually similar to the clustering
methods we propose because it takes into account the geometry of
the road network. It differs from our approach in that we directly

use the trajectory data to build the graph while they use an external
road network map.

Eigendecomposition has been used extensively to analyze and
summarize the characteristic structure of data sets. For instance,
Lakhina et al. [6] use principal component analysis (PCA) to sum-
marize network flows that pass through an internet service provider.
Zhang et al. [13] identify two weaknesses that make PCA less ef-
fective on real-world data (i.e. sensitivity to outliers in the data, and
concerns about its interpretation), and present Laplacian eigenanal-
ysis as an alternative. The difference is that the Laplacian matrix
considers similarity measurements only between close neighbors,
while PCA considers relationships between all pairs of points. The
intuition is that small differences in similarity are informative only
for locations that are close to each other. These studies focus on
the clustering power of the eigen-based methods to find structures
in the data. Our work goes beyond summarizing the structure of
the taxi routes, and uses the eigenanalysis clusters to predict the
subsequent path of an in-progress taxi trajectory.

Research in trip prediction based on observations of driver be-
havior has enjoyed some recent popularity. Krumm et al. [5] predict
the next turn a driver will take by choosing with higher likelihood a
turn that links more destinations or is more time efficient. Ziebart et
al. [15] propose algorithms to predict turn, route, and destination.
The study combines a Markov model and inverse reinforcement
learning to provide accurate predictions for each of their prediction
tasks. Veloso et al. [10] propose a Naive Bayes model to predict a
taxi’s destination, using time of the day, day of the week, weather,
and land use as features.

All these studies use features beyond location data to improve
prediction accuracy. Our work instead uses GPS data alone to ana-
lyze travel patterns and trajectory sequences to predict routes.

3. DATA ABSTRACTIONS
This section describes the abstraction process starting from the

raw GPS data stream and ending with the construction of policies.

3.1 Trajectory preprocessing
The GPS trajectories we use for our experiments are taken from

the publicly available Beijing Taxi data set which includes 1 to 5-
minute resolution location data for over ten-thousand taxis for one
week in 2009 [12]. There are approximately half a million taxi
rides in the data set. Beijing, China is reported to have seventy-
thousand registered taxis, so this data set represents a significant
cross-section of all taxi traffic for a one-week period [14].

Because the data set contains only location (latitude and longi-
tude of a waypoint) and time information for each taxi, it is useful
to process the data into segments based on individual taxi fares.

The data has sufficient detail to enable inference on when a taxi
ride is completed: for example, a taxi waiting for a fare will be
stopped at a taxi stand for many minutes [14]. Using these infer-
ences, we separate the data into taxi rides. We are interested in
predicting short term movements of in-progress taxi trajectories, so
the exact start and end points of a trajectory are not critical.

Let V = {v1,v2, . . . ,vq} be the set of q trajectories. We divide
the set into VTR, VTE, VVA which are the training, test, and validation
sets, respectively. A trajectory vi is a sequence of n time-ordered
GPS coordinates (the length n may differ for each trajectory vi):
vi = [c

vi

1 , . . . c
vi

j , . . . , c
vi
n ]. Each GPS coordinate is the latitude

and longitude of a waypoint. Since we are interested in the direc-
tion of the motion, we extend the coordinates by computing for
each waypoint the current direction as the normalized x and y dis-
placement from the previous waypoint. Hence, coordinate cj in
trajectory vi is c

vi

j = (xj , yj , dxj , dyj).



If there was no previous displacement (the taxi stayed in place),
then the most recent direction value is used (forward smearing). If
there is no information in the sequence, the first direction observed
in the sequence is used (backward smearing). We scale dx and dy

by using a direction contribution coefficient. The useful range of
this coefficient is between 0 (direction contributes nothing to the
clustering process) and the average inter-cluster distance (any two
co-located waypoints with opposite direction values are in differ-
ent clusters). For this data set, the maximal range of the direction
contribution coefficient used is 5 km. The coefficient allows us to
control the influence of directionality in the clustering process.

3.2 From GPS data to a city graph map
To facilitate analysis, we encode the taxi trajectories as a se-

quence of edges in a city graph. The city graph consists of nodes
that correspond each to a physical area and edges that correspond
to vehicle movements between areas. Earlier work [5, 10, 4] used
a rectangular grid for nodes and edges to only immediately adja-
cent nodes (in a North, East, South, and West pattern). This work
departs from that approach using instead a clustering-based city
graph. Other papers also use a network graph (e.g., [12, 3]), but
this work departs from others by generating the location clusters
directly from the GPS waypoints without using a road network
map. By using the waypoints directly, the prediction framework
presented here (1) does not rely on the accuracy of the road map
and (2) can be directly applied to other domains (i.e. animal migra-
tion patterns) for which no network map exists.

We divide the city into regions by a clustering process over a ran-
dom sample of GPS waypoints from the training trajectory data set,
after we augmented the GPS coordinates with the current direction,
as described earlier.

We cluster the data using the Ward hierarchical clustering algo-
rithm [11] to generate z clusters. Ward’s algorithm is a bottom up
method that joins together clusters that minimize the sum of intra-
cluster distances, hence, it tends to join smaller clusters first. We
have chosen this clustering algorithm over simple geometric ap-
proaches, such as k-means, because the cluster regions from this al-
gorithm conform better to the geometry of the underlying data. The
best value for z, the direction contribution coefficient, and other pa-
rameters are found during sensitivity testing (see Section 6).

The clusters simultaneously encode direction and location. Di-
rection is important to distinguish between co-located points that
have different directions. For example, given a direction contribu-
tion coefficient of 5 km, two points that are co-located but 180◦

opposite in direction will have an Euclidean distance of 10 km.1

Even if co-located, points with dissimilar direction components
should be placed in different clusters. For example, two vehicle
waypoints located on the same highway segment but with (180◦)
opposite directional components should be placed in different clus-
ters. When clustering is based on location alone, these points would
be in the same cluster regardless of the direction of travel. Adding
direction better informs the prediction algorithms than using loca-
tion clusters alone. Direction encoding is a novel contribution, and
an experiment in Section 6.1 shows benefits from this approach.

The city is encoded as a graph with z nodes, each represent-
ing a cluster, connected by directed edges. We indicate with si
the mean center of the ith cluster in the Euclidean (x, y, dx, dy)-
space. With a slight abuse of notation, si is used to indicate the
cluster and its centroid. The set of clusters is denoted as S where
S = {s1, . . . , si, . . . , sz}. An edge, esisj is created between two

1For example, given two GPS data points with direction (all values
are in km): a = (9, 8, 5, 0) b = (9, 8,−5, 0). The Euclidean
distance is

√

(9 − 9)2 + (8 − 8)2 + (5 − (−5))2 + (0 − 0)2= 10 km.

clusters when it is one of the top w observed transitions exiting
from si. The value of w was found experimentally in the param-
eter optimization process. We found that different values perform
best for each of the prediction algorithms.

We define I(cj , si) to be an indicator function that returns 1 if
waypoint cj is closer to the cluster centroid si than to any other
centroid and 0 otherwise.

Each waypoint in a trajectory (sequence of GPS waypoints) is
mapped to a node (cluster) in the city graph. Given two adja-
cent waypoints ci and ci+1 in a trajectory, the indicator function
Φ (Eq. 1) determines if the movement between the waypoint ci and
ci+1 corresponds to a movement between two clusters that are con-
nected by an edge in the city graph or not. Rare transitions between
location clusters (due to unusual movements or due to noise in the
GPS data) are not encoded in the city graph. The value of Φ is 1 if
there is an edge between the pair of clusters and 0 otherwise:

Φ(cvi
j , c

vi
k , eslsm) =

{

1, if I(cvi
j , sl) ∗ I(c

vi
k , sm) = 1

0 Otherwise
(1)

A conceptual example of a city graph is in Figure 4.
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Figure 4: A conceptual example of the city graph abstrac-

tion. Location clusters are represented as nodes, edges between

nodes appear only if there is sufficient support.

This hierarchical partitioning of the city improves over a purely
grid-based encoding. Rectilinear grid partitioning fails to encode
the geometry of clusters with irregular shapes. With our clustering
process, the learned shapes of the city graph, instead, follow the
underlying geometry of the road network (i.e. clusters will usually
be centered over a road). In addition, our approach considers local
waypoint density, such that more waypoints lead to better differen-
tiation of dissimilar (e.g distant) waypoints and to more clusters.

Figures 1-3 provide examples illustrating the benefits of cluster-
ing with direction. Given a grid of all South direction points (180◦),
the cluster boundaries are drawn in Figure 2. The black dots are
GPS taxi waypoints in the South direction (135◦ < heading < 225◦)
and show taxi density for the cluster. Given the same cluster node
set, Figure 3 shows the cluster boundaries for a grid of East direc-
tion points (90◦ heading) and all East direction (45◦ < heading < 135◦)
waypoints. Adjacent roads with a similar direction are often clus-
tered together. Correspondence between major roads and clusters
can be observed by comparing Figures 1 and 2. Less dense regions
(e.g. the Western region) will have fewer clusters than more dense
regions (e.g. the Eastern region).

3.3 Data structures to support abstraction
To facilitate the learning process, we build a set of edge data

vectors Π = {π1,π2, . . . ,πq} from the set of trajectories V that
have been mapped to the clusters in the city graph. Each trajectory



Figure 1: Beijing city road map showing

major roads.

Figure 2: Cluster boundaries for a grid

of South direction waypoints; South direc-

tion dominant waypoints (dots) from VTR.

Figure 3: Cluster boundaries for a grid

of East direction waypoints; East direction

dominant waypoints (dots) from VTR.

has a corresponding edge data vector, so Π has q elements, which
is the number of trajectories in V as well.

An edge data vector πvi has as many elements as the number of
edges in the city graph. The value of each element of πvi is 1 if
there is an edge between the two corresponding clusters in trajec-
tory vi and 0 otherwise.

π
vi = {δvi

s1,s2 , . . . , δ
vi
sl,sm , . . .},where (2)

δ
vi
sl,sm =

{

1, if
∑n−1

j=1
Φ(cvi

j , c
vi
j+1, esl,sm) ≥ 1

0 Otherwise
(3)

A graphical example showing a trajectory converted into a edge
data vector is shown in Figure 5.
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city graph. The waypoints (represented as squares) are mapped
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the edge data vector (represented as dotted lines).

Given a complete trajectory vi, for learning and prediction pur-
poses we consider a partial trajectory, which, in this work, is the
first half of a full trajectory. Hence, v

partial
i = [cvi

1 , c
vi
2 , . . . , c

vi

n/2].

The last location of a partial trajectory v
last
i = [cvi

n/2] is used to be-

gin the prediction task. The partial trajectory is used for training,
while the second half of the trajectory is used as ground truth to
validate our predictions.

We also create a set of location data vectors, one for each clus-
ter in the city graph. Each location data vector is created from the
waypoints in each partial trajectory v

partial
i . Each element of a lo-

cation data vector has value 1 if the corresponding waypoint from
v
partial
i is closest to the cluster centroid si than to any other cen-

troid and 0 otherwise.

θ
v
partial
i = [ωs1 , ωs2 , . . . , ωsz ],where (4)

ωsi =

{

1, if
∑n

j=1
I(c

v
partial
i

j , si) ≥ 1

0 Otherwise
(5)

For convenience, a graphical representation of the data structures
used for prediction is shown in Table 1.

Table 1: Data structures and associated dimensions used in this

framework. Note: z << q for this domain.
Location Data Edge Data

ω (1× 1) δ (1× 1)

θ (1× z) π (1× q)

ΘVTR (|VTR|×z) ΠVTR (|VTR|× q)

3.4 Policy learning using FreqCount
FreqCount is the simplest of the methods we present for learn-

ing a policy and predicting the next location a taxi will visit from
the taxi’s current location. We use it as a baseline.

FreqCount first learns a policy, πFreqCount, from past trajectory
data. Each element of the policy vector for FreqCount is the fre-
quency of the corresponding transitions (movement between clus-
ters in the city graph) in the training data.

With a slight abuse of notation, we use δsl,sm , which we used
for binary values in edge data vectors, to indicate a transition prob-
ability between nodes in the city graph:

δ
πFreqCount

si,sj =

∑

v∈VTR
δvsi,sj

∑

v∈VTR

∑z
k=1

δvsi,sk
(6)

Figure 6 shows the relative frequencies of transitions exiting a
specific graph cluster location using all data from the training set
VTR. The relative frequency of each transition exiting from the
highlighted cluster is the ratio of the count of that transition di-
vided by the total count of the cluster (Equation 6). The resulting
policy vector provides the conditional probability of each edge ex-
iting from that location.

Since FreqCount does not consider locations visited before the
current location, it attributes equal probabilities to all outgoing edges
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Figure 6: (a) Visualization of FreqCount policy for a specific

cluster showing the probabilities of several alternative future

transitions from a single highlighted location cluster. The tran-

sition probabilities exiting from each cluster sum to 1. (b) The

physical road map corresponding to the clusters shown in (a).

from a cluster. For this reason, it predicts poorly where many ve-
hicle trips intersect each other (such as at a highway interchange).
The more complex methods described later make better predictions
by also considering previous locations in the path.

4. EXPERIMENTAL SETUP
Given an in-progress taxi trajectory, we want to make predictions

of the short-term future movement of the vehicle. To simulate this
task for experimentation, we use a collection of partial trajectories
(e.g. Figure 7) generated from complete trajectories from the test
set VTE . After FreqCount or one of the algorithms we will present
next has generated one or more policy vectors relevant to the par-
tial, policy iteration is performed to predict future locations. The
inferred future locations (e.g. Figure 8) are compared against the
actual complete taxi trajectory (e.g. Figure 9). Prediction results
are scored by comparing the predicted set of paths with the actual
vehicle path using Hausdorff distance.

4.1 Performance Measure
The Hausdorff distance is the distance measure we use to com-

pare the ground truth path with a predicted path. Intuitively, it mea-
sures the maximum distance between any point on the true path and
the nearest point on the predicted path [3]. The properties of this
distance measure are highly desirable for short-term route predic-
tions. For example, if the predicted path is longer than the true path
(i.e. path C in Figure 10), the distance value is not increased rel-
ative to the exact length. Conversely, if the predicted path is too
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Figure 7: A sample edge data vector π
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partial
i .
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Figure 9: Ground truth trajectory π
vi corresponding to Fig. 7.

short (the model does not predict a path of sufficient length), it will
have a larger distance value because a large portion of the (longer)
true path will be far from the (shorter) predicted path (i.e. path A in
Figure 10). This objective function encourages algorithms to make
sufficiently long predictions to match the true path.

While the Hausdorff distance is not an obvious choice for a per-
formance measure, it is strongly preferred to measurements on the
graph representation alone, such as accuracy or correlation, be-
cause it implicitly captures both prediction error (due to the pre-
diction algorithm) and representation error (due to the cluster ab-
straction) simultaneously.

As the parameter search process simultaneously varies the learn-
ing and representation algorithms, a performance measure that cap-
tures the total error of our predictions is valuable for preventing the
search process from finding a representation that over simplifies the



representation to achieve high prediction accuracy.
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4.2 Policy Iteration
Policy iteration (Algorithm 1) is applied to θ

last, the last loca-
tion of a partial trajectory, to predict future actions. In the simplest
prediction algorithm (FreqCount), there is one policy π used to
make predictions about subsequent locations, starting from θ

last.
In policy iteration, the policy vector coefficients are used as prob-
abilities of transitions to subsequent locations. If the vehicle is at
location cluster si at time step t (the last location in the partial tra-
jectory), then the probability of entering cluster sj in the next step
t+1 is computed as: P t+1(sj) = P (sj |si)∗P

t(si) = δπsi,sj ∗ω
t
si .

This algorithm is used by the four prediction methods described in
this paper.

With a slight abuse of notation, in the policy iteration algorithm
we use ωsi as the probability that a trajectory visits cluster si. Ear-
lier we used ωsi in location data vectors as a binary value.

Algorithm 1: Policy Iteration

Input: Location vector with last location of taxi (θlast), policy
list (Π), prediction horizon (numiter)

Output: Location vector containing visit probabilities for

future locations θ̂
1 θ

accum ← [0, . . . , 0] and |θaccum| = z;
2 for π ∈ Π do

3 θ
0 ← θ

last;
4 for t = 1 to numiter do

5 θ
t = [ωt

s1 , ω
t
s2 , . . . , ω

t
si , . . . , ω

t
sz ] , where

ωt
si =

∑

sj∈S(ω
t−1
sj ∗ δ

π
sj ,si);

6 for t = 0 to numiter do

7 θ
π = [ωπ

s1 , ω
π
s2 , . . . , ω

π
si , . . . , ω

π
sz ] , where

ωπ
si = max(ωπ

si , ω
t
si);

8 θ
accum = [ωaccum

s1 , ωaccum
s2 , . . . , ωaccum

si , . . . , ωaccum
sz ] ,

where ωaccum
si = ωaccum

si +
ωπ

si

|Π|
;

9 θ̂ = θ
accum

For each relevant policy π, the algorithm returns θπ which con-
tains the probability values of the vehicle visiting each location
cluster in the graph. If multiple policies are relevant (possible in Al-
gorithms 2, 3, and 4), then policy iteration is repeated once for each

relevant policy, and the final state probabilities (ωθaccum

si ∀si ∈ S)
are the mean values for location cluster probabilities for all policies
in the relevant policy list.

5. MORE SOPHISTICATED ALGORITHMS

FOR BUILDING THE POLICY
We present three additional methods that use local structures,

global structures, or a mix of both to build policies and to predict
short-term trajectories.

5.1 EigenStrat: Eigen Analysis of Covariance
We expect highly positively and highly negatively correlated tran-

sition pairs to be useful for prediction. For example, if a taxi is
traveling west at the beginning of an expressway, it is likely to also
be traveling west at the end of the expressway (large positive cor-
relation). Conversely, if a taxi is traveling west at the beginning of
an expressway, it is highly unlikely to travel east at the same loca-
tion (large negative correlation). Such relationships are compactly
encoded using eigenvectors.

EigenStrat exploits these linear covariance relationships between
transitions in the graph. These results, in the form of eigenvectors
of the graph transition covariance matrix, (1) can be matched to
partial trajectories for purposes of prediction and (2) can be used
to study behaviors in the system. Steps 1-4 in Algorithm 2 focus
on model generation (computation of eigenvectors). For each pair
of edges δsi,sj and δsk,sl , the covariance σ is computed using the
trajectories in the training set VTR as:

σ(δsi,sj , δsk,sl) = E(δsi,sj ∗δsk,sl)−E(δsi,sj )∗E(δsk,sl) (7)

where E(.) is the expected value. The dims largest eigenvectors
are computed from the covariance matrix. These form a collection
of characteristic eigen-strategies from the training data.

Algorithm 2: EigenStrat

Input: ΠTR, number of principal components (dims),
minimum angle between policies (α), prediction

horizon (horizon), edge data vector (πvi
partial

)

Output: Location vector of predicted visit probabilities θ̂
1 Generate covariance matrix C|π|×|π| (where π ∈ ΠTR)

between transitions on the graph;
2 Get dims eigenvectors of C with largest eigenvalues;

3 Compute cosine similarity between π
vi

partial

and the
principal components (πj , j = 1 . . . dims):

Πrel = {πj ||cos(πj ,π
vi

partial

)| > α};

4 If the cos(πj ,π
vi

partial

) < 0, then flip the sign of the
coefficients for this eigenpolicy.;

5 Use Algorithm 1 with Πrel on v
partial
i for horizon iterations

to compute θ̂

When predicting from an in-progress trajectory, the algorithm
takes the edge data vector generated from the partial trajectory

π
v
partial
i , a maximum angle to use as the relevancy threshold α,

and the eigen-strategies as Π. Eigen-strategies having an angular

distance less than α to π
v
partial
i are added to Πrel, which will

contain policies that are almost parallel to (similar to) the partial
trajectory in terms of angular distance. This collection is then used
for policy iteration. Optimal values for α and dims are learned ex-
perimentally.
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Figure 11: Two eigenpolicies relevant to a partial trajectory

showing different strategic patterns found in the training set.

Eigenpolicies facilitate exploration of strategic decisions. Fig-
ure 11 show two relevant eigenpolicies that match the partial tra-
jectory shaded by boxes. The eigenpolicies are different both to
the east and west of the partial trajectory. Both policies show that
taxis moving along the partial trajectory are less likely to turn west
at the end of the partial trajectory (as evidenced by the opposite
coefficient signs). Instead, the predicted trajectory is comprised
of points that have the same coefficient signs as the points in the
partial trajectory. Positive eigenvector coefficients show positively
correlated transitions (usually traversed together by trajectories in
data), transitions with opposite sign pairs are negatively correlated.

In addition, the predicted policies in Figure 11 show two alterna-
tive roads a taxi driver can take going east from the partial trajec-
tory. We believe this analysis can be beneficial to urban planners
who can take advantage of it to better manage city traffic.

5.2 LapStrat: Spectral Clustering-Inspired Al-
gorithm

Using the edge representation of taxi trajectories, a large matrix
of edge data vectors is constructed from the training set. LapStrat
(Algorithm 3) seeks to group similar policies together and produce
from each group an edge data vector centroid (Step 4), used as a
policy. The entire training set is distilled into a small set of policies
which are then matched to an incoming edge data vector for predic-
tion. The policy iteration (Algorithm 1) over the relevant matched
policies is then used to infer future driver movements.

This prediction method uses spectral clustering to build the pol-
icy set (approach of Shi and Malik [9] using an unnormalized graph
Laplacian). Spectral clustering operates upon a similarity graph.
We use Jaccard index to compute the similarity matrix between
edge data vector pairs. We chose the Jaccard index because it finds
similarities between vectors that are almost parallel. This is impor-

Algorithm 3: LapStrat

Input: ΠTR, dimension (dims), number of clusters (k),
similarity threshold (Lap Epsilon, ǫ), policy relatedness
threshold (Lap Relatedness, ρ), prediction horizon

(horizon), edge data vector (πvi
partial

)

Output: Location vector of predicted visit probabilities θ̂
1 Generate similarity matrix W|ΠTR|×|ΠTR| where

wij =

{

J(πi,πj), if J(πi,πj) ≥ ǫ

0 Otherwise
;

2 Generate Laplacian L: L = D −W and ∀dij ∈ D

dij =

{

∑|ΠTR|
z=1

wiz, if i = z

0 Otherwise

3 Get the dims eigenvectors with smallest eigenvalues;
4 Use k-means to find the mean centroids (πj , j = 1 . . . k) of k

policy clusters;

5 Find all centroids similar to π
vi

partial

:

Πrel = {πj |J(πj ,π
vi

partial

) > ρ};

6 Use Algorithm 1 with Πrel on v
partial
i for horizon iterations

to compute θ̂

tant in cases where two highways only have one meeting point; in
this case, if the highways are alternative routes to the same intersec-
tion, they should be similar with respect to the intersection point.
The inputs to the Jaccard index are two vectors representing either
edge data vectors generated in Section 3.3 or policies generated by
a policy learning algorithm (in Sections 3.4 or 5). J(πi,πj) is
the Jaccard similarity for pair πi and πj . The Laplacian is com-
puted by subtracting the degree matrix from the similarity matrix.
We choose the dims eigenvectors with smallest eigenvalues, and
perform k-means to find clusters in the reduced dimension. The
optimal value for dims is learned experimentally.

5.3 MCStrat: Markov Chain-Based Algorithm
The recent path history of a taxi can be informative about where

it will go beyond its current location. While EigenStrat and Lap-
Strat encode some of this information, MCStrat explicitly tries to
match the partial trajectory with full trajectories in the training set
that contain the last k locations of the partial trajectory. Matches
in the city graph can be thought of as matches on a Markov chain
of length k. The Markov chain approach uses local, recent infor-
mation from v

partial
i , the partial trajectory to predict from. This

method is inspired by [5] but differs in graph construction.

Algorithm 4: MCStrat

Input: VTR, matching length (l), edge data vector (πv
partial
i ),

prediction horizon (horizon), similarity thresh. (ǫsim)

Output: Predicted location vector of visit probabilities θ̂
1 Generate relevant policies Vrel

Vrel = vi

∣

∣match(k,πv
partial
i ,πvi) ≥ ǫsim,vi ∈ VTR;

2 Generate a composite single relevant policy πrel

πrel = δπ
rel

s1,s2 , . . . , δ
πrel

si,sj , . . ., where

δπ
rel

si,sj =

∑

v∈Vrel
δvsi,sj

∑

v∈Vrel

∑

M
l=1

δvsi,sk

;

3 Use Algorithm 1 with πrel on v
partial
i for horizon iterations

to compute θ̂



Given the last l edges traversed by a taxi, the algorithm finds
all complete trajectories in the training set that contain the same
l edges and builds a set of relevant policies Vrel using the match
function. match(l,a, b), returns 1 only if at least the last k tran-
sitions in the policy generated by trajectory a are also found in
b. The matching process is not exact, we add a similarity thresh-
old parameter ǫsim, such that even if two policies do not match
on some transitions but their similarity is above the threshold, they
are still considered similar. Vrel is used to build a composite sin-
gle relevant policy πrel, that obeys the Markov assumption, so the
resulting policy preserves the probability mass.

Using the composite πrel, policy iteration is then performed on
the last location vector computed from v

partial
i . This method uses

very localized information to make predictions. When sufficient
local information exists (i.e. when there are enough observations
matching the Markov chain), these predictions are of high quality.

6. RESULTS AND ANALYSIS
The data set contains approximately 500,000 in-progress trajec-

tories (of 1 hour or less in length) from 10,000 taxis. We split the
data set randomly into three disjoint sets to facilitate experimenta-
tion: 90% in the training set, and 5% in both the test and validation
sets. For each model type, the training set VTR is used to generate
the model. Model parameters are optimized using the test set VTE .
Scores are computed using predictions made on partial trajectories
from the validation set VV A. On average, an in-progress partial
trajectory has 2.4 transitions in the graph with mean total length
of 5.56 km; the complete partial trajectories have 3.3 future transi-
tions (4.63 km mean length) from the last waypoint of the partial
trajectory.

Running the algorithms with the parameter values obtained from
the parameter optimization we find that LapStrat produces the low-
est mean Haudsdorff distance in experiments both with directional
contribution information and without (see Table 2).

Table 2: Statistical results by prediction algorithm, reported as

mean values over all the samples in the validation set for the

best parameter configurations. The best method is in bold. The

Wilcoxon signed-rank test is performed to compare the direc-

tion and the without direction experiment for each algorithm.

Statistical significance denoted by *.

Method

with Direction without Direction

Mean
Hausdorff
Distance
(km)

Mean
Prediction
Length
(km)

Mean
Hausdorff
Distance
(km)

Mean
Prediction
Length
(km)

FreqCount 2.676 16.6 2.693 17.0

EigenStrat 2.641* 13.9 2.675 17.8

LapStrat 2.425** 17.0 2.509 17.0

MCStrat 2.587** 6.84 2.589 15.6

* p < 0.05; ** p < 0.01

Figure 12 shows that errors are greater for longer predictions.
This figure highlights differences between the methods based on
the required distance that must be predicted. For very short length
predictions (< 4 km), the performance of the methods is similar.
This is reasonable because predictions made for near future travel
are most dependent on the current location information and addi-
tional information about farther distant movements is unlikely to be
informative. For intermediate length trajectories (4 − 10 km), the
MCStrat algorithm performs better than the three global-based al-
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Figure 12: Hausdorff error and std. dev. for each algorithm

(at best configuration on with direction data) binned by length

of prediction (distance of ground truth) for all validation set

trajectories.

gorithms. The MCStrat configuration (Markov Chain Length =
3) and these experiments indicate that near term information is
highly informative for this distance. For long length predictions
(> 10 km), MCStrat has larger errors than the three global meth-
ods, with LapStrat performing best. MCStrat produces predic-
tions of shorter length than other algorithms as shown by the Mean
Prediction Length values reported in Table 2. Long length predic-
tions benefit from knowledge of global patterns which LapStrat
can leverage.

Of the global methods, LapStrat performs better than others at
all lengths. This may be due to the way that the algorithm clusters
common behaviors into groups: it builds clusters based on local
similarity (by using pair-wise comparisons of individual policies
developed from the training set trajectories). A policy not suffi-
ciently similar to any other in the training set will not be assigned
to any cluster. Also, relationships must be sufficiently close (the
similarity measure for a pair of edge data vectors must exceed the
Lap Epsilon threshold) to be considered at all. These properties
differentiate LapStrat from the other global methods and cluster
quality is improved.

6.1 Effect of Directional Contribution
While it is possible to see the effect of adding the directional

contribution waypoint representation through the sensitivity test-
ing, having an independent experiment testing this aspect of learn-
ing avoids any dependencies with the other parameters. Separate
parameter searches for each algorithm on data both with and with-
out any directional contribution are shown in Table 2. The statisti-
cal significance testing performed using the Wilcoxon signed-rank
test shows the directional contribution improves results for Eigen-
Strat, LapStrat, and MCStrat. The directional version improves
predictions by facilitating discrimination between co-located points
with different directions.

6.2 Parameter Optimization
The parameter settings for the algorithms presented in the results

are obtained systematically using the hyperparameter optimization
algorithm Tree of Parzen Estimators [1]. This approach is preferred
over simpler methods like random sampling or grid search due to
greater sampling efficiency. The optimization process is run us-



ing scores computed on the test set, and the reported values are
computed using the validation set (to avoid overfitting from the op-
timization process). The scoring results from the best configuration
for each algorithm are listed in Table 2.

Additionally, sensitivity testing is performed for each algorithm
parameter using the best configuration as a starting point. The sen-
sitivity is observed for each parameter by fixing the values of all
other parameters with values from the best observed configuration
and only varying a single parameter throughout its range of valid
assignments. These analyses are shown for each algorithm in Fig-
ures 13-16. Please note that the four clustering parameters (no. of
policy iterations, direction contribution component, transitions per
cluster, and cluster count) are repeated for each algorithm as the
cluster configuration most compatible may be different for each al-
gorithm.
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Figure 13: Sensitivity testing for parameters for FreqCount.
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Figure 14: Sensitivity testing for parameters for EigenStrat.

6.3 Complexity Analysis
We consider both the computational and the storage complexity

of the proposed algorithms. The time complexity of each princi-
pally depends on the representation used for the policy data. The
time complexity of building the edge data vector training set (using
the city graph abstraction) depends on the complexity of the city
graph clustering algorithm and the cost of applying cluster labels
to the training data. We use a bottom-up hierarchical clustering ap-
proach to cluster the waypoints. The time complexity of clustering
is O(|VTR|

3) in the worst-case. Nearest neighbor classification is
used to apply cluster labels to the policy training data. The total
cost of this labeling is O(|ΠTR| × log(|θ|)). The overall cost of
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Figure 15: Sensitivity testing for parameters for LapStrat.
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Figure 16: Sensitivity testing for parameters for MCStrat.

building the policy training data is the sum of both time complexi-
ties.

The time complexity for LapStrat and EigenStrat can be ex-
pressed as the combined cost of building the similarity graph and
building the covariance matrix, and the eigen-decomposition. Build-
ing the similarity graph and covariance matrix is a O(|ΠTR|

2) op-
eration on the number of training samples. Eigen-decomposition
has a worst-case time complexity of O(|ΠTR|

3) [2].
MCStrat has a worst-case O(|ΠTR|

2) time complexity. It scans
the entire training set for each evaluated edge data vector. The Fre-
qCount method is the cheapest, it has an O(|ΠTR|) time complex-
ity, because it does a linear scan on the length of the policy training
set when computing the transition probabilities.

A comparison of the storage complexity of the methods appears
in Table 3. During model construction LapStrat stores pairwise
comparisons of edge data vectors across the entire training set,



Table 3: Space complexity of methods.

Model Model Construction Model Storage

FreqCount O(|π|) O(|π|)

EigenStrat O((|π|)2) O(dims× |π|)

LapStrat O((|ΠTR|)
2) O(k × |π|)

MCStrat O(1) O(|ΠTR| × |π|)

hence the high storage complexity. On the other hand, the Eigen-
Strat method requires building a covariance matrix of dimensions
|π|×|π|. The model storage for these methods have similar storage
complexity, because both methods store characteristic policies.

FreqCount reads one edge data vector at a time from the training
set and stores the sum of the coefficients, hence, it requires storage
proportional to the length of the stored policy. MCStrat does not
require any storage during model construction; however, it must
read the entire training set to perform prediction.

To mitigate the complexity of the methods, we sampled from
the data and built data abstractions that facilitate computation and
storage. For LapStrat, the similarity graph is very sparse (roughly
97%), We used sparse representation of the data to allow for ef-
ficient computations. This sparsity can be leveraged to improve
computation time by using a sparse algorithm for the eigendecom-
position.

6.4 Practical Lessons Learned from Trajectory
Data Analysis

Experiments involving GPS data collected in the real world of-
ten require data preprocessing to facilitate good predictions. For
example, this taxi data set required preprocessing to remove way-
point outliers due to device cold starting and poor GPS signals.
These points were mostly identifiable through four criteria used to
make trajectories: (1) GPS points with latitude/longitude coordi-
nates far from the study area (outside the bounding box of the ma-
jor roads surrounding Beijing) were removed; (2) GPS points far
(> 30 km) from the preceding/succeeding waypoints are removed;
(3) Trajectories must be one hour in length or less; (4) The mini-
mum average speed of a trajectory must be at least 3 km/h. These
criteria will remove trajectories that are due to the data collection
device being left on while the taxi is parked and will also identify
specific GPS waypoints that contain excessive noise. While some
erroneous data are still likely to have been admitted into the data
set, this prepreprocessing appears, on manual inspection, to have
removed the majority of the poor quality data.

7. CONCLUSIONS
Overall, the global methods assume the actions from each clus-

ter location are fixed and paths are implicitly clustered into distinct
but repeated goals: in this domain, each observation is a set of ac-
tions a driver takes in fulfillment of a specific goal. For example, to
take a passenger from the airport to his/her home. In contrast, the
local methods only consider actions taken in the immediate neigh-
borhood and are most effective only for short-length predictions.

Although the performance of the framework is already promis-
ing, some aspects deserve more research. (1) A non-negligible part
of the errors in our predictions is due to representation (map match-
ing) errors. Building inference algorithms to reduce uncertainty
caused by the low sampling rate trajectories and regions with low
trajectory counts is an interesting direction for future work. (2)
Applying algorithms for reducing sample repetition of the input
to spectral analysis is also a future direction. This makes spectral

clustering more useful when working with very large amounts of
data.

The framework presented here can be applied to other spatio-
temporal domains where only basic location and time information
is collected, such as sensor networks or mobile phone networks.
Another direction involves applying the proposed framework to
predicting trajectories in non-road based domains (e.g. animal for-
aging). We believe that spectral analysis can uncover the most fre-
quent paths taken.
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