
 1

An Introduction to Cluster Analysis for Data Mining

10/02/2000 11:42 AM

1. INTRODUCTION... 4

1.1. Scope of This Paper .. 4

1.2. What Cluster Analysis Is.. 4

1.3. What Cluster Analysis Is Not... 5

2. OVERVIEW... 5

2.1. Definitions.. 5
2.1.1. The Data Matrix.. 5
2.1.2. The Proximity Matrix.. 6
2.1.3. The Proximity Graph .. 7
2.1.4. Some Working Definitions of a Cluster.. 7

2.2. Measures (Indices) of Similarity and Dissimilarity.. 9
2.2.1. Proximity Types and Scales .. 9
2.2.2. Requirements on Similarity and Dissimilarity Measures.. 10
2.2.3. Common Proximity Measures .. 11

2.2.3.1. Distance Measures .. 11
2.2.3.2. Ordinal Measures .. 12
2.2.3.3. Similarity Measures Between Binary Vectors .. 12
2.2.3.4. Cosine Measure... 13

3. BASIC CLUSTERING TECHNIQUES .. 13

3.1. Types of Clustering ... 13

3.2. Objective Functions: Clustering as an Optimization Problem .. 15

4. SPECIFIC CLUSTERING TECHNIQUES... 15

4.1. Center-Based Partitional Clustering ... 15
4.1.1. K-means Clustering .. 16

4.1.1.1. Basic Algorithm .. 16
4.1.1.2. Time and Space Complexity ... 16
4.1.1.3. Choosing initial centroids ... 17
4.1.1.4. Updating Centroids Incrementally .. 18
4.1.1.5. Different Definitions of Centroid.. 19
4.1.1.6. Pre and Post Processing .. 20
4.1.1.7. Limitations and problems.. 22

4.1.2. K-medoid Clustering... 22
4.1.3. CLARANS.. 23

4.2. Hierarchical Clustering .. 24
4.2.1. Agglomeration and Division... 24

 2

4.2.2. Simple Divisive Algorithm (Minimum Spanning Tree (MST)).. 24
4.2.3. Basic Agglomerative Hierarchical Clustering Algorithm ... 25
4.2.4. Time and Space Complexity ... 25
4.2.5. MIN or Single Link... 26
4.2.6. MAX or Complete Link or CLIQUE .. 26
4.2.7. Group Average.. 26
4.2.8. Ward’s Method and Centroid methods ... 27
4.2.9. Key Issues in Hierarchical Clustering... 27

4.2.9.1. Lack of a Global Objective Function .. 27
4.2.9.2. Cluster Proximity and Cluster Representation .. 28
4.2.9.3. The Impact of Cluster Size.. 28
4.2.9.4. Merging Decisions are Final ... 28

4.2.10. Limitations and problems.. 29
4.2.11. CURE.. 29
4.2.12. Chameleon .. 30

4.3. Density Based Clustering.. 32
4.3.1. DBSCAN .. 32
4.3.2. DENCLUE.. 33
4.3.3. WaveCluster.. 34

4.4. Graph-Based Clustering... 35
4.4.1. Historical techniques... 35
4.4.1.1. Shared Nearest Neighbor Clustering... 35
4.4.1.2. Mutual Nearest Neighbor Clustering .. 36
4.4.2. Hypergraph-Based Clustering... 36
4.4.3. ROCK ... 38
4.4.4. Sparsification .. 39

4.4.4.1. Why Sparsify?... 39
4.4.4.2. Sparsification as a Pre-processing Step... 40
4.4.4.3. Sparsification Techniques ... 41
4.4.4.4. Keeping the Proximity Matrix Symmetric? .. 41
4.4.4.5. Description of Sparsification Techniques .. 41
4.4.4.6. Evaluating Sparsification Results.. 42
4.4.4.7. Tentative Conclusions... 43

5. ADVANCED TECHNIQUES FOR SPECIFIC ISSUES 43

5.1. Scalability .. 43
5.1.1. BIRCH .. 43
5.1.2. Bubble and Bubble-FM... 45

5.2. Clusters in Subspaces ... 46
5.2.1. CLIQUE.. 46
5.2.2. MAFIA (pMAFIA) ... 47

6. EVALUATIONS .. 47

6.1. Requirements for Clustering Analysis for Data Mining.. 47

6.2. Typical Problems and Desired Characteristics .. 47
6.2.1. Scalability ... 47
6.2.2. Independence of the order of input ... 48
6.2.3. Effective means of detecting and dealing with noise or outlying points................................... 48

 3

6.2.4. Effective means of evaluating the validity of clusters that are produced. 48
6.2.5. Easy interpretability of results .. 48
6.2.6. The ability to find clusters in subspaces of the original space. ... 48
6.2.7. The ability to handle distances in high dimensional spaces properly.. 48
6.2.8. Robustness in the presence of different underlying data and cluster characteristics................. 49
6.2.9. An ability to estimate any parameters ... 50
6.2.10. Ability to function in an incremental manner ... 50

7. DATA MINING FROM OTHER PERSPECTIVES..................................... 50

7.1. Statistics-Based Data Mining ... 50
7.1.1. Mixture Models... 50

7.2. Text Mining and Information Retrieval ... 51
7.2.1. Uses of Clustering for Documents .. 51
7.2.2. Latent Semantic Indexing ... 52

7.3. Vector Quantization.. 52

7.4. Self-Organizing Maps... 53
7.4.1. SOM Overview ... 53
7.4.2. Details of a Two-dimensional SOM ... 53
7.4.3. Applications .. 55

7.5. Fuzzy Clustering ... 56

8. RELATED TOPICS... 59

8.1. Nearest-neighbor search (Multi-Dimensional Access Methods) ... 59

8.2. Pattern Recognition .. 61

8.3. Exploratory Data Analysis ... 61

9. SPECIAL TOPICS .. 62

9.1. Missing Values... 62

9.2. Combining Attributes ... 62
9.2.1. Monothetic or Polythetic Clustering ... 62
9.2.2. Assigning Weights to features .. 62

10. CONCLUSIONS.. 62

LIST OF ARTICLES AND BOOKS FOR CLUSTERING FOR DATA MINING.. 64

 4

1. Introduction

1.1. Scope of This Paper
Cluster analysis divides data into meaningful or useful groups (clusters). If

meaningful clusters are the goal, then the resulting clusters should capture the “natural”
structure of the data. For example, cluster analysis has been used to group related
documents for browsing, to find genes and proteins that have similar functionality, and to
provide a grouping of spatial locations prone to earthquakes. However, in other cases,
cluster analysis is only a useful starting point for other purposes, e.g., data compression
or efficiently finding the nearest neighbors of points. Whether for understanding or
utility, cluster analysis has long been used in a wide variety of fields: psychology and
other social sciences, biology, statistics, pattern recognition, information retrieval,
machine learning, and data mining.

The scope of this paper is modest: to provide an introduction to cluster analysis in
the field of data mining, where we define data mining to be the discovery of useful, but
non-obvious, information or patterns in large collections of data. Much of this paper is
necessarily consumed with providing a general background for cluster analysis, but we
also discuss a number of clustering techniques that have recently been developed
specifically for data mining. While the paper strives to be self-contained from a
conceptual point of view, many details have been omitted. Consequently, many
references to relevant books and papers are provided.

1.2. What Cluster Analysis Is
Cluster analysis groups objects (observations, events) based on the information

found in the data describing the objects or their relationships. The goal is that the objects
in a group will be similar (or related) to one other and different from (or unrelated to) the
objects in other groups. The greater the similarity (or homogeneity) within a group, and
the greater the difference between groups, the “better” or more distinct the clustering.

The definition of what constitutes a cluster is not well defined, and, in many
applications clusters are not well separated from one another. Nonetheless, most cluster
analysis seeks as a result, a crisp classification of the data into non-overlapping groups.
Fuzzy clustering, described in section 7.5, is an exception to this, and allows an object to
partially belong to several groups.

To better understand the difficulty of deciding what constitutes a cluster, consider
figures 1a through 1d, which show twenty points and three different ways that they can
be divided into clusters. If we allow clusters to be nested, then the most reasonable
interpretation of the structure of these points is that there are two clusters, each of which
has three subclusters. However, the apparent division of the two larger clusters into three
subclusters may simply be an artifact of the human visual system. Finally, it may not be
unreasonable to say that the points form four clusters. Thus, we stress once again that the
definition of what constitutes a cluster is imprecise, and the best definition depends on
the type of data and the desired results.

 5

Figure 1a: Initial points.

Figure 1b: Two clusters.

Figure 1c: Six clusters

Figure 1d: Four clusters.

1.3. What Cluster Analysis Is Not
Cluster analysis is a classification of objects from the data, where by classification

we mean a labeling of objects with class (group) labels. As such, clustering does not use
previously assigned class labels, except perhaps for verification of how well the
clustering worked. Thus, cluster analysis is distinct from pattern recognition or the areas
of statistics know as discriminant analysis and decision analysis, which seek to find rules
for classifying objects given a set of pre-classified objects.

While cluster analysis can be useful in the previously mentioned areas, either
directly or as a preliminary means of finding classes, there is much more to these areas
than cluster analysis. For example, the decision of what features to use when
representing objects is a key activity of fields such as pattern recognition. Cluster
analysis typically takes the features as given and proceeds from there.

Thus, cluster analysis, while a useful tool in many areas (as described later), is
normally only part of a solution to a larger problem which typically involves other steps
and techniques.

2. Overview

2.1. Definitions

2.1.1. The Data Matrix

Objects (samples, measurements, patterns, events) are usually represented as
points (vectors) in a multi-dimensional space, where each dimension represents a distinct
attribute (variable, measurement) describing the object. For simplicity, it is normally
assumed that values are present for all attributes. (Techniques for dealing with missing
values are described in section 9.1.)

Thus, a set of objects is represented (at least conceptually) as an m by n matrix,
where there are m rows, one for each object, and n columns, one for each attribute. This
matrix has different names, e.g., pattern matrix or data matrix, depending on the
particular field. Figure 2, below, provides a concrete example of some points and their
corresponding data matrix.

The data is sometimes transformed before being used. One reason for this is that
different attributes may be measured on different scales, e.g., centimeters and kilograms.
In cases where the range of values differs widely from attribute to attribute, these
differing attribute scales can dominate the results of the cluster analysis and it is common
to standardize the data so that all attributes are on the same scale.

The following are some common approaches to data standardization:

 6

(In what follows, xi, is the ith object, xij is the value of the jth attribute of the ith
object, and xij ′ is the standardized attribute value.)

a)
iji

ij
ij x

x
x

max
=′ . Divide each attribute value of an object by the maximum observed

absolute value of that attribute. This restricts all attribute values to lie between –1 and
1. Often all values are positive, and thus, all transformed values lie between 0 and 1.

b)
j

jij
ij

x
x

σ
µ−

=′ . For each attribute value subtract off the mean, µj, of that attribute and

then divide by the attribute’s standard deviation, σj. If the data are normally
distributed, then most attribute values will lie between –1 and 1 [KR90].

(µj = �
=

m

i
ijx

m 1

1 is the mean of the jth feature, σj = ()
2

1

1
�

=

−
m

i
jijx

m
µ is the standard

deviation of the jth feature.)

c) A
j

jij
ij

x
x

σ
µ−

=′ . For each attribute value subtract off the mean of that attribute and

divide by the attribute’s absolute deviation, σj
A, [KR90]. Typically, most attribute

values will lie between –1 and 1. (σj
A = �

=

−
m

i
jijx

m 1

1 µ is the absolute standard

deviation of the jth feature.)

The first approach, (a), may not produce good results unless the attributes are
uniformly distributed, while both the first and second approaches, (a) and (b), are
sensitive to outliers. The third approach, (c), is the most robust in the presence of
outliers, although an attempt to eliminate outliers is sometimes made before cluster
analysis begins.

Another reason for initially transforming the data is to reduce the number of
dimensions, particularly if the initial number of dimensions is large. (The problems
caused by high dimensionality are discussed more fully in section 6.2.7.) This can be
accomplished by discarding features that show little variation or that are highly correlated
with other features. (Feature selection is a complicated subject in its own right.)

Another approach is to project points from a higher dimensional space to a lower
dimensional space. Typically this is accomplished by applying techniques from linear
algebra, which are based on the eigenvalue decomposition or the singular value
decomposition of a data matrix or normalized data matrix. Examples of such techniques
are Principal Component Analysis [DJ88] or Latent Semantic Indexing [FO95] (section
7.2.2).

2.1.2. The Proximity Matrix

While cluster analysis sometimes uses the original data matrix, many clustering
algorithms use a similarity matrix, S, or a dissimilarity matrix, D. For convenience, both
matrices are commonly referred to as a proximity matrix, P. A proximity matrix, P, is an
m by m matrix containing all the pairwise dissimilarities or similarities between the
objects being considered. If xi and xj are the ith and jth objects, respectively, then the entry

 7

at the ith row and jth column of the proximity matrix is the similarity, sij, or the
dissimilarity, dij, between xi and xj. For simplicity, we will use pij to represent either sij or
dij. Figure 2 shows four points and the corresponding data and proximity (distance)
matrices. More examples of dissimilarity and similarity will be provided shortly.

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

 p1 p2 p3 p4
p1 0.000 2.828 3.162 5.099
p2 2.828 0.000 1.414 3.162
p3 3.162 1.414 0.000 2.000
p4 5.099 3.162 2.000 0.000

Figure 2. Four points and their corresponding data and proximity (distance) matrices.

For completeness, we mention that objects are sometimes represented by more
complicated data structures than vectors of attributes, e.g., character strings. Determining
the similarity (or differences) of two objects in such a situation is more complicated, but
if a reasonable similarity (dissimilarity) measure exists, then a clustering analysis can still
be performed. In particular, clustering techniques that use a proximity matrix are
unaffected by the lack of a data matrix.

2.1.3. The Proximity Graph

A proximity matrix defines a weighted graph, where the nodes are the points
being clustered, and the weighted edges represent the proximities between points, i.e., the
entries of the proximity matrix. While this proximity graph can be directed, which
corresponds to an asymmetric proximity matrix, most clustering methods assume an
undirected graph. Relaxing the symmetry requirement can be useful for clustering or
pattern recognition, but we will assume undirected proximity graphs (symmetric
proximity matrices) in our discussions.

From a graph point of view, clustering is equivalent to breaking the graph into
connected components, one for each cluster. Likewise, many issues related to clustering
can be cast in graph-theoretic terms, e.g., the issues of cluster cohesion and the degree of
coupling with other clusters can be measured by the number and strength of links
between and within clusters. Also, many clustering techniques, e.g., minimum spanning
tree (section 4.2.1), single link (section 4.2.5), and complete link (section 4.2.6), are most
naturally described using a graph representation.

Some clustering algorithms, e.g., Chameleon (section 4.2.12), first sparsify the
proximity graph. Sparsification reduces the connectivity of nodes by breaking some of
the links of the proximity graph. (This corresponds to setting a proximity matrix entry to
0 or ∞, depending on whether we are using similarities or dissimilarities, respectively.)
See section 4.4.4 for details.

2.1.4. Some Working Definitions of a Cluster

As mentioned above, the term, cluster, does not have a precise definition.
However, several working definitions of a cluster are commonly used.

0

1

2

3

0 1 2 3 4 5 6

p1

p2
p3 p4

 8

1) Well-Separated Cluster Definition: A cluster is a set of points such that any point in
a cluster is closer (or more similar) to every other point in the cluster than to any
point not in the cluster. Sometimes a threshold is used to specify that all the points in
a cluster must be sufficiently close (or similar) to one another.

 Figure 3: Three well-separated clusters of 2 dimensional points.

However, in many sets of data, a point on the edge of a cluster may be closer (or more
similar) to some objects in another cluster than to objects in its own cluster.
Consequently, many clustering algorithms use the following criterion.

2) Center-based Cluster Definition: A cluster is a set of objects such that an object in a
cluster is closer (more similar) to the “center” of a cluster, than to the center of any
other cluster. The center of a cluster is often a centroid, the average of all the points
in the cluster, or a medoid, the most “representative” point of a cluster.

 Figure 4: Four center-based clusters of 2 dimensional points.

3) Contiguous Cluster Definition (Nearest neighbor or Transitive Clustering): A

cluster is a set of points such that a point in a cluster is closer (or more similar) to one
or more other points in the cluster than to any point not in the cluster.

 Figure 5: Eight contiguous clusters of 2 dimensional points.

 9

4) Density-based definition: A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density. This definition is more often
used when the clusters are irregular or intertwined, and when noise and outliers are
present. Note that the contiguous definition would find only one cluster in figure 6. Also
note that the three curves don’t form clusters since they fade into the noise, as does the
bridge between the two small circular clusters.

 Figure 6: Six dense clusters of 2 dimensional points.

5) Similarity-based Cluster definition: A cluster is a set of objects that are “similar”,

and objects in other clusters are not “similar.” A variation on this is to define a cluster
as a set of points that together create a region with a uniform local property, e.g.,
density or shape.

2.2. Measures (Indices) of Similarity and Dissimilarity

2.2.1. Proximity Types and Scales

The attributes of the objects (or their pairwise similarities and dissimilarities) can
be of different data types and can be measured on different data scales.

The different types of attributes are

1) Binary (two values)
2) Discrete (a finite number of values)
3) Continuous (an effectively infinite number of values)

The different data scales are
1) Qualitative

a) Nominal – the values are just different names.
Example 1: Zip Codes
Example 2: Colors: white, black, green, red, yellow, etc.
Example 3: Sex: male, female
Example 4: 0 and 1 when they represent Yes and No.

b) Ordinal – the values reflect an ordering, nothing more.
Example 1: Good, Better, Best
Example 2: Colors ordered by the spectrum.
Example 3: 0 and 1 are often considered to be ordered when used as Boolean
 values (false/true), with 0 < 1.

 10

2) Quantitative
a) Interval – the difference between values is meaningful, i.e., a unit of

measurement exits.
Example 1: On a scale of 1 to 10 rate the following potato chips.

b) Ratio – the scale has an absolute zero so that ratios are meaningful.
Example 1: The height, width, and length of an object.
Example 2: Monetary quantities, e.g., salary or profit.
Example 3: Many physical quantities like electrical current, pressure, etc.

Data scales and types are important since the type of clustering used often

depends on the data scale and type.

2.2.2. Requirements on Similarity and Dissimilarity Measures

Proximities are normally subject to a number of requirements [DJ88]. We list
these below. Recall that pij is the proximity between points, xi and xj.

1) (a) For a dissimilarity: pii = 0 for all i. (Points aren’t different from themselves.)

(b) For a similarity: pii > max pij (Points are most similar to themselves.)
 (Similarity measures are often required to be between 0 and 1, and in that case
 pii = 1, is the requirement.)

2) pij = pji (Symmetry)
This implies that the proximity matrix is symmetric. While this is typical, it is not
always the case. An example is a confusion matrix, which implicitly defines a
similarity between entities that is measured by how often various entities, e.g.,
characters, are misclassified as one another. Thus, while 0’s and O’s are confused
with each other, it is not likely that 0’s are mistaken for O’s at the same rate that O’s
are mistaken for 0’s.

3) pij > 0 for all i and j (Positivity)
Additionally, if the proximity measure is real-valued and is a true metric in a
mathematical sense, then the following two conditions also hold in addition to
conditions 2 and 3.

4) pij = 0 only if i = j.

5) pik <<<< pij + pjk for all i, j, k. (Triangle inequality.)

Dissimilarities that satisfy conditions 1-5 are called distances, while

“dissimilarity” is a term commonly reserved for those dissimilarities that satisfy only
conditions 1-3.

 11

2.2.3. Common Proximity Measures

2.2.3.1. Distance Measures

The most commonly used proximity measure, at least for ratio scales (scales with
an absolute 0) is the Minkowski metric, which is a generalization of the normal distance
between points in Euclidean space. It is defined as

where, r is a parameter, d is the dimensionality of the data object, and xik and xjk are,
respectively, the kth components of the ith and jth objects, xi and xj.

The following is a list of the common Minkowski distances for specific values of
r.
1) r = 1. City block (Manhattan, taxicab, L1 norm) distance.

A common example of this is the Hamming distance, which is just the number of bits
that are different between two binary vectors.

2) r = 2. Euclidean distance. The most common measure of the distance between two
points.

3) r → ∞. “supremum” (Lmax norm, L∞ norm) distance.
This is the maximum difference between any component of the vectors.

Figure 7 gives the proximity matrices for L1, L2 and L∞ , respectively using the given
data matrix which we copied from an earlier example.

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0.000 4.000 4.000 6.000
p2 4.000 0.000 2.000 4.000
p3 4.000 2.000 0.000 2.000
p4 6.000 4.000 2.000 0.000

L2 p1 p2 p3 p4
p1 0.000 2.828 3.162 5.099
p2 2.828 0.000 1.414 3.162
p3 3.162 1.414 0.000 2.000
p4 5.099 3.162 2.000 0.000

L∞ p1 p2 p3 p4
p1 0.000 2.000 3.000 5.000
p2 2.000 0.000 1.000 3.000
p3 3.000 1.000 0.000 2.000
p4 5.000 3.000 2.000 0.000

Figure 7. Data matrix and the L1, L2, and L∞ proximity matrices.

The r parameter should not be confused with the dimension, d. For example,
Euclidean, Manhattan and supremum distances are defined for all values of d, 1, 2, 3, …,
and specify different ways of combining the differences in each dimension (attribute) into
an overall distance.

rrd

k
jkikij xxp

/1

1
�
�

�

�

�
�

�

�
−= �

=

 12

2.2.3.2. Ordinal Measures
Another common type of proximity measure is derived by ranking the distances

between pairs of points from 1 to m * (m - 1) / 2. This type of measure can be used with
most types of data and is often used with a number of the hierarchical clustering
algorithms that are discussed in section 4.2. Figure 8 shows how the L2 proximity matrix
of figure 7 would appear as an ordinal proximity matrix.

L2 p1 p2 p3 p4
p1 0.000 2.828 3.162 5.099
p2 2.828 0.000 1.414 3.162
p3 3.162 1.414 0.000 2.000
p4 5.099 3.162 2.000 0.000

ordinal p1 p2 p3 p4
p1 0 3 4 5
p2 3 0 1 4
p3 4 1 0 2
p4 5 4 2 0

Figure 8. An L2 proximity matrix and the corresponding ordinal proximity matrix.

2.2.3.3. Similarity Measures Between Binary Vectors

There are many measures of similarity between binary vectors. These measures
are referred to as similarity coefficients, and have values between 0 and 1. A value of 1
indicates that the two vectors are completely similar, while a value of 0 indicates that the
vectors are not at all similar. There are many rationales for why one coefficient is better
than another in specific instances [DJ88, KR90], but we will mention only a few.

The comparison of two binary vectors, p and q, leads to four quantities:
M01 = the number of positions where p was 0 and q was 1
M10 = the number of positions where p was 1 and q was 0
M00 = the number of positions where p was 0 and q was 0
M11 = the number of positions where p was 1 and q was 1

The simplest similarity coefficient is the simple matching coefficient

SMC = (M11 + M00) / (M01 + M10 + M11 + M00)

Another commonly used measure is the Jaccard coefficient.

J = (M11) / (M01 + M10 + M11)

Conceptually, SMC equates similarity with the total number of matches, while J

considers only matches on 1’s to be important. It is important to realize that there are
situations in which both measures are more appropriate.

For example, consider the following pairs of vectors and their simple matching
and Jaccard similarity coefficients

a = 1 0 0 0 0 0 0 0 0 0 SMC = .8
b = 0 0 0 0 0 0 1 0 0 1 J = 0

If the vectors represent student’s answers to a True-False test, then both 0-0 and
1-1 matches are important and these two students are very similar, at least in terms of the
grades they will get.

 13

Suppose instead that the vectors indicate whether 10 particular items are in the
“market baskets” of items purchased by two shoppers. Then the Jaccard measure is a
more appropriate measure of similarity since it would be very odd to say that two market
baskets that don’t contain any similar items are the same. For calculating the similarity of
market baskets, and in many other cases, the presence of an item is far more important
than absence of an item.

2.2.3.4. Cosine Measure

For purposes of information retrieval, e.g., as in Web search engines, documents
are often stored as vectors, where each attribute represents the frequency with which a
particular term (word) occurs in the document. (It is much more complicated than this, of
course, since certain common words are ignored and normalization is performed to
account for different forms of the same word, document length, etc.) Such vectors can
have thousands or tens of thousands of attributes.

If we wish to compare the similarity of two documents, then we face a situation
much like that in the previous section, except that the vectors are not binary vectors.
However, we still need a measure like the Jaccard measure, which ignores 0-0 matches.
The motivation is that any two documents are likely to “not contain” many of the same
words, and thus, if 0-0 matches are counted most documents will be highly similar to
most other documents. The cosine measure, defined below, is the most common measure
of document similarity. If d1 and d2 are two document vectors, then

cos(d1, d2) = (d1 • d2) / ||d1|| ||d2|| ,

where • indicates vector dot product and ||d|| is the length of vector d.

For example,

d1 = 3 2 0 5 0 0 0 2 0 0
d2 = 1 0 0 0 0 0 0 1 0 2

d1 • d2= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5
||d1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 +0*0 + 0*0 + 2*2 + 0*0 + 0*0)0.5 = 6.480
||d2|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2) 0.5 = 2.236

cos(d1, d2) = .31

3. Basic Clustering Techniques

3.1. Types of Clustering
Many different clustering techniques that have been proposed over the years.

These techniques can be described using the following criteria [DJ88]:

1) Hierarchical vs. partitional (nested and unnested). Hierarchical techniques

produce a nested sequence of partitions, with a single, all inclusive cluster at the top

 14

and singleton clusters of individual points at the bottom. Each intermediate level can
be viewed as combining (splitting) two clusters from the next lower (next higher)
level. (While most hierarchical algorithms involve joining two clusters or splitting a
cluster into two sub-clusters, some hierarchical algorithms join more than two clusters
in one step or split a cluster into more than two sub-clusters.)

The following figures indicate different ways of graphically viewing the
hierarchical clustering process. Figures 9a and 9b illustrate the more “traditional”
view of hierarchical clustering as a process of merging two clusters or splitting one
cluster into two. Figure 9a gives a “nested set” representation of the process, while
Figure 9b shows a “tree’ representation, or dendogram. Figure 9c and 9d show a
different, hierarchical clustering, one in which points p1 and p2 are grouped together
in the same step that also groups points p3 and p4 together.

.
Figure 9a. Traditional nested set. Figure 9b. Traditional dendogram

Figure 9c. Non-traditional nested set Figure 9d. Non-traditional dendogram.

Partitional techniques create a one-level (unnested) partitioning of the data
points. If K is the desired number of clusters, then partitional approaches typically
find all K clusters at once. Contrast this with traditional hierarchical schemes, which
bisect a cluster to get two clusters or merge two clusters to get one. Of course, a
hierarchical approach can be used to generate a flat partition of K clusters, and
likewise, the repeated application of a partitional scheme can provide a hierarchical
clustering.

p4
p1

p2

p3

p4 p1 p2 p3

p4
p1

p2

p3

p4 p1 p2 p3

 15

2) Divisive vs. agglomerative. Hierarchical clustering techniques proceed either from
the top to the bottom or from the bottom to the top, i.e., a technique starts with one
large cluster and splits it, or starts with clusters each containing a point, and then
merges them.

3) Incremental or non-incremental. Some clustering techniques work with an item at

a time and decide how to cluster it given the current set of points that have already
been processed. Other techniques use information about all the points at once. Non-
incremental clustering algorithms are far more common.

3.2. Objective Functions: Clustering as an Optimization Problem
Many clustering techniques are based on trying to minimize or maximize a global

objective function. The clustering problem then becomes an optimization problem,
which, in theory, can be solved by enumerating all possible ways of dividing the points
into clusters and evaluating the “goodness” of each potential set of clusters by using the
given objective function. Of course, this “exhaustive” approach is computationally
infeasible (NP complete) and as a result, a number of more practical techniques for
optimizing a global objective function have been developed.

One approach to optimizing a global objective function is to rely on algorithms,
which find solutions that are often good, but not optimal. An example of this approach is
the K-means clustering algorithm (section 4.1.1) which tries to minimize the sum of the
squared distances (error) between objects and their cluster centers.

Another approach is to fit the data to a model. An example of such techniques is
mixture models (section 7.1.1), which assume that the data is a “mixture” of a number of
underlying statistical distributions. These clustering algorithms seek to find a solution to
a clustering problem by finding the maximum likelihood estimate for the statistical
parameters that describe the clusters.

Still another approach is to forget about global objective functions. In particular,
hierarchical clustering procedures proceed by making local decisions at each step of the
clustering process. These ‘local’ or ‘per-step’ decisions are also based on an objective
function, but the overall or global result is not easily interpreted in terms of a global
objective function This will be discussed further in one of the sections on hierarchical
clustering techniques (section 4.2.9).

4. Specific Clustering Techniques

4.1. Center-Based Partitional Clustering
As described earlier, partitional clustering techniques create a one-level

partitioning of the data points. There are a number of such techniques, but we shall only
describe two approaches in this section: K-means (section 4.1.1) and K-medoid (section
4.1.2).

Both these techniques are based on the idea that a center point can represent a
cluster. For K-means we use the notion of a centroid, which is the mean or median point
of a group of points. Note that a centroid almost never corresponds to an actual data
point. For K-medoid we use the notion of a medoid, which is the most representative

 16

(central) point of a group of points. By its definition a medoid is required to be an actual
data point.

Section 4.1.3 introduces CLARANS, a more efficient version of the basic
K-medoid that was applied to spatial data mining problems. BIRCH and Bubble are
clustering methods for data mining that are based on center-based partitional approaches.
(BIRCH is more like K-means and Bubble is more like K-medoid.) However, both of
BIRCH and Bubble use a wide variety of techniques to help enhance their scalability, i.e.,
their ability to handle large data sets, and consequently, their discussion is postponed to
sections 5.1.1 and section 5.1.2, respectively.

4.1.1. K-means Clustering

4.1.1.1. Basic Algorithm

The K-means clustering technique is very simple and we immediately begin with
a description of the basic algorithm. We elaborate in the following sections.

Basic K-means Algorithm for finding K clusters.

1. Select K points as the initial centroids.
2. Assign all points to the closest centroid.
3. Recompute the centroid of each cluster.
4. Repeat steps 2 and 3 until the centroids don’t change.

In the absence of numerical problems, this procedure always converges to a
solution, although the solution is typically a local minimum. The following diagram
gives an example of this. Figure 10a shows the case when the cluster centers coincide
with the circle centers. This is a global minimum. Figure 10b shows a local minima.

Figure 10a. A globally minimal clustering solution

Figure 10b. A locally minimal clustering solution.

4.1.1.2. Time and Space Complexity
Since only the vectors are stored, the space requirements are basically O(mn),

where m is the number of points and n is the number of attributes. The time requirements
are O(I*K*m*n), where I is the number of iterations required for convergence. I is
typically small (5-10) and can be easily bounded as most changes occur in the first few

 17

iterations. Thus, K-means is linear in m, the number of points, and is efficient, as well as
simple, as long as the number of clusters is significantly less than m.
4.1.1.3. Choosing initial centroids

Choosing the proper initial centroids is the key step of the basic K-means
procedure. It is easy and efficient to choose initial centroids randomly, but the results are
often poor. It is possible to perform multiple runs, each with a different set of randomly
chosen initial centroids – one study advocates 30 - but this may still not work depending
on the data set and the number of clusters sought.

We start with a very simple example of three clusters and 16 points. Figure 11a
indicates the “natural” clustering that results when the initial centroids are “well”
distributed. Figure 11b indicates a “less natural” clustering that happens when the initial
centroids are poorly chosen.

Figure 11a: Good starting centroids and a “natural” clustering.

Figure 11b: Bad starting centroids and a “less natural” clustering.

We have also constructed the artificial data set, shown in figure 12a as another

illustration of what can go wrong. The figure consists of 10 pairs of circular clusters,
where each cluster of a pair of clusters is close to each other, but relatively far from the
other clusters. The probability that an initial centroid will come from any given cluster is
0.10, but the probability that each cluster will have exactly one initial centroid is 10!/1010

 18

= 0.00036. (Technical note: This assumes sampling with replacement, i.e., that two
initial centroids could be the same point.)

There isn’t any problem as long as two initial centroids fall anywhere in a pair of
clusters, since the centroids will redistribute themselves, one to each cluster, and so
achieve a globally minimal error,. However, it is very probable that one pair of clusters
will have only one initial centroid. In that case, because the pairs of clusters are far apart,
the K-means algorithm will not redistribute the centroids between pairs of clusters, and
thus, only a local minima will be achieved. When starting with an uneven distribution of
initial centroids as shown in figure 12b, we get a non-optimal clustering, as is shown in
figure 12c, where different fill patterns indicate different clusters. One of the clusters is
split into two clusters, while two clusters are joined in a single cluster.

Figure 12a: Data distributed in 10 circular regions

Figure 12b: Initial Centroids

Figure 12c: K-means clustering result

Because random sampling may not cover all clusters, other techniques are often
used for finding the initial centroids. For example, initial centroids are often chosen from
dense regions, and so that they are well separated, i.e., so that no two centroids are
chosen from the same cluster.

4.1.1.4. Updating Centroids Incrementally

Instead of updating the centroid of a cluster after all points have been assigned to
clusters, the centroids can be updated as each point is assigned to a cluster. In addition,
the relative weight of the point being added may be adjusted. The goal of these
modifications is to achieve better accuracy and faster convergence. However, it may be
difficult to make a good choice for the relative weight. These update issues are similar to
those of updating weights for artificial neural nets.

Incremental update also has another advantage – empty clusters are not produced.
(All clusters start with a single point and if a cluster ever gets down to one point, then
that point will always be reassigned to that cluster.) Empty clusters are often observed
when centroid updates are performed only after all points have been assigned to clusters.

 19

This imposes the need for a technique to choose a new centroid for an empty cluster, for
otherwise the squared error will certainly be larger than it would need to be. A common
approach is to choose as the new centroid the point that is farthest away from any current
center. If nothing else, this eliminates the point that currently contributes the most to the
squared error.

Updating points incrementally may introduce an order dependency problem,
which can be ameliorated by randomizing the order in which the points are processed.
However, this is not really feasible unless the points are in main memory. Updating the
centroids after all points are assigned to clusters results in order independence approach.

Finally, note that when centers are updated incrementally, each step of the process
may require updating two centroids if a point switches clusters. However, K-means
tends to converge rather quickly and so the number of points switching clusters will tend
to be small after a few passes over all the points.

4.1.1.5. Different Definitions of Centroid

The K-means algorithm is derived by asking how we can obtain a partition of the
data into K clusters such that the sum of the squared distance of a point from the “center”
of the cluster is minimized. In mathematical terms we seek to minimize

Error = ��
= ∈

−
K

1i Cx

2
i

i

cx
�

��

 = ���
= ∈ =

−
K

i Cx

d

j
ijj

i

cx
1 1

2)(
�

where x

�

is a vector (point) and ic
�

is the “center” of the cluster, d is the dimension of x
�

and ic

�

and xj and cij are the components of x
�

 and ic
�

.)

We can solve for the pth cluster, pc
�

, by solving for each component, cpk, 1 ≤ k ≤ d
by differentiating the Error, setting it to 0, and solving as the following equations
indicate.

���
= ∈ =

−
∂

∂=
∂

∂ K

i Cx

d

j
ijj

pkpk i

cx
c

Error
c 1 1

2)(
�

 ���
= ∈ =

−
∂

∂=
K

i Cx

d

j
ijj

pki

cx
c1 1

2)(
�

 �
∈

=−=
pCx

pkk cx
�

0)(*2

���
∈∈∈

=�=�=−
ppp Cx

k
p

pk
Cx

kpkp
Cx

pkk x
n

cxcncx
���

10)(*2

Thus, we find that �
∈

=
pCx

p xc
�

��

pn
1 , the mean of the points in the cluster. This is

pleasing since it agrees with our intuition of what the center of a cluster should be.

 20

However, we can instead ask how we can obtain a partition of the data into K
clusters such that the sum of the distance of a point from the “center” of the cluster is
minimized. In mathematical terms, we now seek to minimize the equation

Error = ��
= ∈

−
K

1i Cx
i

i

cx
�

��

This problem has been extensively studied in operations research under the name

of the multi-source Weber problem [Ta98] and has obvious applications to the location of
warehouses and other facilities that need to be centrally located. We leave it as an
exercise to the reader to verify that the centroid in this case is still the mean.

Finally, we can instead ask how we can obtain a partition of the data into K
clusters such that the sum of the L1 distance of a point from the “center” of the cluster is
minimized. In mathematical terms, we now seek to minimize the equation

Error = ���
= ∈ =

−
K

1i Cx i
�

d

1j
ijj cx

We can solve for the pth cluster, pc
�

, by solving for each component, cpk, 1 ≤ k ≤ d
by differentiating the Error, setting it to 0, and solving as the following equations
indicate.

���
= ∈ =

−
∂

∂=
∂

∂ K

i Cx

d

j
ijj

pkpk i

cx
c

Error
c 1 1�

.

 ���
= ∈ =

−
∂

∂=
K

i Cx

d

j
ijj

pki

cx
c1 1�

.

 0
1

=−
∂

∂= ��
∈ =pCx

d

j
pkk

pk

cx
c�

.

0)(0
1

=−�=−
∂

∂
���
∈∈ = pp Cx

pkk
Cx

d

j
pkk

pk

cxsigncx
c ��

Thus, if we solve for pc

�

, we find that ()pp Cxc ∈=
��

median , the point whose
coordinates are the median values of the corresponding coordinate values of the points in
the cluster. While the median of a group of points is straightforward to compute, this
computation is not as efficient as the calculation of a mean.

In the first case we say we are attempting to minimize the within cluster squared
error, while in the second case and third cases we just say that we are attempting to
minimize the absolute within cluster error, where the error may either the L1 or L2
distance.

4.1.1.6. Pre and Post Processing

Sometimes the quality of the clusters that are found can be improved by pre-
processing the data. For example, when we use the squared error criteria, outliers can

 21

unduly influence the clusters that are found. Thus, it is common to try to find such values
and eliminate them with a preprocessing step.

Another common approach uses post-processing steps to try to fix up the clusters
that have been found. For example, small clusters are often eliminated since they
frequently represent groups of outliers. Alternatively, two small clusters that are close
together can be merged. Finally, large clusters can be split into smaller clusters.

While pre- and post-processing techniques can be effective, they are based on
heuristics that may not always work. Furthermore, they often require that the user choose
values for a number of parameters.

ISODATA [DJ88] is the most famous of such techniques and is still used today,
especially in image processing. After choosing initial centroids in a manner that
guarantees that they will be well separated, ISODATA proceeds in the following way:
1) Points are assigned to the closest centroid and cluster centroids are recomputed. This

step is repeated until no points change clusters.
2) Clusters with “too few” points are discarded.
3) Clusters are merged (lumped) or split.

a) If there are “too many” clusters, then clusters are split.
b) If there are “too few” clusters compared to the number desired, then clusters are

merged.
c) Otherwise the cluster splitting and merging phases alternate.

Clusters are merged if their centers are close, while clusters are split if the are
“too loose.”

4) Steps 1,2 and 3 are repeated until the results are “acceptable” or until some pre-
determined number of iterations has been exceeded.

The splitting phase of ISODATA is an example of strategies that decrease the

total error by increasing the number of clusters. Two general strategies are given below:
a) Split a cluster. Often the cluster with the largest error is chosen, but in the case of

ISODATA the cluster with the largest standard deviation in some particular attribute
is chosen.

b) Introduce a new cluster center. Often the point that is farthest from any cluster center
is chosen.

Likewise, the merging phase of ISODATA is just one example of strategies that
decrease the number of clusters. (This will increase the error.) Two general strategies are
given below:
a) Disperse a cluster, i.e. remove the center that corresponds to the center and reassign

the points to other centers. Ideally the cluster which is dispersed should be the one
that increases the error the least. A good heuristic for determining this is based on
keeping track of the second closest center of each point.

b) Merge two clusters. In ISODATA, the clusters with the closest centers are chosen,
although another, perhaps better, approach is to merge the two clusters that result in
the smallest increase in error. These two merging strategies are, respectively, the
same strategies that are used in the hierarchical clustering techniques known as the
Centroid method and Ward’s method. Both methods are discussed in section 4.2.8.

 22

Finally, it is important to realize that there are certain clustering applications,
where outliers cannot be eliminated. In data compression every point must be clustered,
and in financial analysis, apparent outliers are often the most interesting points, e.g.,
unusually profitable customers.

4.1.1.7. Limitations and problems

K-means attempts to minimize the squared or absolute error of points with respect
to their cluster centroids. While this is sometimes a reasonable criterion and leads to a
simple algorithm, K-means has a number of limitations and problems. In particular,
Figures 13a and 13b show the problems that result when clusters have widely different
sizes or have convex shapes.

Figure 13a: Different sizes Figure 13b: Convex shapes

The difficulty in these two situations is that the K-means objective function is a

mismatch for the kind of clusters we are trying to find. The K-means objective function
is minimized by globular clusters of equal size or by clusters that are well separated.

The K-means algorithm is also normally restricted to data in Euclidean spaces
because in many cases the required means and medians do not make sense. (This is not
true in all cases, e.g., documents.) A related technique, K-medoid clustering, does not
have this restriction and is discussed in the next section.

4.1.2. K-medoid Clustering

The objective of K-medoid clustering [KR90] is to find a non-overlapping set of
clusters such that each cluster has a most representative point, i.e., a point that is most
centrally located with respect to some measure, e.g., distance. These representative
points are called medoids. Once again, the algorithm is conceptually simple.

Basic K-medoid Algorithm for finding K clusters.

1) Select K initial points. These points are the candidate medoids and are intended to

be the most central points of their clusters.
2) Consider the effect of replacing one of the selected objects (medioids) with one of

the non-selected objects. Conceptually, this is done in the following way. The
distance of each non-selected point from the closest candidate medoid is calculated,
and this distance is summed over all points. This distance represents the “cost” of the
current configuration. All possible swaps of a non-selected point for a selected one
are considered, and the cost of each configuration is calculated.

3) Select the configuration with the lowest cost. If this is a new configuration, then
repeat step 2.

 23

4) Otherwise, associate each non-selected point with its closest selected point
(medoid) and stop.

Step 3 requires more explanation. The ith medoid is evaluated by using�
=

in

1j
ijp ,

where pij, is the proximity between the ith medoid and the jth point in the cluster. For
similarities (dissimilarities) we want this sum to be as large (small) as possible. It can be
seen that such an approach is not restricted to Euclidean spaces and is likely to be more
tolerant of outliers. However, finding a better medoid requires trying all points that are
currently not medoids and is computationally expensive.

4.1.3. CLARANS

CLARANS [NH94] was one of the first clustering algorithms that was developed
specifically for use in data mining – spatial data mining. CLARANS itself grew out of
two clustering algorithms, PAM and CLARA [KR90], that were developed in the field of
statistics.

PAM (Partitioning Around Medoids) is a “K-medoid” based clustering algorithm
that attempts to cluster a set of m points into K clusters by performing the steps described
in section 4.1.2.

CLARA (Clustering LARge Applications) is an adaptation of PAM for handling
larger data sets. It works by repeatedly sampling a set of data points, calculating the
medoids of the sample, and evaluating the cost of the configuration that consists of these
“sample-derived” medoids and the entire data set. The set of medoids that minimizes the
cost is selected. As an optimization, the set of medoids from one iteration is usually
included in the sample for the next iteration. As presented, CLARA normally samples 40
+ 5K objects and uses 5 iterations.

CLARANS uses a randomized search approach to improve on both CLARA and
PAM. Conceptually, CLARANS does the following.
1) Randomly pick K candidate medoids.
2) Randomly consider a swap of one of the selected points for a non-selected point.
3) If the new configuration is better, i.e., has lower cost, then repeat step 2 with the new

configuration.
4) Otherwise, repeat step 2 with the current configuration unless a parameterized limit

has been exceeded. (This limit was set to max (250, K *(m - K)).
5) Compare the current solution with any previous solutions and keep track of the best.
6) Return to step 1 unless a parameterized limit has been exceeded. (This limit was set

to 2.)
Thus, CLARANS differs from PAM in that, given the current configuration, it

does not consider all possible swaps of medoid and non-medoid points, but rather, only a
random selection of them and only until it finds a better configuration. Unlike CLARA,
CLARANS works with all data points.

CLARANS was used in two spatial data mining tools, SD(CLARANS) and
NSD(CLARANS). These tools added some capabilities related to cluster analysis.

In [EKX95], a number of techniques were proposed for making CLARANS more
efficient. The basic idea was to use an R* trees to store the data being considered. R*
trees are a type of nearest-neighbor tree (see section 8.1) that try to store data points in

 24

the same disk page if the data points are “close” to one another. [EKX95] proposes to
make use of this in three ways to improve CLARANS.
1) Focus on representative objects. For all the objects in a single page of the R* tree,

find the representative object, i.e., the object which is closest to the calculated center
of the objects in the page. Use CLARANS only on these representative objects. This
amounts to an intelligent sampling of the database.

2) Focus on relevant clusters. When considering a possible swap of a non-medoid
object for a medoid object, the change in the cost from the old configuration to the
new configuration can be determined by only considering the clusters to which the
medoid and non-medoid objects belong.

3) Focus on the cluster. It is possible to efficiently construct a bounding Voronoi
polyhedron for a cluster by looking only at the medoids. This polyhedron is just the
set of all points that are closer to the medoid of the cluster than to any other medoid.
This polyhedron can be translated into a range query which can be efficiently
implemented by the R* tree.

These improvements improve the speed of CLARANS by roughly two orders of
magnitude, but reduce the clustering effectiveness by only a few percent.

4.2. Hierarchical Clustering
In hierarchical clustering the goal is to produce a hierarchical series of nested

clusters, ranging from clusters of individual points at the bottom to an all-inclusive
cluster at the top. A diagram called a dendogram graphically represents this hierarchy
and is an inverted tree that describes the order in which points are merged (bottom-up
view) or clusters are split (top-down view).

One of the attractions of hierarchical techniques is that they correspond to
taxonomies that are very common in the biological sciences, e.g., kingdom, phylum,
genus, species, … . (Some cluster analysis work occurs under the name of “mathematical
taxonomy.”) Another attractive feature is that hierarchical techniques do not assume any
particular number of clusters. Instead any desired number of clusters can be obtained by
“cutting” the dendogram at the proper level. Finally, hierarchical techniques are thought
to produce better quality clusters [DJ88].

4.2.1. Agglomeration and Division

There are two basic approaches to generating a hierarchical clustering:
a) Agglomerative: Start with the points as individual clusters and, at each step, merge

the closest pair of clusters. This requires defining the notion of cluster proximity.
b) Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster until

only singleton clusters of individual points remain. In this case, we need to decide
which cluster to split at each step.

Divisive techniques are less common, and we will mention only one example

before focusing on agglomerative techniques.

4.2.2. Simple Divisive Algorithm (Minimum Spanning Tree (MST))

1) Compute a minimum spanning tree for the proximity graph.

 25

2) Create a new cluster by breaking the link corresponding to the largest distance
(smallest similarity).

3) Repeat step 2 until only singleton clusters remain.

This approach is the divisive version of the “single link” agglomerative technique
that we will see shortly.

4.2.3. Basic Agglomerative Hierarchical Clustering Algorithm

Many hierarchical agglomerative techniques can be expressed by the following
algorithm, which is known as the Lance-Williams algorithm.

Basic Agglomerative Hierarchical Clustering Algorithm

1) Compute the proximity graph, if necessary.

(Sometimes the proximity graph is all that is available.)
2) Merge the closest (most similar) two clusters.
3) Update the proximity matrix to reflect the proximity between the new cluster and the

original clusters.
4) Repeat steps 3 and 4 until only a single cluster remains.

The key step of the previous algorithm is the calculation of the proximity between
two clusters, and this is where the various agglomerative hierarchical techniques differ.
Any of the cluster proximities that we discuss in this section can be viewed as a choice of
different parameters (in the Lance-Williams formula) for the proximity between clusters
Q and R, where R is formed by merging clusters A and B.

p(R, Q) = αA p(A, Q) + αB p(B, Q) + β p(A, Q) + γ | p(A, Q) – p(B, Q) |

In words, this formula says that after you merge clusters A and B to form cluster
R, then the distance of the new cluster, R, to an existing cluster, Q, is a linear function of
the distances of Q from the original clusters A and B.

Any hierarchical technique that can be phrased in this way does not need the
original points, only the proximity matrix, which is updated as clustering occurs.
However, while a general formula is nice, it is often easier to understand the different
hierarchical methods by looking directly at the definition of cluster distance that each
method uses, and that is the approach that we shall take here. [DJ88] and [KR90] both
give a table that describes each method in terms of the Lance-Williams formula.

4.2.4. Time and Space Complexity

Hierarchical clustering techniques typically use a proximity matrix. This requires
the computation and storage of m2 proximities, a factor that limits the size of data sets that
can be processed. (It is possible to compute the proximities on the fly and save space, but
this increases computation time.) Once the proximity matrix is available, the time
required for hierarchical clustering is O(m2).

 26

1 2 3 4 5

 I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00

4.2.5. MIN or Single Link
For the single link or MIN version of hierarchical clustering, the proximity of two

clusters is defined to be minimum of the distance (maximum of the similarity) between
any two points in the different clusters. (The technique is called single link because, if
you start with all points as singleton clusters and add links between points, strongest links
first, then these single links combine the points into clusters.) Single link is good at
handling non-elliptical shapes, but is sensitive to noise and outliers.

The following table gives a sample similarity matrix for five items (I1 – I5) and
the dendogram shows the series of merges that result from using the single link
technique.

4.2.6. MAX or Complete Link or CLIQUE
For the complete link or MAX version of hierarchical clustering, the proximity of

two clusters is defined to be maximum of the distance (minimum of the similarity)
between any two points in the different clusters. (The technique is called complete link
because, if you start with all points as singleton clusters, and add links between points,
strongest links first, then a group of points is not a cluster until all the points in it are
completely linked, i.e., form a clique.) Complete link is less susceptible to noise and
outliers, but can break large clusters, and has trouble with convex shapes.

The following table gives a sample similarity matrix and the dendogram shows
the series of merges that result from using the complete link technique.

4.2.7. Group Average

For the group average version of hierarchical clustering, the proximity of two
clusters is defined to be the average of the pairwise proximities between all pairs of
points in the different clusters. Notice that this is an intermediate approach between MIN
and MAX. This is expressed by the following equation:

1 2 3 4 5

 I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00

 27

proximity (cluster1, cluster2) =
)2(*)1(

),(
2
1

21

2
1

clustersizeclustersize

ppproximity
clusterp
clusterp
�

∈
∈

The following table gives a sample similarity matrix and the dendogram shows
the series of merges that result from using the group average approach. The hierarchical
clustering in this simple case is the same as produced by MIN.

4.2.8. Ward’s Method and Centroid methods
For Ward’s method the proximity between two clusters is defined as the increase

in the squared error that results when two clusters are merged. Thus, this method uses the
same objective function as is used by the K-means clustering. While it may seem that
this makes this technique somewhat distinct from other hierarchical techniques, some
algebra will show that this technique is very similar to the group average method when
the proximity between two points is taken to be the square of the distance between them.

Centroid methods calculate the proximity between two clusters by calculating the
distance between the centroids of clusters. These techniques may seem similar to K-
means, but as we have remarked, Ward’s method is the correct hierarchical analogue.

Centroid methods also have a characteristic – often considered bad – that other
hierarchical clustering techniques don’t posses: the possibility of inversions. In other
words, two clusters that are merged may be more similar than the pair of clusters that
were merged in a previous step. For other methods the similarity of clusters merged
decreases (the distance between merged clusters increases) as we proceed from singleton
clusters to one all inclusive clusters.

4.2.9. Key Issues in Hierarchical Clustering

4.2.9.1. Lack of a Global Objective Function
In Section 3.2 we mentioned that hierarchical clustering cannot be viewed as globally
optimizing an objective function. Instead, hierarchical clustering techniques use various
criteria to decide “locally” at each step which clusters should be joined (or split for
divisive approaches). For agglomerative hierarchical techniques, the criteria is typically
to merge the “closest” pair of clusters, where “close” is defined by a specified measure of
cluster proximity.

This approach yields clustering algorithms that avoid the difficulty of trying to
solve a hard combinatorial optimization problem. (As previously, the general clustering
problem for objective functions like squared error is NP complete.) Furthermore, such

1 2 3 4 5

 I1 I2 I3 I4 I5
I1 1.00 0.90 0.10 0.65 0.20
I2 0.90 1.00 0.70 0.60 0.50
I3 0.10 0.70 1.00 0.40 0.30
I4 0.65 0.60 0.40 1.00 0.80
I5 0.20 0.50 0.30 0.80 1.00

 28

approaches do not have problems with local minima or difficulties in choosing initial
points. Of course, the time and space complexity is O(m2), which is prohibitive in many
cases.

4.2.9.2. Cluster Proximity and Cluster Representation

Cluster proximity is typically defined by a conceptual view of the clusters. For
example, if we view a cluster as being represented by all the points, then we can take the
proximity between the closest (most similar) two points in different clusters as being the
proximity between the two clusters. This defines the MIN technique (section 4.2.5).
Likewise, we can also take the proximity between the farthest (least similar) two points in
different clusters as our definition of cluster proximity. This defines the MAX technique
(section 4.2.6). Finally, we can average the pairwise proximities of all pairs of two points
from different clusters. This yields the Group Average technique (section 4.2.7).

If instead, we chose to represent each cluster by a centroid, then we find that
different definitions of cluster proximity are more natural. In one case, the cluster
distance is defined as the distance between cluster centroids. This defines the Centroid
clustering technique (section 4.2.8). Ward’s method (section 4.2.8), is conceptually
related to Centroid clustering since it merges the two clusters that result in the smallest
increase in the total squared error, i.e., it minimizes the sum of the squared distance of
points from their centroids.

However, Ward’s method can also be viewed as an example of cluster methods
that take an “all points” view of cluster representation, but define proximity in terms of
preserving desired cluster properties. For Ward’s method, the desired cluster property is
a low squared error, i.e., minimum squared distance of all points from the cluster center.
Chameleon (section 4.2.12) uses the concepts of cluster closeness and connectivity to
define cluster properties that must be preserved.

As we will see later, CURE (section 4.2.11) is a hybrid approach that mixes both
the centroid and “all points” view. It does this by using a well-chosen subset of the
points in a cluster to represent the cluster. Depending on parameter settings, this
approach may approximate the MIN technique or the Centroid technique, or something in
between.
4.2.9.3. The Impact of Cluster Size

Another aspect of hierarchical agglomerative clustering that should be considered
is how to treat the relative sizes of the pairs of clusters that may be merged. There are
basically two schemes: weighted and unweighted. Weighted schemes treat each cluster
equally and thus, objects in smaller clusters effectively have larger weight. Unweighted
schemes treat all objects in the clusters equally. Note that this discussion only applies to
cluster proximity schemes that involve sums, i.e., Centroid and Group Average.
Unweighted schemes seem to be more popular, and in our further discussions about the
Group Average and Centroid schemes, we refer only to the unweighted versions.

4.2.9.4. Merging Decisions are Final

Hierarchical clustering tends to make good local decisions about combining two
clusters since it has the entire proximity matrix available. However, once a decision is
made to merge two clusters, the hierarchical scheme does not allow for that decision to be

 29

changed. This prevents a local optimization criterion from becoming a global
optimization criterion.

For example, in Ward’s method, the “minimize squared error” criteria from K-
means is used in deciding which clusters to merge. However, this does not result in a
clustering that could be used to solve the K-means problem. Even though the local, per-
step decisions try to minimize the squared error, the clusters produced on any level,
except perhaps the very lowest levels, do not represent an optimal clustering from a
“minimize global squared error” point of view. Furthermore, the clusters are not even
“stable,” in the sense that a point in a cluster may be closer to the centroid of some other
cluster than to the centroid of its current cluster.

However, Ward’s method can be used as a robust method of initializing a K-
means clustering. Thus, a local “minimize squared error” objective function seems to
have some connection with a global “minimize squared error” objective function.

Finally it is possible to attempt to fix up the hierarchical clustering produced by
hierarchical clustering techniques. One idea is to move branches of the tree around so as
to improve some global objective function [Fi96]. Another idea [KHK99b] is to refine
the clusters produced by a hierarchical technique by using an approach similar to that
used for the multi-level refinement of graph partitions.

4.2.10. Limitations and problems

We summarize the problems with agglomerative hierarchical clustering.
1) No global objective function is being optimized.
2) Merging decisions are final.
3) Good local merging decisions may not result in good global results.
4) Agglomerative hierarchical clustering techniques have trouble with one of more of

the following: noise and outliers, non-convex shapes, and a tendency to break large
clusters.

4.2.11. CURE

CURE (Clustering Using Representatives) [GRS98] is a clustering algorithm that
uses a variety of different techniques to create an approach which can handle large data
sets, outliers, and clusters with non-spherical shapes and non-uniform sizes.

CURE represents a cluster by using multiple “representative” points from the
cluster. These points will, in theory, capture the geometry and shape of the cluster. The
first representative point is chosen to be the point furthest from the center of the cluster,
while the remaining points are chosen so that they are farthest from all the previously
chosen points. In this way, the representative points are naturally relatively well
distributed. The number of points chosen, is a parameter, c, but it was found that a value
of 10 or more worked well.

Once the representative points are chosen, they are shrunk toward the center by a
factor, α. This helps moderate the effect of outliers, which are usually farther away from
the center and thus, are “shrunk” more. For example, a representative point that was a
distance of 10 units from the center would move by 3 units (for α = .7), while a
representative point at a distance of 1 unit would only move .3 units.

CURE uses an agglomerative hierarchical scheme to perform the actual
clustering. The distance between two clusters is the minimum distance between any two

 30

representative points (after they are shrunk toward their respective centers). While this
scheme is not exactly like any other hierarchical scheme that we have seen, it is
equivalent to centroid based hierarchical clustering if α = 0, and roughly the same as
single link hierarchical clustering if α = 1. Notice that while a hierarchical clustering
scheme is used, the goal of CURE is to find a given number of clusters as specified by
the user.

CURE takes advantage of certain characteristics of the hierarchical clustering
process to eliminate outliers at two different points in the clustering process. First, if a
cluster is growing slowly, then this may mean that it consists mostly of outliers, since by
definition outliers are far from others and will not be merged with other points very often.
In CURE this first phase of outlier elimination typically occurs when the number of
clusters is 1/3 the original number of points. The second phase of outlier elimination
occurs when the number of clusters is on the order of K, the number of desired clusters.
At this point small clusters are again eliminated.

Since the worst case complexity of CURE is O(m2log m), it cannot be applied
directly to large data sets directly. For this reason, CURE uses two techniques for
speeding up the clustering process. The first technique takes a random sample and
performs hierarchical clustering on the sampled data points. This is followed by a final
pass that assigns each remaining point in the data set to one of the clusters by choosing
the cluster with closest representative point.

In some cases, the sample required for clustering is still too large and a second
additional technique is required. In this situation, CURE partitions the sample data into p
partitions of size m/p and then clusters the points in each partition until there are m/pq
clusters in each partition. This pre-clustering step is then followed by a final clustering of
the m/q intermediate clusters. Both clustering passes uses CURE’s hierarchical clustering
algorithm and are followed by a final pass that assigns each point in the data set to one of
the clusters.

We summarize our description of CURE by explicitly listing the different steps:

1) Draw a random sample from the data set. The CURE paper is notable for
explicitly deriving a formula for what the size of this sample should be in order to
guarantee, with high probability, that all clusters are represented by a minimum
number of points.

2) Partition the sample into p equal sized partitions.
3) Cluster the points in each cluster using the hierarchical clustering algorithm to

obtain m/pq clusters in each partition and a total of m/q clusters. Note that some
outlier elimination occurs during this process.

4) Eliminate outliers. This is the second phase of outlier elimination.
5) Assign all data to the nearest cluster to obtain a complete clustering.

4.2.12. Chameleon

Chameleon [KHK99A] is a clustering algorithm that combines an initial
partitioning of the data using an efficient graph partitioning algorithm with a novel
hierarchical clustering scheme that dynamically models clusters. The key idea is that two
clusters will be merged only if the resulting cluster is similar to the original clusters, i.e.,
self-similarity is preserved. While applicable to a wide range of data, Chameleon has

 31

specifically been shown to be superior to DBSCAN (section 4.3.1) and CURE (section
4.2.11) for clustering spatial data.

 The first step in Chameleon is to generate a k-nearest neighbor graph.
Conceptually, such a graph is derived from the proximity graph, and contains links only
between a point and its k-nearest neighbors, i.e., the points to which it is closest or most
similar. Working with a sparsified proximity graph instead of the full proximity graph
can significantly reduce the effects of noise and outliers. See section 4.4.4 for more
discussion.

Once a sparsified graph has been obtained, an efficient multi-level graph-
partitioning algorithm [KK98a, KK98b] can be used to partition the data set. Chameleon
starts with an all inclusive cluster and then splits the largest current cluster until no
cluster has more than MIN_SIZE points, where MIN_SIZE is a user specified parameter.
This process results in a large number of almost equally sized groups of well-connected
vertices (highly similar data points). Graph partitioning takes into account global
structure and produces partitions that are sub-clusters, i.e., contain points mostly from
one “true” cluster.

To recombine the sub-clusters a novel agglomerative hierarchical algorithm is
used. Two clusters are combined if the resulting cluster shares certain properties with the
constituent clusters, where two key properties are used to model cluster similarity:

• Relative Interconnectivity: The absolute interconnectivity of two clusters
normalized by the internal connectivity of the clusters. In words, we will combine
two clusters if the points in the resulting cluster are almost as “strongly” connected as
points in each of the original clusters. Mathematically,

RI =
() ()()ji

ji

CECCEC

CCEC

+
2
1

),(
, where EC(Ci, Cj)is the sum of the edges of k-nearest

neighbor graph that connect clusters Ci and Cj, EC(Ci) is the minimum sum of the
“cut” edges if we bisect cluster Ci, and EC(Cj) is the minimum sum of the “cut” edges
if we bisect cluster Cj. (EC stands for edge cut.)

• Relative Closeness: The absolute closeness of two clusters normalized by the
internal closeness of the clusters. In words, we will combine two clusters only if the
points in the resulting cluster are almost as “close” to each other as in the original
cluster. Mathematically,

RC =

() ()ji

ji

CEC
ji

j
CEC

ji

i

CCEC

S
CC

C
S

CC
C

S

+
+

+

),(, where instead of using the edge cut, i.e., the sum

of the edges that are cut to bisect a graph, we use the average similarity of the edges
involved in the edge cut.

Chameleon has two alternative merging schemes. For the first scheme
Chameleon uses two thresholds, TRI and TRC to select candidate pairs of clusters to merge.
If more than one pair of clusters has RI and RC values higher than these thresholds, then
the pair to merge is chosen by taking the one with the largest value of RI, i.e., by
choosing the pair of clusters that are most interconnected. For the second scheme,
Chameleon chooses the pair of clusters that maximizes RI(Ci, Cj) * RC(Ci, Cj)α , where α
is a user specified parameter, which is typically greater than 1.

 32

Unlike traditional hierarchical clustering techniques, Chameleon will merge more
than one pair of clusters during a single pass. Another difference (for the first merging
scheme) is that Chameleon will reach a point at which it will stop merging clusters.
(Recall that traditional agglomerative hierarchical algorithms continue merging until only
one all-inclusive cluster remains.) If desired, the thresholds can be relaxed and the
clustering resumed. The second merging scheme will automatically merge to a single
cluster.

If m is the number of data points and p is the number of partitions the complexity
of Chameleon is O(mp + mlog m + p2log p). However, this depends on being able to
build the k-nearest neighbor graph in O(mlog m) time. This, in turn, requires the use of a
k-d tree or a similar type of data structure. Such data structures only work well for low-
dimensional data sets, and thus, for higher dimensional data sets the complexity of
Chameleon becomes O(m2).

In summary, the steps of the Chameleon algorithms are:

1) Build a k-nearest neighbor graph.
2) Partition the graph into partitions using a multilevel graph-partitioning

algorithm.
3) Perform a hierarchical clustering starting with the partitions. This hierarchical

clustering will merge the clusters which best preserve the cluster self-similarity with
respect to relative interconnectivity and relative closeness.

4.3. Density Based Clustering
CLIQUE and MAFIA are also density based clustering schemes, but because they

are specifically designed for handling clusters in high-dimensional data, we discuss them
in sections 5.2.1 and 5.2.2, respectively.

4.3.1. DBSCAN

DBSCAN [EKSX96] is a density based clustering algorithm that works with a
number of different distance metrics. When DBSCAN has processed a set of data points,
a point will either be in a cluster or will be classified as noise.

DBSCAN is based on the concepts of a point being “density reachable” and
“density connected.” These concepts are explained in detail in [EKSX96]. What follows
is a more basic description.

Conceptually, data points fall into three classes:

a) Core points. These are points that are at the interior of a cluster. A point is an
interior point if there are enough points in its neighborhood, i.e., if the number of
points within a given neighborhood around the point, as determined by the distance
function and a supplied distance parameter, exceeds a certain threshold - also a
supplied parameter. If two core points belong to each other’s neighborhoods, then the
core points belong to the same cluster.

b) Border points. A border point is a point that is not a core point, i.e., there are not
enough points in its neighborhood, but it falls within the neighborhood of a core
point. Note that a border point may fall within the neighborhoods of core points from
several different clusters. If so, the cluster that the border point is grouped with will
depend on the details of the DBSCAN algorithm, and is order dependent.

 33

c) Noise points. A noise point is any point that is not a core point or a border point.

 Thus, for DBSCAN, a cluster is the set of all core points whose neighborhoods

transitively connect them together, along with some border points.

4.3.2. DENCLUE
DENCLUE (DENsity CLUstEring) [HK98] is a density clustering approach that

takes a more formal approach to density based clustering by modeling the overall density
of a set of points as the sum of “influence” functions associated with each point. The
resulting overall density function will have local peaks, i.e., local density maxima, and
these local peaks can be used to define clusters in a straightforward way. Specifically,
for each data point, a hill climbing procedure finds the nearest peak associated with that
point, and the set of all data points associated with a particular peak (called a local
density attractor) becomes a (center-defined) cluster. However, if the density at a local
peak is too low, then the points in the associated cluster are classified as noise and
discarded. Also, if a local peak can be connected to a second local peak by a path of data
points, and the density at each point on the path is above a minimum density threshold, ξ,
then the clusters associated with these local peaks are merged. Thus, clusters of any
shape can be discovered.

DENCLUE is based on a well-developed area of statistics and pattern recognition
which is know as “kernel density estimation” [DH73]. The goal of kernel density
estimation (and many other statistical techniques as well) is to describe the distribution of
the data by a function. For kernel density estimation, the contribution of each point to the
overall density function is expressed by an “influence” (kernel) function. The overall
density is then merely the sum of the influence functions associated with each point.

Typically the influence or kernel function is symmetric (the same in all directions)
and its value (contribution) decreases as the distance from the point increases. For

example, for a particular point, x, the Gaussian function, K(x) = 2

2

2
),(-distance

σ
yx

e , is often used
as a kernel function. (σ is a parameter which governs how quickly the influence of point
drops off.) Figure 14a shows how a Gaussian function would look for a single two
dimensional point, while figure 14c shows what the overall density function produced by
the Gaussian influence functions of the set of points shown in 14b.

a) Gaussian Kernel b) Set of points c) Overall density function

 34

Figure 14: Example of the Gaussian influence (kernel) function and an overall
 density function. (σ = 0.75)

The DENCLUE algorithm has two steps, a preprocessing step and a clustering
step. In the pre-clustering step, a grid for the data is created by dividing the minimal
bounding hyper-rectangle into d-dimensional hyper-rectangles with edge length 2σ. The
rectangles that contain points are then determined. (Actually, only the occupied hyper-
rectangles are constructed.) The hyper-rectangles are numbered with respect to a
particular origin (at one edge of the bounding hyper-rectangle and these keys are stored in
a search tree to provide efficient access in later processing. For each stored cell, the
number of points, the sum of the points in the cell, and connections to neighboring
population cubes are also stored.

For the clustering step DENCLUE, considers only the highly populated cubes and
the cubes that are connected to them. For each point, x, the local density function is
calculated only by considering those points that are from clusters which are a) in clusters
that are connected to the one containing the point and b) have cluster centroids within a
distance of kσ of the point, where k = 4. As an efficiency measure, each point, x′, on the
path from x to its density attractor is assigned to the same cluster as x if dist(x, x′) ≤ σ/2.
As mentioned above, DENCLUDE discards clusters associated with a density attractor
whose density is less than ξ. Finally, DENCLUE merges density attractors that can be
joined by a path of points, all of which have a density greater than ξ.

DENCLUE can be parameterized so that it behaves much like DBSCAN, but is
much more efficient that DBSCAN. DENCLUE can also behave like K-means by
choosing σ appropriately and by omitting the step that merges center-defined clusters into
arbitrary shaped clusters. Finally, by doing repeated clusterings for different values of σ,
a hierarchical clustering can be obtained.

4.3.3. WaveCluster

WaveCluster [SCZ98] is a clustering technique that interprets the original data as

a two-dimensional signal and then applies signal processing techniques (the wavelet
transform) to map the original data to a new space where cluster identification is more
straightforward. More specifically, WaveCluster defines a uniform two-dimensional grid
on the data and represents the points in each grid cell by the number of points. Thus, a
collection of two-dimensional data points becomes an image, i.e., a set of “gray-scale”
pixels, and the problem of finding clusters becomes one of image segmentation.

While there are a number of techniques for image segmentation, wavelets have a
couple of features that make them an attractive choice. First, the wavelet approach
naturally allows for a multiscale analysis, i.e., the wavelet transform allows features, and
hence, clusters, to be detected at different scales, e.g., fine, medium, and coarse.
Secondly, the wavelet transform naturally lends itself to noise elimination.

The basic algorithm of WaveCluster is as follows:

 35

1) Create a grid and assign each data object to a cell in the grid. The grid is
uniform, but the grid size will vary for different scales of analysis. Each grid cell
keeps track of the statistical properties of the points in that cell, but for wave
clustering only the number of points in the cell is used.

2) Transform the data to a new space by applying the wavelet transform. This
results in 4 “subimages” at several different levels of resolutionan “average” image,
an image that emphasizes the horizontal features, an image that emphasizes vertical
features and an image that emphasizes corners.

3) Find the connected components in the transformed space. The average subimage
is used to find connected clusters, which are just groups of connected “pixels,” i.e.,
pixels which are connected to one another horizontally, vertically, or diagonally.

4) Map the clusters labels of points in the transformed space back to points in the
original space. WaveCluster creates a lookup table that associates each point in the
original with a point in the transformed space. Assignment of cluster labels to the
original points is then straightforward.

In summary, the key features of WaveCluster are order independence, no need to

specify a number of clusters (although it is helpful to know this in order to figure out the
right scale to look at, speed (linear), the elimination of noise and outliers, and the ability
to find arbitrarily shaped clusters. While the WaveCluster approach can theoretically be
extended to more than two dimensions, it seems unlikely that WaveCluster will work
well (efficiently and effectively) for medium or high dimensions.

4.4. Graph-Based Clustering
The hierarchical clustering algorithms that we discussed in section 4.2 can be

viewed as operating on a proximity graph. However, they are most commonly viewed in
terms of merging or splitting clusters, and often there is no mention of graph related
concepts. There are some clustering techniques, however, that are explicitly cast in terms
of a graph or a hypergraph. Many of these algorithms are based on the idea of looking at
the nearest neighbors of a point. We begin first with a couple of old, but still quite
relevant clustering techniques.

4.4.1. Historical techniques

Both approaches we consider use what could be called the nearest neighbor
principle, which is also used in classification.

Nearest Neighbor Principle: A point probably belongs to the same class as the points it
is closest to, i.e., with high probability a point belongs to the same class as it’s nearest
neighbors.

4.4.1.1. Shared Nearest Neighbor Clustering

Shared nearest neighbor clustering is described in [JP73].
1) First the k-nearest neighbors of all points are found. In graph terms this can be

regarded as breaking all but the k strongest links from a point to other points in the
proximity graph.

2) All pairs of points are compared and if

 36

a) any two points share more than kt ≤≤≤≤ k neighbors, and
b) The two points being compared are among the k-nearest neighbors of each,

Then the two points and any cluster they are part of are merged.

This approach has a number of nice properties. It can handle clusters of different

densities since the nearest neighbor approach is self-scaling. This approach is transitive,
i.e., if point, p, shares lots of near neighbors with point, q, which in turn shares lots of
near neighbors with point, r, then points p, q and r all belong to the same cluster. This
allows this technique to handle clusters of different sizes and shapes.

However, transitivity can also join clusters that shouldn’t be joined, depending on
the k and kt parameters. Large values for both of these parameters tend to prevent these
spurious connections, but also tend to favor the formation of globular clusters.

4.4.1.2. Mutual Nearest Neighbor Clustering

Mutual nearest neighbor clustering is described in [GK77]. It is based on the idea
of the “mutual neighborhood value (mnv)” of two points, which is the sum of the ranks of
the two points in each other’s sorted nearest-neighbor lists. Two points are then said to
be mutual nearest neighbors if they are the closest pair of points with that mnv.

Clusters are built up by starting with points as singleton clusters and then merging
the closest pair of clusters, where close is defined in terms of the mnv. The mnv between
two clusters is the maximum mnv between any pair of points in the combined cluster. If
there are ties in mnv between pairs of clusters, they are resolved by looking at the original
distances between points. Thus, the algorithm for mutual nearest neighbor clustering
works in the following way.
a) First the k-nearest neighbors of all points are found. In graph terms this can be

regarded as breaking all but the k strongest links from a point to other points in the
proximity graph.

b) For each of the k points in a particular point’s k-nearest neighbor list, calculate
the mnv value for the two points. It can happen that a point is in one point’s k-
nearest neighbor list, but not vice-versa. In that case, set the mnv value to some value
larger than 2k.

c) Merge the pair of clusters having the lowest mnv (and the lowest distance in case
of ties).

d) Repeat step (c) until the desired number of clusters is reached or until the only
clusters remaining cannot be merged. The latter case will occur when no points in
different clusters are k-nearest neighbors of each other.

The mutual nearest neighbor technique has behavior similar to the shared nearest

neighbor technique in that it can handle clusters of varying density, size, and shape.
However, it is basically hierarchical in nature while the shared nearest neighbor approach
is partitional in nature.

4.4.2. Hypergraph-Based Clustering

Hypergraph-based clustering [HKKM97] is an approach to clustering in high
dimensional spaces that uses hypergraphs. Hypergraphs are an extension of regular

 37

graphs, which relax the restriction that an edge can only join two vertices. Instead an
edge can join many vertices.

Hypergraph-based clustering consists of the following steps:

1) Define the condition for connecting a number of objects (which will be the vertices of
the hypergraph) by a hyperedge.

2) Define a measure of the strength or weight of a hyperedge.
3) Use a graph-partitioning algorithm [KK98b] to partition the hypergraph into two parts

in such a way that the weight of the hyperedges cut is minimized.
4) Continue the partitioning until a fixed number of partitions are achieved, or until a

“fitness” condition for the goodness of a cluster indicates that a current partition is a
good cluster.

In [HKKM97], the data being classified is “market basket” data. With this kind

of data there are a number of items and a number of “baskets”, or transactions, each of
which contains a subset of all possible items. (A prominent example of market basket
data is the subset of store items purchased by customers in individual transactions –
hence the name market basket data.) This data can be represented by a set of binary
vectors – one for each transaction. Each item is associated with a dimension (variable),
and a value of 1 indicates that the item was present in the transaction, while a value of 0
indicates that the item was not present.

The individual items are the vertices of the hypergraph. The hyperedges are
determined by determining frequent itemsets [AS97]. These are subsets of items that
frequently occur together. For example, baby formula and diapers are often purchased
together.

The strength of the hyperedges is determined in the following manner. If the
frequent itemset being considered is of size n, and the items of the frequent itemset are i1,
i2… in, then the strength of a hyperedge is given by the following formula:

Less formally, we find the strength of each hyperedge by the following steps:
1) Consider each individual item, ij, in the frequent itemset.
2) Determine what fraction of the market baskets that contain the other n - 1 items also

contain ij. This (estimate of the) conditional probability that ij occurs when the other
items do is a measure of the strength of the association between the items.

3) Average these conditional probabilities together.

In [HKKM97] this is explained in slightly different terms using the concept of

association rules [AS97]. An association “rule” is an expression of the form
i1,…,ij-1,ij+1,…,in → ij , where the i’s are individual items as above. (More generally, the
consequent can consist of more than one item.) The “confidence” of a rule is the
(estimated) conditional probability as described in point 2 of the preceding paragraph.

The quality of a cluster is measured by a fitness measure. This measure is the
ratio of the weight of the edges that connect only vertices in the cluster to the weight of
the edges that include at least one vertex in the cluster. Similarly, the degree to which a
vertex is associated with a cluster is measured by a connectivity measure. This measure

�
=

+−

n

j
njjj iiiiiprob

n 1
111),,,...,|(1

 38

is the ratio of number of edges that contain the vertex and are in the cluster to the number
of edges that contain the vertex.

4.4.3. ROCK

ROCK (RObust Clustering using linKs) [GRS99] is a clustering algorithm for
data with categorical and Boolean attributes. It redefines the distances between points to
be the number of shared neighbors whose strength is greater than a given threshold and
then uses a hierarchical clustering scheme to cluster the data.

As with hypergraph-based clustering discussed in section 4.4.2, ROCK deals
primarily with market basket data. Traditional Euclidean distance measures are not
appropriate for such data and instead, ROCK uses the Jaccard coefficient (section 2.2.3.3)
to measure similarity. This rules out clustering approaches such as K-means or Centroid
based hierarchical clustering. (However, K-means can actually be modified to work well
for some non-Euclidean data, e.g., documents.)

While the Jaccard coefficient provides a reasonable measure of the distance
between points, clusters are sometimes not well separated and so a new measure of
similarity between points was introduced that reflects the neighborhood of a point. If
sim(pi, pj) is the similarity between points, pi and pj, and 0 ≤ θ ≤ 1 is a parameter, then

link(pi, pj) = | {q : sim(pi, q) ≥ θ } ∩ {q : sim(pj, q) ≥ θ }|

In words, link(pi, pj) is the number of shared neighbors of pi and pj. The idea is
that two points will be “close” only if they share a relatively large number of neighbors.
Such a strategy is intended to handle the problem of “border” points, which are close to
each other, but belong to different clusters. (This approach is really a form of
sparsification as is described in section 4.4.4).

ROCK also introduces a new objective function that is to be maximized:

� �
= ∈

+=
k

i Cpp
f

i

rq
i

irq
n

pplink
nE

1 ,
)(21

),(
* θ

Thus, we try to minimize the sum of the “link” similarity, i.e., the number of
shared neighbors, between pairs of points in a cluster, subject to some scaling by the size
of the cluster. (This scaling factor is just the expected number of links.) This criterion
can be used to derive a criterion for merging clusters via a hierarchical agglomerative
scheme by merging the two clusters that lead to the largest increase in E.

ROCK samples the data set in the same manner as CURE in order to avoid using
a hierarchical clustering algorithm on a large number of points. This is followed by an
assignment step where each remaining points is assigned to a cluster. A fraction of points
is selected from each cluster and a calculation is performed to determine the number of
those points that are neighbors of the point to be assigned. This quantity is scaled by the
expected number of neighbors (based on the size of the cluster) and the point is assigned
to cluster with the maximum number of neighbors (after scaling).

The basic steps of ROCK are as follows:
1) Obtain a sample of points from the data set.

 39

2) Compute the link value for each set of points, i.e., transform the original similarities
(computed by the Jaccard coefficient) into similarities that reflect the number of
shared neighbors between points.

3) Perform an agglomerative hierarchical clustering on the data using the “number of
shared neighbors” similarities and the “maximize the shared neighbors” objective
function defined above.

4) Assign the remaining points to the clusters that have been found.

4.4.4. Sparsification
The sparsification of the proximity graph as a part of clustering has been

discussed briefly before. This section provides a more detailed look at this technique.

4.4.4.1. Why Sparsify?

Many clustering techniques, e.g., hierarchical techniques, use a similarity matrix
as their starting point. There are compelling advantages for sparsifying the similarity
matrix before beginning the actual clustering process. In particular:

The amount of data that needs to be processed is drastically reduced.
Sparsification can eliminate more than 99% of the entries in a similarity matrix. This has
two beneficial effects:
• The amount of time required to cluster the data is drastically reduced.
• The size of the problems that can be handled is increased.

Clustering may work better. Sparsification techniques keep the connections to
the most similar (nearest) neighbors of a point while breaking the connections to less
similar points. (This is in keeping with the nearest neighbor principle that the nearest
neighbors of a point tend to belong to the same class as the point itself.) This reduces the
impact of noise and outliers and sharpens the distinction between clusters.

Sparsification facilitates the use of graph partitioning algorithms (or
algorithms inspired by graph partitioning algorithms). Such algorithms often work
best on sparse graphs. The METIS family of graph partitioning algorithms [KK98a,
KK98b] are well known and widely used.

There are some techniques that use sparsification with good results. We
provide examples of some specific techniques later, but for now we present a simple
example. When we applied one form of sparsification to spatial data and then plotted the
results, we were able to clearly differentiate core points, boundary points, and noise
points. In the following figures (4 and 5), we show, from left to right, a) the initial spatial
data (all points), b) points with low connectivity (noise points), c) points with medium
connectivity (boundary points), and d) points with high connectivity (core points).

The DBSCAN clustering algorithm described in [EKSX96] can also make a
classification of points into core, boundary and noise (outlier) points. In this case, the
classification was intentional, and is the basis of the clustering algorithm.

 40

Figure 15: Separation of Spatial Data Points into Noise, Boundary, and Core

 Points.

Figure 16: Separation of Spatial Data Points into Noise, Boundary, and Core

 Points.
4.4.4.2. Sparsification as a Pre-processing Step

Sparsification of the proximity graph must be regarded as an initial step before the
use of real clustering algorithms. In theory, a perfect sparsification could leave the
proximity matrix split into connected components corresponding to the desired clusters,
but, in practice, this rarely happens. It is very easy for a single edge to link two clusters
or for a single cluster to be split into several disconnected subclusters. Also, as
mentioned, users often desire a hierarchical clustering.

Therefore, the real goal of sparsification should be the efficient and effective
identification of the core (strongly connected) points belonging to clusters and
subclusters. Sparsification discards outliers and/or boundary points, and may result in a
cluster being broken into a number of “good,” but separate subclusters. The actual
clustering process that follows sparsification should be designed to take the core points
and the original points as input and produce clusters or hierarchies of clusters as output.
The following diagram gives a view of a complete clustering process that uses
sparsification.

Figure 17. The Complete Clustering Process

 41

4.4.4.3. Sparsification Techniques
In this section we discuss some basic issues of sparsification and review some

sparsification techniques.

4.4.4.4. Keeping the Proximity Matrix Symmetric?
As mentioned earlier, most clustering techniques work with symmetric proximity

matrices. Conceptually, it is convenient to think of the sparsification process as
consisting of two parts: a first step that sparsifies the matrix, and a second step that makes
the matrix symmetric again. (In practice, both steps are often carried out
simultaneously.)

Two symmetrically corresponding entries, pij and pji, may both still be equal after
sparsification, i.e., either both values are sparsified or both retain their original and
symmetric value. (We are considering only proximity matrices that were originally
symmetric.) If not, then there are two options for keeping the proximity matrix
symmetric. We can sparsify both entries, or we can set both entries to their original
value. The first option is called sparsification with inclusion, while the second option is
sparsification with exclusion. Sparsification with exclusion is sometimes referred to as a
“reciprocal” or “mutual” approach. The same sparsification procedure can have quite
different properties, depending on whether inclusion or exclusion is used.

4.4.4.5. Description of Sparsification Techniques
a) Global Thresholds [Kow97]. All entries of the similarity (dissimilarity) matrix that

are less than (greater than) the given threshold are set to 0 (∞). While this approach
can be effective, members of different classes often have different levels of similarity
or dissimilarity. For example, members of class A might have similarities ranging
from 0.3 to 0.5, while members of class B may have similarities ranging from 0.6 to
0.8. Thus, a global threshold normally doesn’t work well. (However, this procedure
is frequently used.)

b) Nearest neighbor techniques. These techniques, while not explicitly cast as matrix
sparsification techniques [JP73, GK78], use conditions involving the nearest
neighbors of a point to sparsify the similarity matrix. These techniques have many
variations, but we consider only three of the most straightforward approaches.
1. Adaptive Thresholds [KHK99]. The average similarity of a point’s two nearest

neighbors is calculated and is multiplied by a fixed constant, α, 0 ≤ α ≤ 1. This
adaptively calculated threshold is used to sparsify the entries in the row of the
proximity matrix that corresponds to this point. This technique can be used with
inclusion or with exclusion.

2. K Nearest Neighbors [KHK99b]. For the row corresponding to a particular
point, all entries except those of the K nearest neighbors are sparsified. This
technique can be used with inclusion or with exclusion.

3. Shared Nearest Neighbors [JP73]. First we apply K nearest neighbors
sparsification (with exclusion). The remaining entries are sparsified further by
requiring that the entries of a row and the point corresponding to the row must
share at least K1 ≤ K neighbors. These two requirements automatically produce a
symmetric matrix. In the degenerate case, when K1 = 0, this approach is just K
nearest neighbors (with exclusion).

 42

Two additional comments about nearest neighbor approaches:

• Early work that used nearest neighbor techniques to sparsify proximity matrices
[JP73, GK78] used the connected components of the sparsified proximity matrix to
define the clusters. However, a bad link can ruin the clustering and this is one reason
that additional steps are needed following the sparsification process.

• The ROCK algorithm [GRS99] is a new hierarchical clustering algorithm for
categorical data, whose initial step redefines the proximity of two points to be the
number of nearest neighbors that they share after sparsification with a global
threshold. While using a shared nearest neighbors technique for defining proximity is
a worthwhile approach - it has also been used in [JP73] and [GK78] - global
thresholds do not work as well as some of the other techniques.

4.4.4.6. Evaluating Sparsification Results

If the “true” classes that points belong to are available, then the results of a
sparsification can be evaluated by looking at the percentage of points that fall into
different five categories.
a) Percentage of isolated points. This is the percentage of points that do not have

connections to any points after the sparsification. Normally, isolating outliers is
good, but isolating other points is bad.

b) Percentage of really bad points, i.e., the percentage of points isolated from all
points of the same class. This is the percentage of points that are not isolated, but do
not have any connections to points within their own classes. Ideally, this percentage
should be low.

c) Percentage of really good points, i.e., the percentage of points isolated from all
points of different classes. This is the percentage of points that are not isolated and
do not have any connections to points in other classes. Ideally, this percentage should
be high, since points with neighbors of only the same class should, intuitively, be
easier to cluster correctly.

d) Percentage of mostly bad points, i.e., the percentage of points that have a
stronger connection to points of other classes. This is the percentage of points that
are not isolated, but whose connections to points in other classes have more weight
than do its connections to points of the same class. Ideally, this percentage should be
low.

e) Percentage of mostly good points, i.e., the percentage of points that have a
stronger connection to points of the same class. This is the percentage of points
that are not isolated, but whose connections to points of the same class have more
weight than do its connections to points in other classes. Ideally, this percentage
should be high.

The five percentages just described will sum to 100%, and can be plotted
simultaneously to provide an easily understood measure of how specific sparsification
techniques distribute points into the different categories described above.

By summing the percentage of mostly good points and the percentage of really
good points, we can obtain the percentage of good points. This measure provides an
overall indication of how well the sparsification is working. If all classes have large
percentages of points whose connections are predominantly to the same class, then
clustering “should” be easier. Conversely, if some or many classes have large numbers of

 43

points which are isolated or which have neighbors that are predominantly connected to
points of other classes, then clustering will be hard.

4.4.4.7. Tentative Conclusions

Sparsification has not been intensively investigated and the results that we present
here are based on unpublished research.

1) Sparsification is best used as a pre-processing step. Sparsification often breaks

“natural” clusters and should be used with an algorithm that can recombine these sub-
clusters in an intelligent way. Chameleon is the best example of such an algorithm.

2) Global thresholds don’t work very well. Not surprisingly, there are two problems:
a) The effect of the global threshold varies widely for each class, and
b) Each class has a different threshold that is best.

3) Adaptive thresholds work better than global thresholds. Again this is not
surprising since such approaches model the data more accurately.

4) Nearest neighbor techniques are the best of all. K-nearest neighbor or shared
nearest neighbor techniques appear to model the data more accurately than adaptive
threshold techniques.

5) There is a certain amount of flexibility in the choice of the nearest neighbor
sparsification scheme and the parameters. In the research done for Chameleon it
was discovered that a number of different nearest neighbor approaches and
parameters worked about as well. However, Chameleon a) uses a graph-partitioning
algorithms to efficiently divide the points into strongly connected groups, and b)
merges sub-clusters back together in a way that undoes the cluster breakage caused
by sparsification.

5. Advanced Techniques for Specific Issues

5.1. Scalability
For data mining, the scalability of an algorithm to large data sets is key. The

following two related techniques combine a variety of techniques to achieve that goal.

5.1.1. BIRCH

BIRCH (Balanced and Iterative Reducing and Clustering using Hierarchies)
[ZRL96] is a highly efficient clustering technique for data in Euclidean vector spaces,
i.e., data for which averages make sense. BIRCH can efficiently cluster such data with a
single pass and can improve that clustering in additional passes. BIRCH also can also
deal effectively with outliers.

BIRCH is based on the notion of a clustering feature (CF) and a CF tree. The idea
is that a cluster of data points (vectors) can be represented by a triple of numbers (N, LS,
SS), where N is the number of points in the cluster, LS is the linear sum of the points, and
SS is the sum of squares of the points. These are common statistical quantities and a
number of different inter-cluster distance measures can be derived from them.

A CF tree is a height-balanced tree. Each interior node has entries of the form
[CFi, childi], where childi is a pointer to the ith child node. The space that each entry
takes and the page size, P, determine the number of entries, B, in an interior node. The

 44

space of each entry is, in turn, determined by the size of the points, i.e., by the
dimensionality of the points.

Leaf nodes consist of a sequence of clustering features, CFi, where each clustering
feature represents a number of points that have been previously scanned. Leaf nodes are
subject to the restriction that each leaf node must have a diameter that is less than a
parameterized threshold, T. The space that each entry takes and the page size, P,
determine the number of entries, L, of a leaf.

By adjusting a threshold parameter, T, the height of the tree can be controlled. T
controls the fineness of the clustering, i.e., the extent to which the data in the original set
of data is reduced. The goal is to keep the CF tree in main memory by adjusting the T
parameter as necessary.

A CF tree is built as the data is scanned. As each data point is encountered, the
CF tree is traversed, starting from the root and choosing the closest node at each level.
When the closest “leaf” cluster for the current data point is finally identified, a test is
performed to see if adding the data item to the candidate cluster will result in a new
cluster with a diameter greater than the given threshold, T. If not, then the data point is
“added” to the candidate cluster by updating the CF information. The cluster information
for all nodes from the leaf to the root is also updated.

If the new cluster would have a diameter greater than T, then a new entry is
created if the leaf node is not full. Otherwise the leaf node must be split. The two entries
(clusters) that are farthest apart are selected as “seeds” and the remaining entries are
distributed to one of the two new leaf nodes, based on which leaf node contains the
closest “seed” cluster. Once the leaf node has been split, the parent node is updated, and
split if necessary, i.e., if the parent node is full. This process may continue all the way to
the root node.

BIRCH follows each split with a merge step. At the interior node where the split
stops, the two closest entries are found. If these entries do not correspond to the two
entries that just resulted from the split, then an attempt is made to merge these entries and
their corresponding child nodes. This step is intended to increase space utilization and
avoid problems with skewed data input order.

BIRCH also has a procedure for removing outliers. When the tree needs to be
rebuilt, because it has run out of memory, then outliers can optionally be written to disk.
(An outlier is defined to be node that has “far fewer” data points than average.) At
certain points in the process, outliers are scanned to see if they can be absorbed back into
the tree without causing the tree to grow in size. If so, they are re-absorbed. If not, they
are deleted.

BIRCH consists of a number of phases beyond the initial creation of the CF tree.
The phases of BIRCH are as follows:
1) Load the data into memory by creating a CF tree that “summarizes” the data.
2) Build a smaller CF tree if it is necessary for phase 3. T is increased, and then the

leaf node entries (clusters) are reinserted. Since T has increased, some clusters will
be merged.

3) Perform global clustering. Different forms of global clustering (clustering which
uses the pairwise distances between all the clusters) can be used. However, an
agglomerative, hierarchical technique was selected. Because the clustering features
store summary information that is important to certain kinds of clustering, the global

 45

clustering algorithm can be applied as if it were being applied to all the points in
cluster represented by the CF.

4) Redistribute the data points using the centroids of clusters discovered in step 3
and thus, discover a new set of clusters. This overcomes certain problems that can
occur in the first phase of BIRCH. Because of page size constraints and the T
parameter, points that should be in one cluster are sometimes split, and points that
should be in different clusters are sometimes combined. Also, if the data set contains
duplicate points, these points can sometimes be clustered differently, depending on
the order in which they are encountered. By repeating this phase, multiple times, the
process converges to a (possibly local) minimum.

5.1.2. Bubble and Bubble-FM

Bubble and Bubble-FM [GRGPF99] are scalable clustering algorithms that are
extensions of BIRCH to general metric spaces, i.e., collections of data points where only
distances are meaningful. (In Euclidean space, points (vectors) can be added and
concepts such as a mean or median of a group of points make sense. This is not the case
for general metric spaces, although there are exceptions, e.g., documents.) Bubble and
Bubble-FM can efficiently cluster general metric data with a single pass.

(A good example of non-Euclidean data is strings. An “edit” distance can be
defined between two strings which is the minimum number of character insertions,
deletions, and transpositions that would be needed to transform one string into another.
While these distances form a metric space, they are not an Euclidean vector space.)

Bubble and Bubble-FM are based on BIRCH*, which generalizes the notion of a cluster
feature that was introduced in BIRCH.

Conceptually, this new CF is a quintuple:
a) The number of objects in the cluster.
b) The objects the cluster.
c) The row sum of each object in the clusters. The row sum is the sum of the squared

distance of an object to each other object in the cluster.
d) The clustroid of the cluster. The clustroid is the object in the cluster that has the

smallest row sum. The clustroid represents a generalization of the idea of a centroid
to general metric spaces. Note that the clustroid is always an actual object, and thus,
is like a medoid.

e) The radius of the cluster, which is defined as
()

n

clustroidobjectd
n

i i� =1
2 ,

, where d is the

distance function and n is the number of objects in the cluster.
However, from an efficiency point of view not all objects and row sums can be

maintained in memory. Once a cluster becomes large enough, only a representative set of
objects (and their corresponding row sums) is kept and updates to the CF are calculated
approximately

As with BIRCH, these cluster features are organized into a CF tree, which is a
height-balanced tree similar to an R* tree. Each interior node has entries of the form
[CFi, childi], where childi is a pointer to the ith child node. Cluster features for non-leaf
nodes are similar to those of leaf nodes, where the representative objects are chosen from

 46

the representative objects of the node’s children. However, a condition is imposed that at
least one representative object be chosen from each child.

The basic steps of BIRCH* are the same as BIRCH, although the details are
somewhat different. One important parameter governs the way in which the distance of
point being added to a CF node is calculated. For Bubble, the point is considered to be a
cluster and the distance to non-leaf nodes is calculated as the average distance of the
point to each representative point in the cluster. For leaf nodes, the distance is calculated
as the distance of the point to the clustroid.

When a new data point is processed, the data point is treated like a singleton
cluster. The CF tree is traversed, starting from the root and choosing the closest node at
each level. When the closest “leaf” cluster for the current data point is finally identified,
a test is performed to see if adding the data item to the candidate cluster will result in a
new cluster with a radius greater than a given threshold, T. If not, then the data point is
“added” to the candidate cluster by updating the CF information. The cluster information
for all nodes from the leaf to the root is also updated. If the new cluster would have a
radius greater than T, then a new entry is created.

Bubble-FM uses an algorithm called Fast Map [FL95] to map the representative
objects of a non-leaf node into Euclidean space, called image space, in a way that
preserves the distances between the points. The clustroid is then replaced by the centroid
of the mapped representative points. When a point is added to the CF tree and needs to be
compared to a particular non-leaf node, it is mapped into the image space of that cluster
and its distance to the centroid is calculated and compared to the threshold. Distance
computations to the leaf nodes are still performed as with Bubble.

The mapping adds a lot of complexity and does not give as accurate an estimate
of the distance of a point from a cluster, but it requires fewer distance computations. This
can be important in many cases, e.g., string comparisons, where the distance calculations
are time consuming. Distances to leaf nodes are not calculated using the mapping,
because it is important not to make a mistake in adding a point to the wrong cluster. It is
better to start a new cluster, and the frequent updates at leaf nodes would require too
many re-mappings.

As with BIRCH, Bubble and Bubble-FM both follow the initial clustering by a
hierarchical clustering to refine the clusters and another pass through the data that
redistributes the points to the clusters.

5.2. Clusters in Subspaces
In high dimensional spaces, clusters often lie in a subspace. The following two

related techniques have been devised to handle that situation.

5.2.1. CLIQUE
CLIQUE [AGGR98] is a clustering algorithm that finds high-density regions by

partitioning the data space into cells (hyper-rectangles) and finding the dense cells.
Clusters are found by taking the union of all adjacent, high-density cells. For simplicity
and ease of use, clusters are described by expressing the cluster as a DNF (disjunctive
normal form) expression and then simplifying the expression.

CLIQUE is based on the following simple property of clusters: Since a cluster
represents a dense region in some subspace of the feature space, there will be dense areas

 47

corresponding to the cluster in all lower dimensional subspaces. Thus, CLIQUE starts by
finding all the dense areas in the one-dimensional spaces corresponding to each attribute.
CLIQUE then generates the set of two-dimensional cells that might possibly be dense, by
looking at dense one-dimensional cells, as each two-dimensional cell must be associated
with a pair of dense one-dimensional cells. More generally, CLIQUE generates the
possible set of k-dimensional cells that might possibly be dense by looking at dense
(k - 1) dimensional cells, since each k-dimensional cell must be associated with a set of k
dense (k - 1)-dimensional cells.

The CLIQUE algorithm is similar to the APRIORI algorithm [AS97] for finding
frequent itemsets.

5.2.2. MAFIA (pMAFIA)

MAFIA (Merging of Adaptive Finite Intervals (And more than a CLIQUE))
[GHC99] is a modification of CLIQUE that runs faster (40+) and finds better quality
clusters. pMAFIA is the parallel version.

The main modification is to use an adaptive grid. Initially, each dimension
(attribute) is partitioned into a fixed number of cells. A histogram is generated that shows
the number of data points in each cell. Groups of five adjacent cells are grouped into
windows, and each window is assigned the maximum value of the number of points in its
five cells. Adjacent windows are grouped together if the values of the two windows are
close – within 20%. As a special case, if all windows are combined into one window, the
dimension is partitioned into a fixed number of cells and the threshold for being
considered a dense unit is increased for this dimension. A relatively uniform distribution
of data in a particular dimension normally indicates that no clustering exists in this
dimension.

6. Evaluations
In this section we evaluate some of the clustering techniques for data mining that

have been discussed earlier. (Actual reviews of the specific techniques are omitted in this
preliminary version of the paper.)

6.1. Requirements for Clustering Analysis for Data Mining

6.2. Typical Problems and Desired Characteristics
The desired characteristics of a clustering algorithm depend on the particular

problem under consideration. The following is a list. (Note however, that there are other
general requirements for data mining that have also been described [CHY96].)

6.2.1. Scalability

Clustering techniques for large sets of data must be scalable, both in terms of
speed and space. It is not unusual for a database to contain millions of records, and thus,
any clustering algorithm used should have linear or near linear time complexity to handle
such large data sets. (Even algorithms that have complexity of O(m2) are not practical for
large data sets.) Some clustering techniques use statistical sampling. Nonetheless, there
are cases, e.g., situations where relatively rare points have a dramatic effect on the final
clustering, where a sampling is insufficient.

 48

Furthermore, clustering techniques for databases cannot assume that all the data
will fit in main memory or that data elements can be randomly accessed. These
algorithms are, likewise, infeasible for large data sets. Accessing data points sequentially
and not being dependent on having all the data in main memory at once are important
characteristics for scalability.

6.2.2. Independence of the order of input

Some clustering algorithms are dependent on the order of the input, i.e., if the
order in which the data points are processed changes, then the resulting clusters may
change. This is unappealing since it calls into question the validity of the clusters that
have been discovered. They may just represent local minimums or artifacts of the
algorithm.

6.2.3. Effective means of detecting and dealing with noise or outlying

points
A point which is noise or is simply an atypical point (outlier) can often distort a

clustering algorithm. By applying tests that determine if a particular point really belongs
to a given cluster, some algorithms can detect noise and outliers and delete them or
otherwise eliminate their negative effects. This processing can occur either while the
clustering process is taking place or as a post-processing step.

However, in some instances, points cannot be discarded and must be clustered as
well as possible. In such cases, it is important to make sure that these points do not
distort the clustering process for the majority of the points.

6.2.4. Effective means of evaluating the validity of clusters that are

produced.
It is common for clustering algorithms to produce clusters that are not “good”

clusters when evaluated later.

6.2.5. Easy interpretability of results

Many clustering methods produce cluster descriptions that are just lists of the
points belonging to each cluster. Such results are often hard to interpret. A description
of a cluster as a region may be much more understandable than a list of points. This may
take the form of a hyper-rectangle or a center point with a radius.

Also, data clustering is sometimes preceded by a transformation of the original
data space – often into a space with a reduced number of dimensions. While this can be
helpful for finding clusters, it can make the results very hard to interpret.
6.2.6. The ability to find clusters in subspaces of the original space.

Clusters often occupy a subspace of the full data space. (Hence, the popularity of
dimensionality reduction techniques.) Many algorithms have difficulty finding, for
example, a 5 dimensional cluster in a 10 dimensional space.

6.2.7. The ability to handle distances in high dimensional spaces

properly.
High-dimensional spaces are quite different from low dimensional spaces. In

[BGRS99], it is shown that the distances between the closest and farthest neighbors of a

 49

point may be very similar in high dimensional spaces. Perhaps an intuitive way to see this
is to realize that the volume of a hyper-sphere with radius, r, and dimension, d, is
proportional to rd, and thus, for high dimensions a small change in radius, means a large
change in volume. Distance based clustering approaches may not work well in such
cases.

If the distance between points in a high dimensional space are plotted, then the
graph will often show two peaks: a “small” distance representing the distance between
points in clusters, and a “larger” distance representing the average distance between
points. (See [Bri95].) If only one peak is present or if the two peaks are close, then
clustering via distance based approaches will likely be difficult.

Yet another set of problems has to do with how to weight the different
dimensions. If different aspects of the data are being measured in different scales, then a
number of difficult issues arise. Most distance functions will weight dimensions with
greater ranges of data more highly. Also, clusters that are determined by using only
certain dimensions may be quite different from the clusters determined by using different
dimensions. Some techniques are based on using the dimensions that result in the
greatest differentiation between data points. Many of these issues are related to the topic
of feature selection, which is an important part of pattern recognition.

6.2.8. Robustness in the presence of different underlying data and cluster

characteristics
A robust clustering technique must be take into account the following

characteristics of the data and the clusters:
1) Dimensionality (Discussed separately in sections 6.2.6 and 6.2.7)
2) Noise and Outliers (Discussed separately in section 6.2.3)
3) Statistical Distribution. Some data is has a Gaussian (normal) or uniform

distribution, but this is frequently not the case.
4) Cluster Shape. In some cases clusters are regularly shaped regions, e.g., rectangular

or globular, but irregularly shaped, non-convex clusters are common.
5) Cluster Size. Some clustering methods, e.g., K-means don’t work well in the

presence of different size clusters.
6) Cluster Density. Some clustering methods, e.g., K-means don’t work well in the

presence of clusters that have different density.
7) Cluster Separation. In some cases the clusters are well-separated, but in many other

cases the clusters may touch or overlap.
8) Type of data space, e.g., Euclidean or non-Euclidean. Some clustering techniques

calculate means or use other vector operations that often only make sense in
Euclidean space.

9) Many and Mixed Attribute Types, e.g., (temporal, continuous, categorical). A mix
of attribute types is usually handled by having a proximity function that can combine
all the different attributes in an “intelligent” way.

Many clustering techniques have assumption about the data and cluster

characteristics and do not work well if those assumptions are violated. In such cases the
clustering technique may miss clusters, split clusters, merge clusters, or just produce poor
clusters.

 50

6.2.9. An ability to estimate any parameters

(For example, the number of clusters, the size of clusters, or the density of
clusters.) Many clustering algorithms take the number of clusters as a parameter. This can
be a useful feature in certain instances, e.g., when using a clustering algorithm to create a
balanced tree for nearest neighbor lookup, or when using clustering for compression.
However, this is not generally good, since the number of clusters parameterized may not
match the “real” number of clusters.

An algorithm that requires the number of clusters up front can always be run
multiple times. Assuming that there is some way to compare the quality of the clusters
produced, it is then possible to empirically determine the best number of clusters. Of
course, this increases the amount of computation required.

Likewise, it is often difficult to estimate the proper values for other parameters of
clustering algorithms. In general, the parameters of a clustering algorithm may identify
areas of weakness. In the best case, the results produced by a clustering algorithm will be
relatively insensitive to modest changes in the parameter values.

6.2.10. Ability to function in an incremental manner

In certain cases, e.g., data warehouses, the underlying data used for the original
clustering can change over time. If the clustering algorithm can incrementally handle the
addition of new data or the deletion of old data, then this is usually much more efficient
than re-running the algorithm on the new data set.

7. Data Mining From Other Perspectives

7.1. Statistics-Based Data Mining
Cluster Analysis has a long history in statistics and statisticians developed some

of the techniques that have been previously discussed. We will not discuss most of these
techniques any further here. However, there is a class of techniques, mixture models,
which deserve additional attention.

7.1.1. Mixture Models

The basic idea of mixture models is to view the data as a mixture of observations
from a number of different probability distributions. The probability distributions are
usually taken to be multivariate normal, since this type of distribution is well-understood,
relatively easy to work with, and has been shown to work well in many instances. These
types of distributions yield hyper-ellipsoidal clusters.

There are a number of different assumptions that can be made when taking a
mixture model approach, i.e., whether all clusters have the same shape, volume, and
orientation. These assumptions are reflected in the number of statistical parameters (mean
vectors and covariance matrices), that need to be estimated. Of course, the more flexible
the model, the more difficult and time consuming it is to find a solution.

Some form of the EM (expectation maximization) algorithm is typically used to
perform the parameter estimation. This algorithm can be slow, is not practical for models
with large numbers of components, and does not work well when clusters contain only a
few data points or if the data points are nearly co-linear. There is also a problem in

 51

estimating the number of clusters or, more generally, in choosing the exact form of the
model to use. This problem has typically been dealt with by applying a Bayesian
approach, which roughly speaking, gives the odds of one model versus another, based on
an estimate derived from the data. Mixture models may also have difficulty with noise
and outliers, although work has been done to deal with this problem.

In spite of all the apparent difficulties with mixture models, they do have the
advantage of having a sound mathematical foundation. Also, a model-based approach
provides a disciplined way of eliminating some of the complexity associated with data.
(To see the patterns in data it often necessary to simplify the data, and fitting the data to a
model is a good way to do that, at least if the model is a good match for the data.)
Furthermore, it is easy to characterize the clusters produced, since they can be described
by a small number of parameters. Finally, many sets of data are indeed the result of
random processes and thus, should satisfy the statistical assumptions of these models.

AutoClass [CS96] is one of the most prominent of the mixture-model based
programs and has been used for data mining to some extent. A readable and current
technical report on clustering using mixture models is given by [FR98]. This source also
provides a pointer to state-of-the-art mixture modeling software. An approach to using
mixture models for co-occurrence data (frequent itemsets of size 2) is given in [HP98].

7.2. Text Mining and Information Retrieval
Information retrieval is the study the problems and techniques involved in

automatically indexing documents and retrieve collections of documents. A common
task in information retrieval is retrieving relevant documents based on keywords
specified by a user, e.g., web search engines.

Text mining is the discovery of useful and non-obvious information in collections
of text documents. Some people regard text mining as separate from data mining, since
they view data mining as restricted to databases, but many of the concepts and techniques
used for data mining and text mining are quite similar. It is true that some text mining
techniques make use of natural language processing or the structure of documents, but
many techniques do not.

For both text mining and information retrieval, documents are typically
represented by vectors that indicate the frequency of keywords in the documents. In such
cases, many of the clustering techniques that we have previously described, i.e., K-means
and agglomerative hierarchical clustering, can be directly applied. (This is so even
though document vectors are a very high dimensional space - thousands or tens of
thousands of dimensions.) In what follows, we will restrict ourselves to the assumption
that we are dealing with document vectors.

7.2.1. Uses of Clustering for Documents

Clustering has been used in three principal ways with documents:
1) Document Retrieval. Early researchers hoped that clustering documents would lead

to quicker and better document retrieval. These hopes have not been realized as other
(non-cluster based) techniques for document retrieval continue to be superior.

2) Document browsing. Document clustering can provide a way of summarizing a
large number of documents into a small number of groups that are suitable for
browsing. The collection of documents being browsed might be the entire collection

 52

of documents or it might be just the documents returned by a user query. The
documents can be reclustered to match a user’s interest.

3) Automatic Creation of Document Hierarchies. Current hierarchical classifications
of documents are created mostly by hand. There has been some work on trying to
automate or partially automate this process.

Many of the techniques used for clustering documents are ones that we have seen

in previous sections. Hierarchical techniques were often used in the past, but they do not
scale well to the large number of documents often found in collections of documents
today, e.g., consider the number of Web pages. Consequently more recent studies have
often focused on using variations of K-means. [SKK00]

7.2.2. Latent Semantic Indexing

LSI is a dimension reduction technique that can be used as a preliminary to a
clustering algorithm in the same way that principal component analysis is sometimes
used. (Recall that principal component analysis (PCA) is a technique for dimensionality
reduction commonly used in statistics.)

However, Latent Semantic Indexing is a technique that is mostly used for
information retrieval. Given a number of keywords, n, and a number of documents, m, an
m by n matrix is constructed, such that the ijth entry of the matrix contains the number of
times that the jth keyword occurs in the ith document. Using standard linear algebra
techniques, an alternative form of this matrix, the singular value decomposition (SVD), is
found. This form can be simplified (see [BD95] and [FO95]). Conceptually, the only
information that is kept is the information that reflects the most significant connections
between keywords and documents. The results of a query consisting of a keyword vector
can be computed using linear algebra operations.

7.3. Vector Quantization
There has been a considerable amount of cluster analysis work done in the area of

vector quantization. The idea is the following: given a set of vectors representing, for
example an image, find a set of reference vectors that will be used instead of the full set
of vectors. The idea is that in video and voice, many of the data points that describe a
particular image or sound are similar, and, hence, not much information will be lost if
each vector is replaced by its closest reference vector. In addition, the information can be
represented in a much smaller space, i.e. a high degree of compression is possible.
Vector quantization may also aid pattern recognition by significantly reducing the
number of patterns that need to be considered.

The challenge is to minimize the error that results from approximating each vector
by a reference vector and to maximize the possible compression by minimizing the
number of reference vectors needed.

Various clustering techniques have been used to perform this function. In
particular, the common K-means algorithm [DJ88] has been used. However, this
algorithm requires specifying the number of clusters, and more recently, other
information (entropy) based techniques [BK93] have been used that can determine both
the reference vectors (the clusters) and the best value for K, the number of clusters.

 53

This type of approach has been extended to more general clustering problems
[BH97]. However, these approaches are very mathematically and computationally
intense, using concepts similar to those used in statistical mechanics and information
theory, and relying on simulated and deterministic annealing algorithms.

An interesting thing to note about vector quantization is that there is not any
notion of an outlier or noise. All points must be mapped to some reference vector.

7.4. Self-Organizing Maps

7.4.1. SOM Overview

The Kohonen Self-Organizing Feature Map (SOFM or SOM) [Koh97] is a
clustering and data visualization technique based on neural networks. The “self-
organizing” part of the name derives from the ability of neural nets to learn their
configuration from training data. The “map” part of the name comes from the way that
SOM neural nets work, i.e., when an input (a point) is fed into a SOM neural network, the
output is the label of a particular neuron in the network, and thus, a SOM neural network
can be viewed as mapping a point to neuron. Finally, the “feature” portion of the name
comes from observation that, in a trained SOM network, a small set of neurons are often
associated with a particular data feature.

A detailed explanation of how SOM works is provided below, but conceptually,
SOM can be viewed as a vector quantization technique where the reference vectors are
learned by training a neural network. Thus, like vector quantization, the goal of SOM is
to find a set of reference vectors and to assign each point in the data set to the “closest”
reference vector. With the SOM approach, each reference vector is associated with a
particular neuron, and the components of that reference vector become the “weights” of
that neuron. As with other neural network systems, a SOM neural net is trained by
considering the data points one at a time and adjusting the weights (reference vectors) so
as to best fit the data.

The final output of the SOM technique is a set of reference vectors which
implicitly defines clusters. (Each cluster consists of the points closest to a particular
reference vector.) However, while SOM might seem very similar to K-means or other
vector quantization approaches, there is a fundamental conceptual difference. During the
training process, SOM uses each data point to update the closest reference vector and the
reference vectors of nearby neurons. In this way, SOM produces an “ordered” set of
reference vectors. In other words, the reference vectors of neurons which are close to
each other in the SOM neural net will be more closely related to each other than to the
reference vectors of neurons that are farther away in the neural net. Because of this
constraint, the reference vectors in SOM can be viewed as lying on a smooth, elastic two-
dimensional surface in m dimensional space, a surface which tries to fit the m
dimensional data as well as possible. (Regression is a statistical techniques that tries to
find the hyper-plane that best fits a set of data, and thus, you could think of the SOM
reference vectors as the result of a nonlinear regression with respect to the data points.)

7.4.2. Details of a Two-dimensional SOM
There are many types of SOM neural networks, but we restrict our discussion to a simple
variant where the neurons are organized as a two-dimensional lattice as shown in Figure
17.

 54

Figure 17. Two-dimensional 3 by 3 rectangular SOM neural network.

Note that each neuron (node) is assigned a pair of coordinates (i, j). Often such a

network is drawn with links between adjacent neurons, but that is misleading since the
influence of one neuron on another is via a neighborhood which is defined in terms of
coordinates, not links. Each neuron is associated with an m dimensional reference vector,
where m is the dimensionality of the data points.

At a high level, clustering using the SOM techniques consists of the following steps:
1) Initialize the reference vectors.
2) While the training is not complete do the following:
a. Select the next training sample (point).
b. Determine the neuron whose reference vector is closest to the current point.
c. Update this reference vector and the reference vectors of all neurons which are close,

i.e., in a specified neighborhood.
3) When the training is complete, assign all points to the closest reference vectors and

return the reference vectors and clusters.

Initialization can be performed in a number of ways. One approach is to choose
each component of a reference vector randomly from the range of values observed in the
data for that component. While this approach works, it is not necessarily the best
approach, especially for producing a rapid convergence to an equilibrium state. Another
approach is to randomly choose the initial reference vectors form the available data
points. (This is very much like one of the techniques for initializing K-means centroids.)
There are is also a more sophisticated technique which uses the autocorrelation matrix of
the data and which is described in [Koh97].

The second step is the training or the convergence step. Selection of the next
training sample is fairly straightforward, although there are a few issues. Since training
may require a 100,000 steps, each data point may be used multiple times, especially if the
number of points is small. However, if the number of points is large, then not every point
must be used. Also, it is possible to enhance the influence of certain groups of points,
e.g., a less frequent class of points, by increasing their frequency in the training set.
(However, this becomes more like supervised classification.)

The determination of closest reference vector is also straightforward, although it
does require the specification of a distance metric. The Euclidean distance metric is often
used, although a dot product metric is often used as well. When using the dot product
distance, the data vectors are often normalized beforehand and the reference vectors are

(0,0)

(2,0)

(1,0)

(0,1)

(2,1)

(1,1)

(0,2)

(2,2)

(1,2)

 55

normalized at each step. In such cases dot product metric is equivalent to using the
cosine measure.

The update step is the most complicated. Let m1, …, mk be the reference vectors
associated with each neuron. (For a rectangular grid, note that
k = number of rows * number of columns.) For time step t, let s be the current training
point and assume that the closest reference vector to s is mc, the reference vector
associated with neuron c. Then, for time t + 1, the ith reference vector is updated by using
the following equation. (We will see shortly that the update is really restricted to
reference vectors whose neurons are in a small neighborhood of neuron c.)

mi(t +1) = mi(t) + hci(t) (s(t) – mi(t))

Thus, at time t, a reference vector, mi(t), is updated by adding a term, hci(t) (s(t) –

mi(t)), which is proportional to the difference, s(t) – mi(t), between the reference vector,
mi(t), and the training point, x. hci(t) determines the effect that the difference, s(t) – mi(t),
will have and is chosen so that a) it diminishes with time and b) it enforces a
neighborhood effect, i.e., the effect of a point is strongest on the neurons closest to the
neuron c. Typically, hci(t) is chosen to be one of the following two functions:

hci(t) = α(t) exp(-||rc – ri ||2 / (2σ2 (t)) (Gaussian function)

 hci(t) = α(t) if ||rc – ri || ≤ threshold, 0 otherwise (step function)

These function require quite a bit of explanation. α(t) is a learning rate

parameter, 0 < α(t) < 1, which decreases monotonically and which controls the rate of
convergence. ri = (xi, yi) is the two-dimensional point which gives the grid coordinates of
the ith neuron. ||rc – ri || is the Euclidean distance of the two neurons, i.e.,

22)()(cici yyxx −+− . Thus, we see that for neurons that are “far” from neuron c, the
influence of training point s will be either greatly diminished or non-existent. Finally,
note that σ is the typical Gaussian “variance” parameter and controls the width of the
neighborhood, i.e., a small σ will yield a small neighborhood, while a large σ will yield a
wide neighborhood. The threshold used for the step function also controls the
neighborhood size.

(It is important to emphasize that it is the neighborhood updating technique that
enforces a relationship (ordering) between reference vectors associated with neighboring
neurons.)

Deciding when training is complete is an important issue. Ideally, the training
procedure should continue until convergence occurs, i.e., until the reference vectors are
not changing much. The rate of convergence will depend on a number of factors, e.g.,
the data and α(t). We will not discuss these issues further (see [Koh97]) except to
mention that the most important issue, as with neural network in general, is the fact that
convergence is often slow.

7.4.3. Applications

Once the SOM vectors are found, they can be used for many purposes besides
clustering. For example, with a two-dimensional SOM it is possible to associate various

 56

quantities at the grid points associated with each neuron and visualize the results via
various types of plots. For example, plotting the number of points associated with each
reference vector (neuron) yields a surface plot that reveals the distribution of points
among neurons (clusters). (A two-dimensional SOM is a non-linear projection of the
original probability distribution function into two dimensions. This projection attempts to
preserve topological features and thus, SOM has been compared to the process of
“pressing a flower.”)

Besides data exploration, SOM and its supervised learning variant, LVQ
(Learning Vector Quantization), have been used for many useful tasks, e.g., image
segmentation, organization of document files, speech processing, etc. There are
thousands of papers that deal with SOM neural networks and the basic techniques have
been extended in many directions. For a good introduction and more than 2000
references see [Koh97].

7.5. Fuzzy Clustering
If data points are distributed in well-separated groups, then a crisp classification

of the points into disjoint clusters seems like an ideal approach. However, in most cases,
the points in a data set cannot be partitioned into well-separated clusters and thus, there
will be a certain arbitrariness in assigning a point to a particular cluster, e.g., consider a
point that lies near the boundary of two clusters, but is just slightly closer to one of the
two clusters. Thus, for each point, xi, and each cluster, Cj, it would be beneficial to
determine a weight, wij, that indicates the “degree” to which xi belongs to Cj.

For probabilistic approaches, e.g., mixture models, wij = pij, the probability that xi
belongs to cj. While this approach is useful in many situations, there are significant
limitations to probabilistic models, i.e., times when it is difficult to determine an
appropriate statistical model, and thus, it would be useful to have non-probabilistic
clustering techniques that provide the same “fuzzy” capabilities. Fuzzy clustering
techniques [HKKR99] are based on fuzzy set theory [KY95] and provide a natural
technique for producing a clustering where membership weights (the wij) have a natural
(but not probabilistic) interpretation. In this section we will briefly describe the general
approach of fuzzy clustering and provide a specific example in terms of fuzzy c-means
(fuzzy K-means).

Lofti Zadeh introduced fuzzy set theory and fuzzy logic in 1965 [Zah65] as a way
to deal with imprecision and uncertainty. Briefly, fuzzy set theory allows an object to
partially belong to a set with a degree of membership between 0 and 1, while fuzzy logic
allows a statement to be true with a degree of certainty between 0 and 1. (Traditional set
theory and logic are special cases of their fuzzy counterparts which restrict the degree of
set membership or the degree of certainty to be either 0 or 1.) Fuzzy concepts have been
applied to many different areas, including control, pattern recognition, and data analysis
(classification and clustering).

Consider the following example of fuzzy logic. The degree of truth of the
statement “It is cloudy” can be defined to be the percentage of cloud cover in the sky, i.e.,
if the sky is 50% covered by clouds, then we would assign “It is cloudy” a degree of truth
of 0.5. If we have two sets, “cloudy days” and “non-cloudy days,” then we can similarly
assign each day a degree of membership in the two sets. Thus, if a day were 25% cloudy,

 57

it would have a 25% degree of membership in “cloudy days” and a 75% degree of
membership in “non-cloudy” days.

We now define what fuzzy clusters are. Consider a set of data points X = {x1, …,
xm}, where each point, xi, is an m dimensional point, i.e., xi = (xi1, …, xim). We define a
collection of fuzzy clusters, C1, C2 , …, Ck to be a subset of all possible fuzzy subsets of X.
(This simply means that the membership weights (degrees), wij, have been assigned
values between 0 and 1 for each point, xi, and each cluster, Cj.) However, we also want
to impose the following “reasonable conditions on the clusters:

1. All the weights for a given point add up to 1.

 �
=

=
k

j
ijw

1

1

2. Each cluster (fuzzy subset) “contains” at least one point, but not all of the points.

�
=

<<
m

i
ij mw

1
0

These two conditions ensure that the clusters form what is called a fuzzy psuedo-

partition.

While there are many types of fuzzy clustering – indeed, many data analysis
algorithms can be “fuzzified” – we will only consider the fuzzy version of K-means,
which is called fuzzy c-means. (In the clustering literature, the version of K-means which
does not use incremental updates of cluster centroids is sometimes referred to as c-means
and this was the term adapted by the fuzzy people for the fuzzy version of K-means.)
We will discuss some preliminaries and then present the fuzzy c-means algorithm.

First notice that we can also extend the definition of a centroid of a cluster to
fuzzy sets in a straightforward way. For a cluster, Cj, the corresponding centroid, cj, is

defined by the following equation:
�

�

=

== m

i

m
ij

m

i
i

m
ij

j

w

xw
c

1

1 , where m is a parameter, 1 < m < ∞, that

determines the influence of the weights (the membership degrees). Thus, the fuzzy
centroid definition is much like the traditional definition except that all points are
considered (any point can belong to any cluster, at least somewhat) and the contribution
of each point to the centroid is weighted by its membership degree. In the case of
traditional crisp sets, i.e., all wij are either 0 or 1, this definition reduces to the traditional
definition of a centroid.

Furthermore, we can also modify the definition of overall cluster error.

Error(C1, C2 , …, Ck) = ji

k

j

m

i

m
ij cxw −��

= =1 1

, which is just the weighted version of the

typical K-means error.

 58

Lastly notice that during the c-means clustering process we will need to update
the weights wij associated with each point and cluster. This can be accomplished by
using the following equation.

ijw′ =

1

1
1

1
2

2
−

−

=
�
�
�
�

�

�

�
�
�
�

�

�

��
�

�

�

��
�

�

�

−

−
�

mk

p pi

ji

cx

cx

However, if
2

ji cx − = 0 for one or more values of j, 1 ≤ j ≤ k, then we need to
use a different method of updating the weights associated with xi. Since this corresponds
to a situation where a point is the same as one or more centroids (hopefully centroids are
unique, but they don’t have to be), we want to set ijw′ = 0 for any cluster j where xi ≠cj and
split the weight of the point (which is 1) between the ijw′ where xi =cj. In the normal case,
a vector will only be the same as one centroid and thus, we can just set all weights to 0,
except for the ijw′ where xi =cj. In that case, we set ijw′ = 1.

After preceding discussion the description of the fuzzy c-means algorithm is
straightforward.

Fuzzy c-means Clustering Algorithm
1. Select an initial fuzzy fuzzy psuedo-partition, i.e., assign values to all the wij.

(Like usual this can be done randomly or in a variety of ways.)
2. Update the cluster centroids.
3. Update the wij.
4. If the change in the error is below a specified threshold or the absolute change in

any wij is below a given threshold, then stop. Otherwise, go to step 2.

This algorithm is similar in structure to the K-means algorithm and also behaves
in a similar way. In particular, fuzzy c-means works best for globular clusters, which are
roughly the same size and density.

There are a few considerations when choosing the value of m. Choosing m = 2
simplifies the weight update formula. However, if m is chosen to be near 1, then fuzzy c-
means behaves like traditional K-means. Going in the other direction, as m gets larger all
the cluster centroids approach the centroid of the data. In other words, the partition
becomes fuzzier as m increases.

We close this discussion of fuzzy clustering with a cautionary note. Fuzzy
clustering, as presented here, deals well with situations where points are on the boundary
of one or more clusters. It does not deal well with the situation where a point is an
outlier, i.e., is not close to any cluster. The reason for this is that we assumed that all
points have a weight of 1, a weight which is split between the different clusters. Thus, if
we have a situation, as illustrated in figure 18, a point can have a relatively high weight
with respect to one or more clusters, but not really be a “true” member of any cluster.

 59

Figure 18: An outlier that is not really associated with either cluster.

In this case the point should have low membership weights for both clusters, but
then the weights do not add up to 1. However, with such an approach it would be
possible to eliminate noise and outliers effectively, i.e., just eliminate points that do not
have high membership weights in any cluster. Indeed, there is a variation of fuzzy c-
means that takes this approach [HKKR99], but it has other problems, e.g., a tendency for
all the centroids to become very close together.

8. Related Topics
The following sections deal with topics that are usefully related to data mining.

8.1. Nearest-neighbor search (Multi-Dimensional Access Methods)
Given a set of complicated data, e.g., images, text strings, DNA sequences,

polygons, etc., two problems arise:
1) How can items be located efficiently? While a “representative” vector is

commonly used to “index” these objects, these data points will normally be very
sparse in the space, and thus, it is not feasible to use an array to store the data. Also,
many sets of data do not have any features that constitute a “key” that would allow
the data to be accessed using standard and efficient database techniques.

2) How can similarity queries be conducted? Many applications require the nearest
neighbor (or the k nearest neighbors) of a point. For example, in a database of
photographs, a user may want to find all the pictures similar to a particular
photograph. To do this photographs are represented as vectors and a “similarity”
search is conducted. As another example, some of the clustering techniques
discussed earlier (CURE, Chameleon) depended on data structures and algorithms
that allowed the nearest neighbors of a point to be located efficiently.

Techniques for nearest-neighbor search are often discussed in papers about multi-

dimensional access methods or spatial access methods. Strictly speaking the topic of
multi-dimensional access methods is broader than nearest-neighbor search since it
addresses all of the many different types of queries and operations that a user might want
to perform on multi-dimensional data.

A large amount of work has been done in the area of nearest neighbor search (and
multi-dimensional access methods). Recent developments include the SS-tree [JW96],
the SR-tree [KS97], the X-tree [BKK96], the GNAT tree [Bri95], the M-tree [CPZ97],
and the “pyramid technique” [BBK98]. (The X-tree is a descendant of the older, but
frequently mentioned R* tree, which is in turn a descendant of the R tree.) A good
survey of nearest-neighbor search, albeit from the slightly more general perspective of
multi-dimensional access methods is given by [GG98].

 60

The basic approach is to create tree-based structures, such that the “closeness” of
the data increases as the tree is traversed from top to bottom. Thus, the nodes at the
bottom of the tree represent “clusters” of data that are relatively cohesive. Indeed, one of
the simplest techniques for generating a nearest neighbor tree is to cluster the data into K
clusters and then, recursively break each cluster into subclusters until the subclusters
consist of individual points. The nearest-neighbor tree consists of the clusters and
subclusters generated along the way.

A k-nearest-neighbor query is conducted as follows:

1) Add the children of the root node to a search queue.
2) While the search queue is not empty, take a node off the search queue.

a) Evaluate whether that node and any of its descendants are “close enough” to be
considered for the search.

b) If not, then discard the subtree represented by this node.
c) Otherwise, if the node is not a leaf node, i.e., a data point, add the children of this

node to a search queue.
d) If the node is a leaf node, then add the node to a list of possible solutions.

3) Sort the list of possible solutions by distance from the query point and return the k-
nearest neighbors.

This sounds fairly simple and it seems as though nearest neighbor trees would be

an easy way to cluster data and/or to make practical use of a clustering technique.
However, there are significant problems.

1) One of the goals of many nearest-neighbor tree techniques is to serve as efficient

secondary storage based access methods for non-traditional databases, e.g., spatial
databases, multimedia databases, document databases, etc. Because of requirements
related to page size and efficient page utilization, “natural” clusters may be split
across pages or nodes. However, data is normally highly clustered and this can be
used for “real” clustering as shown by the improvements made to CLARANS
[EKX95] by the use of an R* tree.

2) Because of the nature of nearest-neighbor trees, the tree search is a branch-and-bound

technique and needs to search large parts of the tree, i.e., at any particular level, many
children and their descendants may need to be examined.

To see this, consider a point and all points that are within a given distance of
it. This hyper-sphere (or hyper-rectangle in the case of multi-dimensional range
queries) may very well cut across a number of nodes (clusters) - particularly if the
point is on the edge of a cluster and/or the query distance being considered is greater
than the distance between clusters.

More specifically, it is “hard” for the algorithms that construct nearest
neighbor trees to avoid a significant amount of overlap in the volumes represented by
different nodes in the tree. In [BKK96], it has been shown that the degree of overlap
in a frequently used nearest neighbor tree, the R* tree, approaches 100% as the
dimensionality of the vectors exceeds 5. Even in two dimensions the overlap was
about 40%. Thus, the X-tree (proposed as a successor to the R* tree in [BKK96])

 61

basically becomes linear search for high dimensional data. Other nearest neighbor
search techniques suffer from the same problem.

3) The nature of high dimensional spaces. It has been shown that there are significant

problems that arise with nearest neighbor searches in high-dimensional space.
 In [BGRS99] it was shown that the concept of “nearest neighbor” is not

meaningful in many situations. Minimum and maximum distances in high
dimensional space tend to be very similar. Thus, unless there is significant clustering
in the data and/or the query ranges stay within individual clusters, then the points
returned by nearest neighbor queries are not much closer to the query point than to
the points not returned. In this latter case, then (to use the terminology of [BGRS99])
the nearest neighbor query is “unstable.”

Recently, in [BBK98], there has been some work on developing techniques
that avoid this problem. However, this “pyramid” technique was restricted to hyper-
cube shaped queries, and many similarity queries are spherical.

In some cases, a linear scan can work better than more sophisticated techniques.

4) It is not possible to discard outliers. All data points must be stored, and if some of
the data points do not fit particularly well in clusters, then this often has deleterious
effects on lookups of other data points.

8.2. Pattern Recognition
Clustering has been used in a number of different ways in pattern recognition.

[DJ88] is a clustering book that is strongly oriented toward the area of pattern recognition
giving a number of different and extensive examples of the use of clustering in pattern
recognition. This paper only mentions some examples briefly.

In certain cases, e.g., the segmentation of an image into different regions, it is
hard to “train” a recognition system to behave properly because there is such a wide
variation in the possible input, and clear cut classes are not readily available. In such
instances, the use of the appropriate clustering technique can prove very effective.

As was noted before, if clear-cut classes are available, then other techniques, e.g.,
discriminant analysis, are more appropriate. However, in some cases clustering analysis
may be used to find a preliminary assignment of classes that are then refined by a domain
expert.

The use of clustering to reduce the number of patterns that need to be considered
in pattern recognition is discussed below.

8.3. Exploratory Data Analysis
Cluster analysis is a very important part of exploratory data analysis, although

cluster analysis is just one of the tools used in exploratory data analysis to understand
patterns that may occur in data.

When cluster analysis is used for exploratory data analysis, some of the more
user-oriented factors assume additional importance. In particular, it is important for the
user to be able to easily interpret the results of the cluster analysis. As mentioned above,

 62

various clustering techniques differ in the kinds of results that are produced. Some
produce lists of objects, some produce hyper-ellipsoids, and some produce hyper-
rectangles.

In some cases, techniques (like multi-dimensional scaling [DJ88]) that map
medium and high dimensional data to 1, 2, or 3 dimensions can be very helpful.
Unfortunately, the distortions introduced by such mappings sometimes render the process
useless. These techniques are more likely to work better for medium dimensionalities
than for high dimensionalities.

Finally, exploratory data analysis is often an integral part of a clustering analysis.
A user looks at the results of an initial clustering and, as a result, changes the parameters
of a clustering algorithm or chooses a new clustering algorithm. Numerous iterations
may be required before a suitable clustering is produced.

9. Special Topics

9.1. Missing Values
Omitted from preliminary version.

9.2. Combining Attributes
9.2.1. Monothetic or Polythetic Clustering

The features of an object can be used for clustering in an incremental or non-
incremental way. While some techniques use one variable at a time (monothetic), most
approaches use all features at once (polythetic) to calculate the distance or similarity.
.([KR90] provides an example of Monothetic clustering algorithm.)

9.2.2. Assigning Weights to features

In some cases, the attributes are weighted so as to give more weight to certain
attributes, but this typically only affects how the proximity of points is calculated and not
how the clustering actually works. In some sense, the use of attribute weights can be
regards as a more general version of feature selection.

10. Conclusions
The following conclusions seem most important:

• Cluster analysis is still an active field of development. In the areas of statistics

(mixture models), computer science (Data Mining, machine learning, nearest
neighbor search), pattern recognition, and vector quantitization, there is still a lot of
work being done.

• Many cluster analysis techniques do not have a strong formal basis. While some
techniques make use of formal mathematical methods, they often do not work better
than more informal methods.

• Cluster analysis is a rather ad-hoc field. Almost all techniques have a number of
arbitrary parameters that can be “adjusted” to improve results. It remains to be seen,
whether this represents a temporary situation, or is an unavoidable use of problem and

 63

domain specific heuristics.

• There are a wide variety of clustering techniques. Some would argue that the wide
range of subject matter, size and type of data, and differing user goals makes this
inevitable, and that cluster analysis is really a collection of different problems that
require a variety of techniques for their solution. The relationships between the
different types of problems and solutions are often not clear.

• Comparisons among different clustering techniques are difficult. While every

article that presents a new clustering technique shows its superiority to other
techniques, it is hard to judge how well the technique will really do.

• There don’t seem to be any standard benchmarks. Thus, the authors of new

techniques are reduced to devising their own comparisons to previous techniques.
Usually authors obtain a few of the data sets used by previous authors and run
comparisons based on those. Even the criteria to be measured are not standard.

• All techniques seem to impose a certain structure on the data and yet few

authors describe the type of limitations being imposed. In [DJ88], the authors
mention that the performance of a clustering algorithm on uniformly distributed data
can sometimes be very informative. In general, it might be useful to understand what
kind of artifacts particular clustering techniques introduce.

• In spite of all these problems, clustering analysis is a useful (and interesting)

field. As mentioned in the introduction, many people use cluster analysis for a wide
variety of useful tasks.

 64

List of Articles and Books for Clustering for Data Mining

Note that web addresses are given for many of the articles. This usually takes you
to a home page of one of the authors or to a list of publications. In the first case, it is
usually straightforward to find the article by looking at the person’s publications,
although in a few cases a reference is all that is provided. Additionally, the proceedings
of some conferences can be found online: SIGMOD and KDD (99 onward) at ACM
Digital Library, www.acm.org, VLDB at the Very Large Database home page,
www.vldb.org, ICDE (99 onward) at http://www.computer.org/proceedings/. A good
place to locate the home pages of authors is at http://ftp.ust.hk/dblp/db/index.html.
Finally, another good general site is the Research Index site at NEC,
http://citeseer.nj.nec.com/cs.

The following three books provide an introduction to and overview of
Cluster Analysis

 [DJ88] Richard C. Dubes and Anil K. Jain, (1988), Algorithms for Clustering Data,

Prentice Hall.

A survey and introduction to cluster analysis that is frequently referenced in the
literature. It devotes considerable attention to cluster validity. It is somewhat oriented
toward pattern recognition and has a whole chapter devoted to the use of clustering in
pattern recognition. It also has appendices that summarize various areas related to cluster
analysis.

[KR90] L. Kaufman and P. J. Rousseeuw, (1990), Finding Groups in Data: an

Introduction to Cluster Analysis, John Wiley and Sons.

Probably the most commonly referenced text on clustering that I encountered,
perhaps because it is still in print. Among other things, this text explains clustering based
on medoids, which are objects that are the most representative of the other objects in a
cluster. The clustering techniques described in this book are implemented in the S-Plus
statistical system.

 [OD74] Patrick L. Odell and Benjamin S. Duran, (1974), Cluster Analysis: A Survey,

Springer-Verlag.

This book is somewhat dated, but is fairly short and basic. Also, since a lot of basic
clustering techniques were in place by the time this book was written, most of the
material it covers is still applicable.

 65

The following papers describe specific techniques, algorithms, or systems
used for clustering in Data Mining. The techniques described in these papers are
described in section 4 of this document. Only very brief comments will be made
here.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopoulos, and Prabhakar

Raghavan, (1998), Automatic Subspace Clustering of High Dimensional Data
for Data Mining Applications, Technical Report, IBM Almaden Research
Center.
http://www.almaden.ibm.com/cs/people/ragrawal/

Describes CLIQUE, a density-based algorithm that has a number of good
properties, including the ability to find lower dimensional clusters in high dimensional
subspaces. This algorithm is similar in flavor to the APRIORI algorithm used for finding
frequent itemsets, and finds higher dimensional regions by only considering those regions
that are associated with lower dimensional regions of high density.

[CHY96] Ming-Syan Chen, Jiawei Han, and Philip, S. Yu, (1996), Data Mining: An

Overview from Database Perspective, IEEE Transactions on Knowledge and
Data Engineering, 8(6): 866-883.
http://db.cs.sfu.ca/sections/publication/kdd/kdd.html

Provides a general overview of data mining techniques. Included is an overview

of CLARANS, enhanced CLARANS, and BIRCH. This paper has an extensive
discussion of the characteristics that data mining techniques should have.

[EKSWX98] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer, Xiaowei

Xu, (1998), Incremental Clustering for Mining in a Data Warehousing
Environment, Proceedings of 1998 International Conference on Very Large
Data Bases (VLDB'98), New York, USA.
http://www.dbs.informatik.uni-muenchen.de/index_e.html

Describes how the DBSCAN clustering algorithm can be made incremental for
use in a data warehouse environment.

 [EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, (1996), A

Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise, Proceedings of 2nd International Conference on
Knowledge Discovery and Data Mining, Portland, OR, pp. 226-231.
http://www.dbs.informatik.uni-muenchen.de/index_e.html

Describes, DBSCAN, a density-based clustering algorithm that handles noise
well. While this algorithm is presented and evaluated in the context of spatial databases,
there is no reason that it could not be used in a more general setting.

 66

[EKX95] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu, (1995) Knowledge
Discovery in Large Spatial Databases: Focusing Techniques for Efficient
Class Identification, Proceedings of the 4th International Symposium on
Large Spatial Databases (SSD'95), Portland, ME, 1995, in: Lecture Notes in
Computer Science, Vol. 591, Springer, 1995, pp. 67-82.
http://www.dbs.informatik.uni-muenchen.de/index_e.html

Describes a number of techniques for making CLARANS more efficient. The
basic idea is to use an R* trees to store the data being considered. . (R* trees are a type
of nearest-neighbor tree that try to store data points in the same page if the data points are
“close” to one another.)

[GHC99] Sanjay Goil, Harasha Nagesh, and Alok Choudhary, (1999), MAFIA:

Efficient and Scalable Subspace Clustering for Very Large Data Sets,
Technical Report Number CPDC-TR-9906-019, Center for Parallel and
Distributed Computing, Northwestern University, June 1999.
http://www.ece.nwu.edu/~sgoil/

Describes MAFIA (Merging of Adaptive Finite Intervals (and more than a

CLIQUE), which is an modification of CLIQUE that runs faster and finds better quality
clusters. pMAFIA is the parallel version.

[GRGPF99] Venkatesh Ganti, Raghu Ramakrishnan, Johannes Gehrke, Allison L.

Powell, James C. French, (1999), Clustering Large Datasets in Arbitrary
Metric Spaces, ICDE 1999, pp. 502-511.
http://www.cs.wisc.edu/~raghu/

Describes Bubble and Bubble-FM, which are clustering algorithms based on

BIRCH*, an extension to the BIRCH framework to handle non-metric data. One of the
key ideas is to define a new cluster feature based on the idea of the representative points
of a cluster. Bubble-FM also makes used of a technique, multi-dimensional scaling, to
map non-metric data into a metric space. This permits fewer and cheaper distance
calculation in those cases where distance calculations are very expensive.

[GRS98] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim, (1998), CURE: An Efficient

Clustering Algorithm for Large Databases, ACM SIGMOD Conference,
1998, pp. 73-84.
http://www.bell-labs.com/user/rastogi/

Describes a clustering algorithms that describes a cluster by widely scattered

representative points that are shrunk by a constant factor toward the center of a cluster to
reduce the effect of outliers. The basic clustering technique used is similar to single link
and sampling and partitioning are used to make the method scalable to large data sets.
CURE was shown to be effective at finding 2-D spatial clusters that were of non-circular
shapes and which had widely varying sizes.

 67

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, (1998), ROCK: A Robust
Clustering Algorithm for Categorical Attributes, In Proceedings of the 15th
International Conference on Data Engineering, 1999.
http://www.bell-labs.com/user/rastogi/

Describes an approach for clustering algorithm for data with categorical and

Boolean attributes. It redefines the distances between points to be the number of shared
neighbors whose strength is greater than a given threshold and then uses a hierarchical
clustering scheme to cluster the data.

[HK98] Alexander Hinneburg Daniel. A. Keim and: An Efficient Approach to

Clustering in Large Multimedia Databases with Noise, Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining, AAAI
Press.
http://www.informatik.uni-halle.de/~keim/

Describes a density-based approach to clustering data which models the influence

of each data point via influence (kernel) functions and then finds clusters using the
resulting global density function. Initially, each data point is associated with a local
maxima, forming a center based clusters. Clusters whose local maxima is “not dense
enough” are classified as noise and discarded, while remaining clusters are merged if
there is a path connecting their local maxima which is of “high enough” density.

 [KHK99a] George Karypis, Eui-Hong Han, and Vipin Kumar, (1999) CHAMELEON:

A Hierarchical Clustering Algorithm Using Dynamic Modeling, IEEE
Computer, Vol. 32, No. 8, August, 1999. pp. 68-75.
http://www-users.cs.umn.edu/~karypis/

Describes a clustering algorithm that combines an initial partitioning of the data

using an efficient graph-partitioning algorithm with a novel hierarchical clustering
scheme that dynamically models clusters. The key idea is that two clusters will be
merged only if the resulting cluster is similar to the original clusters in, i.e., self-similarity
is preserved. While applicable to a wide range of data, Chameleon has specifically been
shown to be superior to DBSCAN and CURE for clustering spatial data.

[KHK99b] George Karypis, Eui-Hong Han, and Vipin Kumar, (1999) Multi-level

Refinement for Hierarchical Clustering. (Unpublished)
http://www-users.cs.umn.edu/~karypis/

Describes an approach to improving hierarchical clustering that is related to the

technique of multi-level refinement that is commonly used to improve the solution to
graph partitioning problems.

 68

[HKKM97] Eui-Hong Han, George Karypis, Vipin Kumar, and Bomshad Mobasher,
(1997), Clustering In a High-Dimensional Space Using Hypergraph Models,
Technical Report TR-97-063, Department of Computer Science, University
of Minnesota, Minneapolis, Minnesota.
http://www-users.cs.umn.edu/~karypis/

Describes the technique of hypergraph based clustering in the context of market
basket data. This technique uses frequent itemsets and their related association rules to
construct weighted hyperedges between the items being considered for clustering. A
hypergraph based clustering algorithm (HMETIS) is then used to create the clusters. This
algorithm naturally finds lower dimensional clusters in a higher dimensional space and
has straightforward measures for detecting outliers and valid clusters.

[NH94] Raymond Ng and Jiawei Han, (1994), Efficient and Effective Clustering

Method for Spatial Data Mining, Proceedings of 1994 International
Conference on Very Large Data Bases (VLDB'94), Santiago, Chile,
September 1994, pp. 144-155.
http://db.cs.sfu.ca/sections/publication/kdd/kdd.html

Describes CLARANS, a medoid based clustering algorithm for spatial databases.

This was one of the first clustering algorithms specifically oriented towards data mining.

[SCZ98] Gholamhosein Sheikholeslami, Surojit Chatterjee and Aidong Zhang (1998),

Wavecluster: A multi-resolution clustering approach for very large spatial
databases. In Proceedings of the 24th VLDB Conference.
http://www.cs.buffalo.edu/~surojit/

WaveCluster is a grid-based clustering algorithm for low-dimensional data.

WaveCluster transforms the data so that it looks like image data, i.e., a rectangular grid of
pixels each of which has an integer values (the count of data points in the grid cell) and
then using image processing techniques (wavelets) to segment the “image” and produce a
clustering of the points.

 [ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny, (1996), BIRCH: An

Efficient Data Clustering Method for Very Large Databases, in Proceedings
of ACM SIGMOD International Conference on Data Management, June
1996, Canada.
http://www.cs.wisc.edu/~raghu/

Describes BIRCH, a very efficient clustering technique based on a CF (Clustering

Feature), tree. This tree is a summary of the data in the form of a hierarchical clustering.
This rough clustering can be refined in later steps. This basic CF tree structure can be
used with a number of underlying clustering algorithms.

The following papers discuss nearest neighbor clustering techniques.

 69

[GK78] K. C. Gowda and G. Krishna, (1978), Agglomerative Clustering Using the
Concept of Mutual Nearest Neighborhood, Pattern Recognition, Vol. 10, pp.
105-112.

[JP73] R. A. Jarvis and E. A. Patrick, (1973), Clustering Using a Similarity Measure

Based on Shared Nearest Neighbors, IEEE Transactions on Computers, Vol.
C-22, No. 11, November, 1973.

The following papers discuss association rules.

[AS97] Rakesh Agrawal, and Ramakrishnan Srikant, (1997), Fast Algorithms for

Mining Association Rules, In Proceedings of the 20th VLDB Conference,
pages 487-499, Santiago, Chile.
http://www.almaden.ibm.com/cs/people/ragrawal/

Describes the APRIORI algorithm (and a couple variants), a very efficient

algorithm for finding frequent itemsets and association rules.

[AS97b] Rakesh Agrawal and Ramakrishnan Srikant, (1997), Mining Generalized

Association Rules, Technical Report, IBM Almaden Research Center.
http://www.almaden.ibm.com/cs/people/ragrawal/

Describes the mining of generalized association rules when items are grouped into

a taxonomy. Also contains an interest measure for rules that can be used to prune
uninteresting rules.

 [BMS97] Sergey Brin, Rajeev Motwani, and Craig Silverstein, (1997), Beyond Market

Baskets: Generalizing Association Rules to Correlations, In Proceedings of
1997 ACM-SIGMOD International Conference on Management of Data,
Tucson Arizona.
http://theory.stanford.edu/people/motwani/motwani.html

Discusses the limitations of association rules and proposes using correlations

instead.

The following papers are more statistically oriented.

[FR98] C. Fraley and A. E. Raferty, (1998), How Many Clusters? Which Clustering

Method? Answers Via Model-Based Cluster Analysis, Technical Report No.
329, Department of Statistics, University of Washington, Seattle,
Washington.
http://www.stat.washington.edu/fraley/

Contains a readable description of a mixture model based clustering technique

that can determine both the clusters and the number of clusters. The technique described
is available as software that works with the S-Plus statistical package.

 70

[CHS90] Peter Cheeseman, Robin Hanson, and John Stutz, (1990), Bayesian
Classification Theory, Technical Report FIA-90-12-7-01, NASA Ames
Research Center, Moffet Field, California.

 http://ic-www.arc.nasa.gov/ic/projects/bayes-
group/people/cheeseman/home.html

Contains a description of the theory on which the clustering program, AutoClass

is based.

[CS96] Peter Cheeseman and John Stutz, (1996), Bayesian Classification

(AutoClass): Theory and Results, In U. M. Fayyad, G. Piatetsky-Shapiro, P.
Smith, and R. Uthurusamy, editors, Advances in Knowledge Discovery and
Data Mining, pages 153-180, AAAI/MIT Press.

 http://ic-www.arc.nasa.gov/ic/projects/bayes-
group/people/cheeseman/home.html

Describes the AutoClass clustering program and its use in analyzing sensor and

DNA data. AutoClass uses a mixture model based approach and was one of the first
programs used for clustering in databases.

[HP98] Thomas Hofmann and Jan Puzicha, (1998), Statistical Models for Co-

occurrence Data, AI Memo No. 1625, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.
http://www.ai.mit.edu/people/hofmann/

Describes a mixture model approach to modeling co-occurrence data, i.e., data of

the form (x,y), where x and y are any members of two sets, X and Y. This approach has a
number of possible applications, including data mining and information retrieval.

The following papers and books are related to fuzzy clustering.

[HKKR99] Frank Hoppner, Frank Klawonn, Rudolf Kruse, and Thomas Runkler, (1999),
Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and
Image Recognition, John Wiley & Sons.
http://www.fuzzy-clustering.de/

A fairly advanced book that provides a discussion of fuzzy clustering techniques
including some interesting approaches for finding clusters that are shells, polygons or
lines. Fuzzy clustering software is available from the website listed above.

[KY95] George J. Klir and Bo Yuan, (1995), Fuzzy Sets and Fuzzy Logic, Prentice

Hall PTR.

A comprehensive introduction to fuzzy set theory and fuzzy logic which covers a
broad range of topics. The books includes a brief, but clear description of fuzzy c-means
and also discussion an approach to fuzzy hierarchical clustering.

 71

[Zah65] Lofti Zadeh, (1965), Fuzzy Sets, Information and Control, Vol. 8, 338:353.

This is the original paper on fuzzy sets.

The following papers are related to vector quantization and maximum
entropy related clustering approaches.

 [BK93] Joachim Buhmann and Hans Kuhnel, (1993), Vector Quantization with

Complexity Costs, IEEE Transactions on Information Theory 39:1133-1145.
http://www-dbv.informatik.uni-bonn.de/papers.html

Describes a maximum entropy approach to vector quantization that can

simultaneously determine the clusters and the number of clusters. Also contains a
comparison to the K-means algorithm in the field of image compression.

[BH97] Joachim M. Buhmann and Thomas Hofmann, (1997), Pairwise Data

Clustering by Deterministic Annealing, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19, No. 1, January 1997.
http://www-dbv.informatik.uni-bonn.de/papers.html

Describes a maximum entropy approach to clustering which is similar to the

previous article. This approach uses the deterministic annealing optimization technique.

The following two papers are related to graph partitioning.
[KK98a] George Karypis and Vipin Kumar, (1998), hMETIS 1.5: A hypergraph

partitioning package, Technical report, Department of Computer Science,
University of Minnesota, 1998.

 http://www-users.cs.umn.edu/~karypis/metis/

[KK98b] George Karypis and Vipin. Kumar, (1998), METIS 4.0: Unstructured graph
partitioning and sparse matrix ordering system, Technical report,
Department of Computer Science, University of Minnesota, 1998.
http://www-users.cs.umn.edu/~karypis/metis/

The following papers are related to clustering in information retrieval.

[BD95] Michael W. Berry and Susan T. Dumais, (1995), Using Linear Algebra for

Intelligent Information Retrieval, SIAM Review, 37:573-595.
http://research.microsoft.com/~sdumais/

Describes the technique of Latent Semantic Indexing. This is a dimensionality

reduction technique that uses the data matrix, i.e., the matrix of the original data vectors.
This technique is used extensively in information retrieval.

 72

[FO95] Christos Faloutsos and Douglas W. Oard, (1995), A Survey of Information
Retrieval and Filtering Methods, Technical Report CS-TR-3514, University
of Maryland, College Park, Maryland.
http://www.cs.cmu.edu/~christos/

Describes a variety of techniques used in information retrieval. Among the topics

covered are clustering and Latent Semantic Indexing.

[SKK00b] Michael Steinbach, George Karypis, and Vipin Kumar, A Comparison of
Document Clustering Techniques, University of Minnesota, Technical Report
#00-034, 2000.

This paper presents the results of an experimental study of some common

document clustering techniques. In particular, it compares the two main approaches to
document clustering, agglomerative hierarchical clustering and K-means. (For K-means
we used a “standard” K-means algorithm and a variant of K-means, “bisecting” K-
means.) Hierarchical clustering is often portrayed as the better quality clustering
approach, but is limited because of its quadratic time complexity. In contrast, K-means
and its variants have a time complexity which is linear in the number of documents, but
are thought to produce inferior clusters. Sometimes K-means and agglomerative
hierarchical approaches are combined so as to “get the best of both worlds.” However,
the paper’s results indicate that the bisecting K-means technique is better than the
standard K-means approach and as good or better than the hierarchical approaches that
were tested.

The following papers are related to nearest neighbor search and nearest
neighbor trees. In the literature such techniques are found in the related area of
multi-dimensional access methods.

 [BBK98] Stefan Berchtold, Christian Bohm, Hans-Peter Kriegel, (1998), The Pyramid

Technique: Towards Breaking the Curse of Dimensionality, Proceedings of
1998 International Conference on the Management of Data (SIGMOD '98),
Seattle, Washington.
http://www.dbs.informatik.uni-muenchen.de/index_e.html

Describes a new indexing method for high dimensional spaces that attempts to

overcome some of the problems of previous methods, i.e., for high dimensional spaces
linear search is often better. The technique bounds the data by a hyper-cube, splits the
hyper-cube into pyramids whose tips meet at the center of the cube, and then slices the
pyramids into sections. By doing this, the technique is able to map each point in a high
dimensional space into a linear space. B+ trees can then be used to manage the data. So
far this technique only works well for hyper-cube shaped queries.

 [BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft,

(1998), When is “Nearest Neighbor” Meaningful?, International Conference
on Database Theory, 1999, pp. 217-235.
http://www.cs.wisc.edu/~raghu/

 73

An article on the problems encountered by nearest neighbor search in high

dimensions. This paper proposes the ε-Radius Nearest Neighbor problem, which is to
find all points within a radius of DMIN * (1+ε) of a query point, where DMIN is the
minimum distance from the query point to its closest neighbor. Such a query is only
meaningful if the number of points within the radius is a small fraction of all the points.
The paper then shows that for many situations, particularly if the number of dimensions
is greater than 10 or 15, such queries are meaningless. A major contribution of this paper
is to show that any new nearest neighbor search techniques should always be compared to
a linear scan.

[BKK96] Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, (1996), The X-tree:

An Index Structure for High-Dimensional Data, Proceedings of 1996
International Conference on Very Large Databases (VLDB'96), Bombay,
India.
http://www.dbs.informatik.uni-muenchen.de/index_e.html

Describes the X-tree, a high dimensional indexing structure that is based on the

R* tree. This paper contains an analysis of the number of nodes of the R* tree that have
to be searched for a particular query. For dimensions more than 5, typically 90% of the
tree must be searched. The X-tree tries to be more efficient, by allowing larger nodes,
i.e., by going more to a linear search, as the dimensionality increases.

[Bri95] Sergey Brin, (1995), Near Neighbor Search in Large Metric Spaces,

Proceedings of the 21st International Conference on Very Large DataBases,
pp. 574-584, Zurich Switzerland.
http://www-db.stanford.edu/~sergey/

Describes the GNAT (Geometric Nearest Neighbor) tree. This tree provides a

data structure for high dimensional data that attempts to exploit (model) the geometry of
the data. This technique is oriented towards cases where distance calculations are
relatively expensive and initial build time is not as important. The technique is not
intended for cases where data is added or deleted. Finally, this technique is intended for
data whose distance function is a metric.

 [CPZ97] Paolo Ciaccia, Marco Patella, Pavel Zezula, (1997), M-tree: An Efficient

Access Method for Similarity Search in Metric Spaces, Proceedings of 1997
International Conference on Very Large Databases (VLDB'97), pp. 426-435,
Athens, Greece.
http://www.cs.unibo.it/~ciaccia/

Describes the M-tree, a high dimensional access technique for data whose

distance function is a metric. This technique generates balanced trees and can be used as
a secondary storage based access method (like the R*-tree, the X-tree, and the pyramid
technique). This technique relies on a careful use of the triangle inequality to minimize
potentially expensive distance calculations.

 74

[GG98] Volker Gaede and Oliver Gunther, (1998), Multidimensional Access
Methods, ACM Computing Surveys, Vol. 30, No. 2,

 http://www.wiwi.hu-berlin.de/~gaede/

A very understandable and comprehensive survey of multi-dimensional access
methods.

[JW96] Ramesh Jain and David A. White, (1996), Similarity Indexing with the SS-

tree, Proceedings of the 12th International Conference on Data Engineering,
pp. 516-523, New Orleans, USA.
http://vision.ucsd.edu/~jain/

Describes the SS-tree and demonstrates that it is somewhat better than the R* tree.

Basically, the SS tree uses hyper-spherical clusters of points, while the R*-tree uses
hyper-rectangular clusters. Like the R* tree, the SS tree can be used as a secondary
storage access method.

[KS97] Norio Katayama and Shin’ichi Satoh, (1997), The SR-tree: An Index

Structure for High-Dimensional Nearest Neighbor Queries, Proceedings of
the 1997 ACM SIGMOD International Conference on Management of Data,
Tucson, Arizona.
http://www.rd.nacsis.ac.jp/~katayama/homepage/research/srtree/English.html

Describes an improvement of the SS tree that uses the intersection of a hyper-
sphere and a hyper-rectangle.

The following are papers on miscellaneous topics.
[Fi96] Doug Fisher, (1996), Iterative Optimization and Simplification of

Hierarchical Clusterings, Journal of Artificial Intelligence 4 (1996) 147-179.
http://www.vuse.vanderbilt.edu/~dfisher/

Describes techniques for improving hierarchical clusterings. A number of

iterative techniques are introduced and evaluated. The viewpoints taken in this article is
a that of machine learning.

[Ko97] T. Kohonen, (1997), Self-Organizing Maps, Second Extended Edition,

Springer Series in Information Sciences, Vol. 30, Springer, Berlin,
Heidelberg, New York, 1995, 1997.
http://www.cis.hut.fi/teuvo/

[FL95] Christos Floutsos and King-Ip Lin, (1995), Fastmap: A fast algorithm for

indexing of traditional and multimedia databases. Proceedings of SIGMOD
1995.
http://www.cs.cmu.edu/~christos/

Describes the Fastmap algorithm. This algorithm takes maps a set of m points

into Euclidean space in time linear in m and (approximately) preserves the distances

 75

between the points. Such a mapping is an example of a technique called multi-
dimensional scaling. These techniques are useful for giving a Euclidean vector
representation to points that do not originally belong to a Euclidean space. A variation on
Fastmap, IncrFastmap, is unique among multi-dimensional scaling techniques in that
after the original mapping is defined, IncrFastmap can incrementally map new points
without changing the original mapping.

[Ta96] Eric D. Taillard, (1998), Heuristic Methods for Large Centroid Clustering

Problems, Technical Report IDSIA96-96, revision April 1998. IDSIA,
Lugano, Switzerland.
http://www.idisia.ch/~eric/

Describes some new heuristic methods for solving centroid clustering problems

that are important in operations research.

	Introduction
	Scope of This Paper
	What Cluster Analysis Is
	W
	What Cluster Analysis Is Not

	Overview
	Definitions
	The Data Matrix
	The Proximity Matrix
	The Proximity Graph
	Some Working Definitions of a Cluster

	Measures (Indices) of Similarity and Dissimilarity
	Proximity Types and Scales
	Requirements on Similarity and Dissimilarity Measures
	Common Proximity Measures
	Distance Measures
	Ordinal Measures
	Similarity Measures Between Binary Vectors
	
	
	The simplest similarity coefficient is the simple matching coefficient

	Cosine Measure

	Basic Clustering Techniques
	Types of Clustering
	Objective Functions: Clustering as an Optimization Problem

	Specific Clustering Techniques
	Center-Based Partitional Clustering
	K-means Clustering
	Basic Algorithm
	Time and Space Complexity
	Choosing initial centroids
	Updating Centroids Incrementally
	Different Definitions of Centroid
	Pre and Post Processing
	Limitations and problems

	K-medoid Clustering
	CLARANS

	Hierarchical Clustering
	Agglomeration and Division
	Simple Divisive Algorithm (Minimum Spanning Tree (MST))
	Basic Agglomerative Hierarchical Clustering Algorithm
	Time and Space Complexity
	MIN or Single Link
	MAX or Complete Link or CLIQUE
	Group Average
	Ward’s Method and Centroid methods
	Key Issues in Hierarchical Clustering
	Lack of a Global Objective Function
	In Section 3.2 we mentioned that hierarchical clustering cannot be viewed as globally optimizing an objective function. Instead, hierarchical clustering techniques use various criteria to decide “locally” at each step which clusters should be joined (or

	Cluster Proximity and Cluster Representation
	The Impact of Cluster Size
	Merging Decisions are Final

	Limitations and problems
	CURE
	Chameleon

	Density Based Clustering
	DBSCAN
	DENCLUE
	WaveCluster

	Graph-Based Clustering
	Historical techniques
	Shared Nearest Neighbor Clustering
	Mutual Nearest Neighbor Clustering
	Hypergraph-Based Clustering
	ROCK
	Sparsification
	Why Sparsify?
	Sparsification as a Pre-processing Step
	Sparsification Techniques
	Keeping the Proximity Matrix Symmetric?
	Description of Sparsification Techniques
	Evaluating Sparsification Results
	Tentative Conclusions

	Advanced Techniques for Specific Issues
	Scalability
	BIRCH
	Bubble and Bubble-FM

	Clusters in Subspaces
	CLIQUE
	MAFIA (pMAFIA)

	Evaluations
	Requirements for Clustering Analysis for Data Mining
	Typical Problems and Desired Characteristics
	Scalability
	Independence of the order of input
	Effective means of detecting and dealing with noise or outlying points
	Effective means of evaluating the validity of clusters that are produced.
	Easy interpretability of results
	The ability to find clusters in subspaces of the original space.
	The ability to handle distances in high dimensional spaces properly.
	Robustness in the presence of different underlying data and cluster characteristics
	An ability to estimate any parameters
	Ability to function in an incremental manner

	Data Mining From Other Perspectives
	Statistics-Based Data Mining
	Mixture Models

	Text Mining and Information Retrieval
	Uses of Clustering for Documents
	Latent Semantic Indexing

	Vector Quantization
	Self-Organizing Maps
	SOM Overview
	Details of a Two-dimensional SOM
	Applications

	Fuzzy Clustering

	Related Topics
	Nearest-neighbor search (Multi-Dimensional Access Methods)
	Pattern Recognition
	Exploratory Data Analysis

	Special Topics
	Missing Values
	Combining Attributes
	Monothetic or Polythetic Clustering
	Assigning Weights to features

	Conclusions
	List of Articles and Books for Clustering for Data Mining

