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Abstract. Port knocking is a technique first introduced in the blackhat and trade
literature to prevent attackers from discovering and exploiting potentially vul-
nerable services on a network host, while allowing authenticated users to access
these services. Despite being based on some sound principles and being a po-
tentially useful tool, most work in this area suffers from a lack of a clear threat
model or motivation. We introduce a formal security model for port knocking
that addresses these issues, show how previous schemes fail to meet our defini-
tion, and give a provably secure scheme that uses steganographic embedding of
pseudorandom message authentication codes. We also describe the design and
analysis of SILENTKNOCK, an implementation of this protocol for the Linux 2.6
operating system, that is provably secure, under the assumption that AES and a
modified version of MD4 are pseudorandom functions, and integrates seamlessly
with any existing application, with no need to recompile. Experiments indicate
that the overhead due to running SILENTKNOCK on a server is minimal – on the
order of 150 μs per TCP connection initiation.

1 Introduction

A port scan is a kind of network attack (or attack precursor) in which an adversary
attempts to connect to all, or some subset of, TCP and UDP ports at a given IP address.
Port scans are useful to attackers because the results often indicate the operating system,
architecture, and even a set of specific binaries that a host is running. This information
can then be used to determine what software exploits should be used to attack the host,
or what level of compromise might be likely.

Of course, if a server runs no vulnerable software, a port scan is not a serious threat,
but software security is a sufficiently hard problem that this cannot be seen as an im-
mediate solution. A popular method of protecting against such network attacks is the
firewall, which simply blocks all connection attempts to “internal” network hosts from
“external” ones. Since there are many reasons why it might be desirable for a given
service to be externally accessible — for instance, users may access a network service
from a priori unknown network addresses depending on their physical location — this
solution is not always satisfactory.

One class of proposed solutions to this problem is “port knocking”: a firewall is de-
ployed to protect a server, and before allowing a client connection to a particular port,
that client must transmit a special “knock” that authenticates it. This knock may be ei-
ther common to all authorized users of the system, or may be unique to a given user.
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Any attempts to connect that are not associated with the correct knock will be dropped;
thus to an unauthorized user it should appear as if no network services are running
on the server. A variety of knocking methods have been proposed, such as a sequence
of (dropped) connection attempts [1], inclusion of a cryptographic authenticator in the
initial connection request packet [2], “funny-looking” DNS lookups [3], and IPsec tun-
neling [4].

Many previous proposals for port knocking schemes have been accused of offer-
ing “security through obscurity”, since it is trivially easy to detect and steal knocks
in non-cryptographic systems. But making the distinction between flawed implementa-
tions which are only secure if the details of the system are unknown, and the concept
of port knocking (that even given the details of a port knocking scheme, one cannot tell
if it is being employed), we argue that this concept is not fundamentally flawed. Since
revealing the presence of a service can only help an adversary — for example, by re-
vealing which of a list of hundreds of exploits is the most likely to succeed, thereby de-
creasing the cost of an attack — the notion of concealing services from unauthenticated
users (in addition to regular network and software security measures) is a potentially
useful one. Separating authentication from applications is also a sound choice, since it
enforces least privilege and economy of mechanism, in addition to easing deployment.

Given that the goal of a port knocking scheme should be to conceal the set of services
running on a network host, all existing implementations have a serious flaw. Under rel-
atively weak attack models, these schemes fail to conceal that a port knocking service
itself is running. Since this service mediates access to all the other services exported
by a host, exposing information about the presence and type of port knocking service
a host is running is highly undesirable: under fail-closed semantics, crashing the port
knocking service denies access to all services on the host, while under fail-open seman-
tics detecting and crashing the port knocking service allows an ordinary port-scan to
succeed. Of course, on most currently deployed operating systems, exploiting a code
injection attack in a port knocking service would lead to a total compromise of the host.
Since the port knocking service is such a high-value target, we argue that the presence
of port knocking itself should not be detectable.

In this paper, we develop a formal security model which captures this notion. A for-
mal security model is critically important in order to be certain that a given protocol,
even one that seems secure at a glance, is actually secure. Examples of such “appar-
ently secure” protocols, developed without formally stated security goals, are numer-
ous [5, 6, 7], and some of them have been in operation for years (and have even become
industry standards), before attacks were found. Note that all those protocols were origi-
nally designed for security, and even used well-known cryptographic primitives, but the
protocols were not secure.

Essentially, our notion states that even though a (computationally bounded) adver-
sary may observe many authenticated sessions and arbitrarily inject, delete, and reorder
messages between the client and server, he cannot distinguish a port knocking client
and server from a pair using ordinary TCP/IP, plus some out-of-band authentication
mechanism that prevents other clients from connecting. That is, our definition allows
the adversary to observe authenticated sessions and necessarily allows the adversary to
observe that somehow sessions are being authenticated, but insists that no additional
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information about the authenticating mechanism is leaked. This leaves many plausible
explanations for the behavior, such as dynamic firewall rules1.

We prove that a scheme which is secure in our model also resists forgery and pro-
vides replay attack protection against a global active adversary. We give a protocol
for a generic networking scheme, which makes rudimentary use of provably secure
steganography [8], and prove that this protocol satisfies our strong notion of security.
Furthermore, we describe and analyze the security of SILENTKNOCK, an implementa-
tion of our generic protocol for the Linux 2.6 TCP/IP stack. SILENTKNOCK combines
simple TCP steganography [9] with a very fast cryptographic message authentication
code (MAC) [10] to provide efficient, provably secure port knocking that integrates
seamlessly with existing applications (with no need to recompile) by hooking directly
into the operating system kernel. SILENTKNOCK produces packets that are provably in-
distinguishable from TCP packets generated by the Linux 2.6 implementation of TCP,
under the assumption that AES and a variant of MD4 are pseudorandom functions2.
No applications need to be altered, no shared libraries need to be replaced, and no
potentially-conflicting protocols emerge. SILENTKNOCK is lightweight, has minimal
computational overhead, and is freely available for download [12].

Related work. The first published description of a port knocking scheme seems to
be the work of Barham et al. [2], who describe a scheme whereby a pass-phrase is
transmitted (in cleartext) to a firewall either through a series of SYN packets, in a single
“knock” packet, or as an option in the SYN packet. Krzywinski [1] describes a similar
scheme where a client opens a port by attempting connections to a secret sequence
of port numbers3; a number of similar systems are described at [13]. Several authors
[3, 14, 4] have proposed that knocks should be cryptographically protected to prevent
replay attacks, but still fundamentally involve the use of extra packets or nonstandard
TCP options that allow the detection of a knock (these systems provide authentication
only, i.e. they make no attempt to hide the use of authentication mechanisms). deGraaf
et al. [4] and Manzanares et al. [15] describe some other attacks and weaknesses of
previous port knocking schemes, which our notion of security precludes — that is, any
scheme that satisfies our security notion necessarily is also secure against the attacks
mentioned in these papers.

There is an extensive literature on TCP/IP steganography and covert channels [9,
16, 17, 18, 19], although Murdoch and Lewis [9] show that many of these proposals
are easily detected. We introduce a cryptographic formulation of security similar to that
in [8], and our notion of a secure port knocking scheme can be seen as a simple instance
of a covert computation [20] or the dining Freemasons problem [21]. We are, however,
unaware of previous work relating steganographic computation and port knocking, or

1 e.g. a service that is only available at preset times, or a software firewall that allows the user to
approve connection requests.

2 Linux 2.6 chooses TCP sequence numbers using 24 rounds of MD4 applied to the source
and destination IP address, destination port, and 32 secret random bits, using a randomly
generated, secret initial chaining value that changes every 5 minutes. See the functions
secure tcp sequence number and half md4 transform at [11].

3 The server will monitor connection attempts on all closed ports and opens a port if a specific
sequence of connection attempts is detected.
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any previous work implementing the schemes of [20, 21]. We note that our system, like
those in [20, 21] differs from covert channels alone because we provide covert one-way
authentication, handle synchronization issues, and formally reason about what it should
mean to hide an authentication service.

2 Formal Definition of Port knocking

In this section we provide our formal model of a secure TCP port knocking scheme, and
prove several relationships between our definition and formalized versions of earlier
security properties. We begin by stating our formal model of the TCP protocol:

Definition 1. A TCP implementation is a triple P of efficient, probabilistic programs
Client, Server, and Init. Client has three arguments: a state s, a command c, and a
packet r; Client(s, c, r) outputs a new state s′, and a packet p. Similarly, Server takes
as input state s, command c and packet p and outputs a state s′, a packet r, and a
message m. Init takes as input either client or server and outputs a state s.

Standard TCP Client commands are of the form “connect to port 80 from port 1234,”
“send M from port 1234 to port 80,” or “close the connection to port 80 from port 1234.”
Server commands are of the form “listen on port 80” or “close the connection from
C:1234 to S:80.” With a null command, Client simply outputs the next packet to be sent
to the server and Server outputs a packet acknowledging the input packet and a message
consisting of the data received in the last packet. Client and server state includes the
TCP states of all connections, and buffered messages. Standard TCP packets p have
two fields we will make use of. The syn flag, p.syn, is always set on the first packet
sent on a new connection. Packets with this flag set are the standard way of “knocking”
at a port to establish a connection. TCP/IP connections are uniquely identified by the
tuple (client IP, client port, server IP, server port) which we refer to as p.id.

For a given command sequence C ∈ (command × command)∗ we define the stan-
dard interaction of a TCP implementation P as the following process. First, we initial-
ize s0 = Init(server), q0 = Init(client), and set (p0, r0) to null. Then for each pair
(κi, σi) ∈ C, we let (qi, pi) = Client(qi−1, κi, ri−1) and (si, ri, mi) =
Server(si−1, σi, pi−1). We define the output of the standard interaction on C, P(C),
to be the concatenation m1||m2|| · · · ||m�.

Definition 2. A Port knocking protocol is a TCP implementation H in which both
Client and Server take as additional input a secret key. We let HK(C) denote the result
of the standard interaction between Client and Server where the key input to both is K .

We say that H extends TCP implementation P if for every command sequence C, there
is an efficiently computable command sequence C′ such that HK(C′) and P(C) are
computationally indistinguishable, for uniformly chosen K . This requirement states
that a port knocking protocol, in which the client and server share a secret key, should
allow any communication that is allowed by the TCP implementation it extends. We
note that a TCP implementation is trivially an (insecure) port knocking protocol with
null keyspace: every TCP session is initiated when the client “knocks” at the server port
he wishes to connect to.
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Security Condition. The informal idea behind our definition and construction is that
a port knocking scheme should hide not only a set of network services, but the very
fact that port knocking is in use, to the extent possible; and this condition should hold
even against an adversary who is allowed to make connection attempts to the server
and see authenticated connections by the client. To that end, we define security of a
port knocking scheme H in terms of an adversary’s inability to distinguish between two
experiments, corresponding to two different “worlds” in which he might find himself.
In both experiments, the adversary is given black-box access to Client and Server
subroutines (i.e., oracles) that output only packets and maintain state internally, so the
attacker may issue commands and deliver packets to the client and server. We stress
that these oracles are “black boxes” only insofar as the adversary cannot a priori infer
which of the two possible sets of oracles he is interacting with; adversaries are assumed
to know the implementation details of each of the two possible oracle pairs.

In the “hidden world”, these subroutines implement the Client and Server routines
from H, with a shared secret key K . The adversary is allowed to interact arbitrarily
with these subroutines, and in particular may make as many queries to both as he de-
sires. This models what an adversary who is attacking a port knocking implementation
will see. In what we call the “plausible world,” the client and server subroutines are
essentially those of the TCP implementation P , except that they are slightly modified.
The “plausible” client and server are modified to share a queue of packets Q. Whenever
the client generates a packet p, Q is scanned for a packet q with q.id = p.id; if none is
found, p is added to the end of Q. The server also maintains a list Open of ids. When-
ever it is called with a packet p, the server checks to see if p.id ∈ Open, and if it is, calls
P .Server on p; if p is at the front of Q, the server adds p.id to Open, removes p from Q,
and calls P .Server on p; otherwise, the server does not respond to p. In essence, client
and server share an out-of-band signaling mechanism such that only recent connections
initiated by the client are processed by the server. Notice that the packets output by the
“plausible world” client are identical to the packets output by P , and if the adversary
simply relays the packets between Client and Server, he will see a perfectly normal
TCP session. However, if the adversary interacts only with the Server oracle, his con-
nection attempts will be ignored, because his packets are not on the shared queue. Thus
this “plausible world” formalizes the idea of revealing that there is authentication going
on, but not revealing any additional information about the authentication.

We say that a port knocking scheme is secure if an adversary who can see many
authenticated sessions and attempt to make many connections cannot tell if he is in the
“hidden world” or the “plausible world”, that is, he cannot tell from the results of his
attack whether port knocking or some other plausible form of authentication is being
employed. Formally, we define the experiments Exphw

H,A and Exppw
P,A as in figure 1, and

we define the port knocking advantage of A against H with respect to P to be

Advpk
A,H,P(k) = Pr[Exphw

H,A(1k) = 1] − Pr[Exppw
P,A(1k) = 1] .

We say that H is a (t, qC , qS , ε)-secure port knocking scheme with respect to P if for
every time-t adversary A that makes at most qC Client queries and qS Server queries,
Advpk

A,H,P(k) ≤ ε. We call such an adversary a (t, qS , qC) adversary.
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Oracle HClient∗(c, r):
1. (q′, p)← H.Client(K, Q, c, r)
2. Q← q′.
3. return(p)

Oracle HServer∗(c, p):
1. (s′, r, m)← H.Server(K, S, c, p)
2. S← s′.
3. return(r)

Experiment Exphw
H,A(1k):

1. K← Uk .
2. Q← H.Init(client).
3. S← H.Init(server).
4. returnAHClient∗,HServer∗ (1k)

Oracle PClient∗(c, r):
1. (q′, p)← P.Client(Q, c, r)
2. Q← q′.
3. if p.syn then
4. append p to RecentQ.
5. return(p)

Oracle PServer∗(c, p):
1. if (p.syn and p = front(RecentQ)) then
2. remove p from RecentQ.
3. Add p.id to Open.
4. else if (p.id �∈ Open) then
5. p← ∅.
6. (s′, r, m)← P.Server(S, c, p).
7. S← s′.
8. return(r)

Experiment Exppw
P,A(1k):

1. RecentQ← ().
2. Open← ∅.
3. Q← P.Init(client).
4. S← P.Init(server).
5. return APClient∗,PServer∗ (1k)

Fig. 1. Definition of hidden world (top row) and plausible world (bottom row) experiments

Related notions. Given a new notion of security, it is natural to ask whether it is the
right notion. In the full version, we give some evidence for the strength of our notion,
by considering several security conditions which have been implicitly or explicitly used
as the security goals of earlier port knocking schemes, and showing that our security
notion is stronger.

3 System Design

In this section we introduce SILENTKNOCK, our implementation of a secure port knock-
ing scheme, and discuss how this implementation embodies the security model defined
above. We first discuss several adaptations necessary for secure and reliable interaction
with TCP/IP, such as replay attack protection, client/server synchronization, and indis-
tinguishability. Next, we analyze a number of possible attacks on our implementation.
Finally, we present results showing our system in action. A generic presentation of the
scheme, along with security proof, appears in the appendix.

SILENTKNOCK is designed to be an application-agnostic transport-level authenti-
cation layer. It resists forgery and replay attacks while leaking no further information
about the authentication method employed. We use kernel hooks to ensure that appli-
cations do not need to explicitly support our system in order to benefit from it. We use
keyed MACs as secure authenticators to resist forgery attacks and a two-part counter to
counteract replay attacks while ensuring that client and server counters stay synchro-
nized even in the presence of moderate packet loss. We provide an implementation of
a previously proposed operating system-specific steganographic embedding scheme for
TCP/IP [9] and use it to embed authentication information into TCP headers.

Universal Compatibility. We provide ease-of-use (for end-users, system administra-
tors, and programmers) by choosing an application-agnostic design. By using hooks
directly into the operating system kernel, we avoid modifying any of the network ker-
nel or library calls made by application software or requiring supports for SOCKS-type
proxies. This allows any application to transparently use SILENTKNOCK (without ap-
plication awareness or modification), provided that the network protocol used by the
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application has a steganographic embedding/extraction method supported by SILENT-
KNOCK . We note that for certain protocols, such as TCP, with many implementations
that may have subtle differences, each implementation may require a different stegano-
graphic embedding routine to preserve indistinguishability. Our goal is to seamlessly
support as many transport protocol implementations as possible, although currently
only TCP under Linux 2.6 is supported.

Design Choices. Our implementation is designed to run on the Linux operating system
with a 2.6 kernel. We chose Linux 2.6 due to our familiarity with the system and the
availability of the netfilter/libIPQ API [25], which allowed us to implement our system
entirely in user space instead of modifying the operating system. We use Poly1305-
AES [10] as our MAC function since it is optimized specifically for network packets
and has very fast implementations available for most processor types. We implement
Murdoch and Lewis’ system for embedding steganographic information into TCP ini-
tial sequence numbers (ISNs) [9] and use the TCP timestamp option (enabled by default
in Linux 2.6) to embed an additional byte of information into the timestamp, delaying
packets when needed. For additional details on the adjustments necessary to make ran-
dom ISNs consistent with the Linux 2.6 network stack, see [9].

3.1 Protocol

The SILENTKNOCK algorithm is outlined in Figure 2. A SILENTKNOCK client initi-
ates a connection (composes a TCP SYN packet) to a SILENTKNOCK-enabled server
and steganographically embeds an authentication token into the packet. The embed-
ding algorithm and resulting packet header structure are described in Figures 3 and 4,
respectively. The server receives a SYN packet and extracts the authenticator. If verifi-
cation is successful, the server allows the connection to continue, otherwise the packet is
dropped. The client and server share a key, as well as a counter which is incremented for
every client connection attempt (we discuss counter synchronization later). The counter
prevents replay attacks by ensuring that every SYN packet sent by the client is different
from any packets sent previously, and is also used as the nonce required by our MAC
function. The key, initial counter, and resynchronization interval are exchanged out of
band, since negotiation is impossible in case of one-way communication.

MAC. Instead of an additional sequence of knocks, we use a keyed MAC for client
authentication, applying it to the source and destination (IP, port) tuples as well as the
counter, so every connection attempt is guaranteed to contain a unique MAC. We em-
ploy Poly1305-AES [10] for our MAC function since it is designed specifically to work
on small bits of data such as network packets and is implemented in optimized assembly
for a number of popular platforms. The connection counter serves as the nonce required
by Poly1305-AES. Assuming that AES is a pseudorandom permutation, an adversary
should not be able to compose a valid MAC, or even distinguish one from random bits,
for the next SYN packet without knowing the key (even if we assume that all other
factors are public information).

Steganography and Indistinguishability. We use the TCP sequence number and
timestamp fields of the TCP SYN packet to embed our MAC information [9]. Unfor-
tunately, we are not able to include the complete MAC, as our current implementation
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1. B → A: MACk,ctrB
(m); encoded in TCP/IP headers of SYN packet

2. A: Set ctrA ← ctrA + 1
for i = 0 to ft:

if (MACk,ctrA−1+i(m) = MACk,ctrB
(m))

Set ctrA ← ctrA + i + 1; resynchronize counter if client is ahead
A→ B: SYN-ACK
goto 5

3. B: if (SYN-ACK received) then
Set ctrB ← ctrB + 1, goto 5; connection was successful

4. B: if (SYN-ACK not received) then
Set ctrB ← ctrB + 1; assume server got SYN, but SYN-ACK was lost
goto 3

5. A, B: proceed with TCP connection
if (FIN or RST received) then

goto 1

Fig. 2. The pseudocode for SILENTKNOCK. A is the server, B is the client, ctrP is a per-IP-
address counter maintained by principal P , k is a value derived from B’s IP address and a sym-
metric key shared between A and B, m is a TCP flow identifier, and ft is a failure-tolerance
parameter.

only allows a total of 32 bits to be embedded (24 bits in the sequence number and 8
bits — the least significant byte — in the timestamp), assuming Linux sequence num-
bers4 (see Figure 4). Since we must not allow distinguishability based on discrepancy
between the observed packet dispatch time and the packet timestamp, we delay packet
transmission, but only use the last timestamp byte to minimize delay times. Although
32 bits is a relatively short MAC, recall that even at this length, an adversary would
still have to compose, on average, 232 packets to break the authentication (requiring,
for example, 6 weeks to transmit over a T1 link). We remark that standard methods to
deal with online guessing attacks can also be applied here, such as account freezing or
processing delays.

One issue that arises when using the TCP timestamp field (rather than just the ISN)
to encode MAC data is the possibility of lost SYN packets. For instance, if a client
generates a SYN packet but a SYN-ACK from the server does not arrive, the client must
re-transmit the SYN packet. However, TCP requires that re-transmitted SYN packets
have the same sequence number but different timestamp [26], so we can no longer
encode stegotext in the timestamp: if the SYN packet was lost due to a malicious host,
or if an adversary is observing all SYN packets, that adversary would detect that the
least significant byte of the timestamp in the original and re-transmitted SYN packets
are identical. The probability of this is only 1/256, so the adversary could conclude that
SILENTKNOCK was in use.

To solve this problem, we ensure that the last byte of the timestamp looks random
to our adversary, even when we are trying to re-transmit the same MAC. We can use
two existing properties of our system to help us, the first having originally caused this
problem: the higher order bytes of the new timestamp must be different from the one
in the original SYN packet5. Secondly, we do not transmit the entire MAC (only the

4 OpenBSD has 30 bits of entropy available in the sequence number, while Linux 2.6 only has
24 bits.

5 In reality, we only use the middle two bytes of the timestamp, since the upper byte is extremely
unlikely to change, and the bottom byte will be replaced by stegotext.
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P : TCP SYN packet
Pseq = {S1, S2, S3, S4} : Sequence number of packet P (4 bytes)
Pts = {T1, T2, T3, T4} : Timestamp of packet P (4 bytes)
m = (IPB , source port, IPA, destination port) : Authentication information
MACK,ctr(m) = {M1, M2, . . . , M16} : 16 byte MAC
S2 = M1, S3 = M2, S4 = M3
T4 = hM ({T2||T3}) : n-Universal hash function

Fig. 3. The steganographic encoding protocol. Decoding is performed by reversing the operations
in this protocol.

first 32 bits), so the adversary has no knowledge of the rest. We use these undisclosed
MAC bytes to key an n-universal hash function (e.g. ha(x) = a1x

n−1+a2x
n−2+· · ·+

an−1x+an) [27], which is applied to the middle bytes of the (changed) timestamp to de-
termine the last byte of the timestamp, ensuring that any n or fewer distinct timestamps
have last bytes that are indistinguishable from random. 6. Since the server computes the
same MAC, the server can reverse this process and extract the stegotext. Therefore we
preserve the integrity and indistinguishability of stegotext in our timestamp even for
re-transmitted packets (note that a packet will again need to be delayed so transmission
time is consistent with the new timestamp).

Counter management. To protect against replay attacks, we employ a per-user counter,
incremented after every connection attempt. If a given user has never before accessed a
SILENTKNOCK-protected server, the counter is initialized to 0 by both the client and the
server. The counter poses additional challenges, such as what happens when the client
and server counters become desynchronized. Desynchronization can occur in two ways:
either the client’s SYN packet never arrives at the server, leading to the client having
a counter higher than the server’s, or the server’s SYN-ACK can be lost, meaning the
client and server are actually in sync, but the client does not know this. A client would
have a hard time attempting to resynchronize after a failed connection, since the client
does not know whether the server received the SYN packet and verification failed, or
whether the server received and verified the SYN packet but the SYN-ACK was lost,
or whether the SYN never arrived at the server. We allow for automatic in-protocol
resynchronization after a certain time period.

For this purpose, we enforce the equation ctrserver ≤ ctrclient by having the client
always increment its counter when sending a SYN packet. The server, however, will
only increment its counter upon successful MAC validation, to prevent malicious de-
synchronization by sending bogus packets to the server. In the naı̈ve scheme of insisting
the counter be exactly right, the server and client may never again get into sync once
desynchronized, since the client will increment its counter on each connection attempt,
but the server’s counter remains the same.

To counteract permanent desynchronization, we adopt a two-part counter design. Us-
ing a 64-bit counter, the first 32 bits (called the RESYNC field) are initialized to 0 (at the

6 By default, Linux 2.6 TCP only attempts to re-transmit a failed SYN packet five times, so
5-universal hashes are sufficient. If this number were to change, both the client and the server
would need to modify their hash function (for n retransmissions, an m-universal hash function,
where m ≥ n must be used).
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Fig. 4. The TCP SYN packet after steganographic embedding. The “internal consistency” adjust-
ment in the sequence number is performed to keep the modified sequence number consistent with
what Linux is expected to produce.

time of first connection) and are incremented once every configured unit of time (such
as every hour, day, month, leap-year, etc.). The time period must be agreed upon by the
client and the server as part of out-of-band setup. The latter 32 bits (called the CTR
field) are always reset to 0 when RESYNC is incremented. Using this two-part counter,
we allow resynchronization to occur automatically once the RESYNC increment time
elapses. If there is substantial relative clock drift between the client and server, it is pos-
sible that client connections will fail (or even become desynchronized) when the client
initiates a connection at a time when one entity has incremented RESYNC and reset
CTR but the other has not. However this is extremely unlikely and would repair itself
during the next RESYNC increment. Checking more than one consecutive value of the
counter as part of the MAC would make desynchronization unlikely for most (transient)
network-level failures, but would also degrade security linearly, since it allows multiple
MACs to be valid at any given time. If multiple counters are checked, the server should
save the counter that matches whichever MAC successfully verified, and increment that
counter for use next time. This way, the server and client should be in sync for the
next connection attempt. (The number of alternate CTR values checked by the server is
specified by the ft parameter in Figure 2.)

3.2 System Architecture

The SILENTKNOCK system is composed of two separate programs - “ sknockd” (run-
ning on the server), and “ knockproxy” (running on the client). Connections are au-
thenticated on a per-flow instead of per-source (IP address) basis. While knockproxy
actively modifies packets as they leave and enter the client machine, sknockd (on the
server side) does not do any packet modification. Combined with the very low veri-
fication overhead of our chosen MAC function, this should minimize the load on the
server. We use the libIPQ API to register interest in packets with certain flags and (IP,
port) tuples with the kernel, and those packets are rerouted by the netfilter system to
user-space7. On both client and server side, we only send packets we are potentially
interested in to user space, to avoid excess context switching between user-space and
kernel-space. Both sknockd and knockproxy currently detect closed connections

7 This re-routing happens after processing by the network stack for outgoing packets, but before
processing for incoming packets.
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Fig. 5. The architecture of SILENTKNOCK. The client-side application initiates a connection to a
server in the usual manner. The kernel composes a SYN packet, but knockproxy intercepts the
packet before it is sent, and embeds a MAC into the ISN and timestamp fields. The server receives
the packet, and sknockd examines it before passing it to the kernel. If sknockd successfully
extracts and verifies the MAC, the packet is accepted by the kernel and passed to the application;
otherwise it is dropped. Once the SYN packet is accepted, sknockd no longer examines other
packets for that connection (except for terminating packets FIN and RST). knockproxy, how-
ever, is forced to rewrite every incoming and outgoing packet for the connection to prevent the
client TCP stack from getting confused due to a sequence number mismatch.

by listening to FIN and RST packets, and timeout support (in case the FIN or RST
packets are never received due to packet loss) will be added in the future.

Knock Daemon. sknockd, the server side of the SILENTKNOCK system, listens for
connections on a port it reads from its configuration file (the port offering the protected
service, i.e. SSH on port 22), and examines incoming SYN packets on those ports before
the TCP/IP stack sees them. When a packet is received, sknockd checks the source
IP address of the packet and retrieves the secret key as well as the counter for that IP
address from its configuration file (per-user shared keys are also supported). Using the
TCP steganographic algorithm, sknockd extracts stegotext from the packet, treats it
as a MAC, and attempts to verify it. If verification succeeds the packet is accepted, and
passed on to the TCP/IP stack, otherwise the packet is dropped. sknockd then incre-
ments the per-IP connection counter (CTR). This is the extent of sknockd’s involve-
ment with the connection — all other packets are processed directly by the network
stack in the kernel, and are not seen by sknockd (except for detection of connection
closing). Since the SYN packet is copied only once (from kernel to user space) and not
modified (does not have to be copied back), and since our chosen MAC is very fast, the
entire operation is very efficient. Furthermore, since only SYN packets are examined,
the load on the server is minimized.

There is a small trick to preserving indistinguishability when we in fact are inter-
cepting certain packets — we must prevent the adversary from being able to set the
SYN flag on a packet that is part of an existing (previously authenticated) stream, be-
cause if sknockd drops that packet (due to incorrect MAC), the adversary will be
able to conclude that SILENTKNOCK is in use. Therefore, when sknockd tells the
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netfilter to allow a certain connection (after verifying the MAC), we insert the AL-
LOW rule into netfilter before the rule that forwards all SYN packets to sknockd.
Thus, authenticated streams (having a known source (IP, port) tuple) are never again
processed by sknockd, even if they (incorrectly) contain SYN packets, preserving de-
fault TCP stack behavior. This solution (inserting the ALLOW rule for a flow before the
sknockd rule for SYNs) frees sknockd from storing any per-flow state outside of
netfilter. The number of initial netfilter rules is linear in the number of SILENTKNOCK-
protected services, and future rules scale linearly with the number of active connections
to protected services. While the number of rules may become large with many active
connections, this can not be avoided, and we must rely on the efficiency of the underly-
ing packet filter implementation to scale gracefully under load. Memory requirements
for per-user keys (and pre-computed MACs) are linear in the number of users config-
ured, and per-IP counter storage is linear in the number of client IP addresses.

Knockproxy. knockproxy reads a configuration file to find out which servers sup-
port SILENTKNOCK, and for which services (listed by destination (IP, port) pairs). The
configuration file also includes the key shared with the server, and the last value of
the connection counter (if this is the first time connecting to that server, the counter is
initialized to 0). knockproxy registers interest for all SYN packets going from local-
host to that (IP, port) pair. When it receives such a SYN packet (generated by the local
TCP/IP stack), it computes a MAC using the server shared key and steganographically
encodes the information in the TCP initial sequence number and timestamp. It then reg-
isters interest for all incoming and outgoing packets for that (IP, port) tuple, increments
the associated connection counter, and sends the packet over the wire8. Since we have
modified the sequence number from what the local TCP stack expects it to be, we must
modify it again in the return packets before the TCP stack sees them, otherwise we
will confuse the stack and reset the connection. Likewise, we must continue to mod-
ify all future outgoing packets for that connection, otherwise the remote host will reset
the connection when it detects a sequence number mismatch. Once the connection is
closed, knockproxy de-registers interest in that tuple (connection closure is detected
the same way for both sknockd and knockproxy). The number of initial netfilter
rules is linear in the number of SILENTKNOCK-protected services that might be con-
tacted, Future rules scale linearly in the number of active portknocked connections.

3.3 Timing Analysis

The indistinguishability of the SILENTKNOCK implementation relies on the adversary
gaining no information through timing attacks — if sknockd takes an overly long time
to process packets, a smart attacker with knowledge of traffic timing before SILENT-
KNOCK was installed on a server would realize that some kind of additional processing
is occurring (but not necessarily that SILENTKNOCK is in use). If the difference in tim-
ing is large enough, it makes for a good distinguisher for SILENTKNOCK in practice,
even though timing information is not included in our formal model. On the other hand,
if the timing difference is small (compared to timing noise between the adversary and
the server — delays imposed by slower or overloaded routers, etc.) or the adversary

8 The packet may be delayed, depending on the modification made to the timestamp field.
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Table 1. Average time difference between receiving a SYN packet and emitting a SYN-ACK
packet. The third experiment avoids the context switch incurred by user-space iptables manipu-
lation, and gives a performance estimate for a sknockd kernel module.

Experiment SSH only sknockd without commit

Average response time (μs) 242.86 389.33 295.44
St. Dev. (μs) 8.59 13.36 8.64
Slowdown factor 1 1.60 1.22

lacks precise knowledge of the timing characteristics of the server, this “side channel”
will not lead to a good distinguisher in practice. Therefore, we have attempted to min-
imize this information leakage, and can minimize it further by implementing a number
of optimizations, such as more aggressive pre-computation during idle time.

Results of our timings tests are shown in Table 1. We measure the time an SSH
server running sknockd takes to process SYN packets and compare to an ordinary
SSH server. We record the time between when the server receives a SYN packet (con-
taining a valid MAC) and the time it sends a response (SYN-ACK) packet. The first col-
umn shows the baseline (standalone SSH server) time; the second column shows time
with SSH and sknockd running together; the third column is similar to the second,
except that sknockd has been modified to not make the iptables commit kernel call
(iptc commit), which inserts the iptables connection rule constructed by sknockd
into the kernel packet filter table. We made this modification to simulate the amount of
time the server would take to emit a SYN-ACK packet with sknockd running in ker-
nel space, enabling direct manipulation of the packet filter table, without incurring the
overhead of a user space to kernel context switch9. While servers running sknockd
are always slower than servers running SSH alone, modifying sknockd to remove the
iptables commit call reduces the time difference significantly.

Although information leakage (thought timing information) occurs in practice, the
amount of information revealed is minor. Even using user-space sknockd, an adver-
sary located a few hops away, and with perfect knowledge of the server timing distribu-
tion without sknockd, would need to witness several hundred accepted packets to gain
a significant advantage in distinguishing sknockd from a dynamic firewall10; with the
simulated kernel-space sknockd, the adversary is unlikely to detect the processing
time difference unless he is located on the same LAN as the server. To further minimize
this difference, we implemented AES pre-computation for Poly1305-AES nonces. At
the moment we precompute only the initial counter value, but we can precompute and
store values of the next several counters, allowing for verification to be performed with-
out any online cryptographic computation.

While we do not test the client-side knockproxy for timing distinguishability,
mainly due to time constraints, the use of knockproxy would be much more dif-
ficult to detect than sknockd. Since the processing of SYN packets occurs before

9 We can currently account for at least 4 user-space/kernel context switches in sknockd.
10 Due to the fact that 90% of Internet flows experience a standard deviation of 1ms or more in

round-trip time [28], while the magnitude of timing difference even in the case of user space
sknockd is only about 0.15 ms.
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any observable event, and processing subsequent packets in a flow requires no manip-
ulation of kernel data structures and no cryptographic computation, observable timing
differences would be very small. If a remote adversary were to test for the presence of
knockproxy, the largest observable effect would be in the re-transmit timeout, which
may be altered by the packet delay imposed by timestamp modification. However, since
retransmit clocks have granularity measured in seconds [26], and our timestamp modi-
fication has millisecond granularity, detection is unlikely.

4 Discussion

4.1 Limitations of SILENTKNOCK

Here we would like to note a number of limitations of our system. First, we only attempt
to authenticate the start of a connection, but provides no guarantee that connections
stay authentic. In other words, our system does not protect against connection hijacking
(a well-known problem in TCP security) [29]. Furthermore, due to the limited band-
width for authentication, SILENTKNOCK can only support symmetrically-keyed au-
thentication. We believe it is up to the application to provide connection hijacking pro-
tection and relevant user authentication (e.g., SSH [6]).

Our solution relies on embedding stegotext in TCP/IP, and we are therefore limited
in the size of the MAC field we can send. Currently, we only support 32 bits out of
a 16-byte MAC. Furthermore, different operating systems have different TCP initial
sequence number properties, and thus the amount of data that can be embedded in the
SYN packet is highly dependent on the OS composing the packet. Thus, it is necessary
that the server know the OS of the client in order to correctly extract the stegotext;
alternatively, the server can attempt multiple extractions, but this will increase the cost
of filtering and degrade security by a factor of the number of OSes supported.

Identities, Addresses, and NAT. In any distributed authentication system it is neces-
sary to decide what the identities in a system correspond to. Three natural choices are to
let identities correspond to network addresses, to physical hosts, or to human users. Our
current implementation allows two options: identities (keys) may be associated either
with IP addresses or users; each has different consequences for usability and security.

When identities are bound to IP addresses, we must assume that only a single client
machine will be accessing a SILENTKNOCK-protected server from a given IP address,
since a single counter is used for each identity. This assumption breaks down in the
presence of NAT (network address translation) and similar devices. Therefore, in this
scenario, we must limit our system to only one client per NAT. We stress, however,
that unlike previous implementations, where NATs presented a security problem [15],
adversaries sharing a NAT with a valid knockproxy client gain no advantage.

We also support associating identities with users by issuing a key to each user and
checking the MAC on each SYN packet against each user’s key. This can be done at
essentially no extra computational cost due to the design of the Poly1305 MAC, which
is computed by adding a keyed non-cryptographic hash of the message to the AES
encryption of a nonce mod 2128. Suppose we assign different AES keys (but a shared
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non-cryptographic hash) to different users, and precompute the AES encryption of dif-
ferent users’ counters, for the next ft values. Then, given a packet p with embedded tag
t, we can check whether t = MACK,r(p, n) = Poly1305r(p)+AESK(n) mod 232 for
some user’s key K and counter n as follows. We first compute t − H(p) mod 232, and
then we search for the resulting value in our table of precomputed encrypted nonces; if
the value is found, we accept the packet and remove older encrypted counters for the
same user. This search can be implemented in essentially constant time (with respect to
the number of users) using a number of approaches, such as hash tables or tries. After
accepting the packet, we insert the next precomputed nonce for the same user into the
table. While this solves the NAT problem mentioned above, it causes security loss by a
factor of the number of users (and thus the number of user keys) due to the requirement
that we check the MAC against all user keys. Alternatively, once IPv6 is a viable alter-
native to IPv4, we may be able to use unique target IP addresses as part of the key, such
that a server running sknockd has one IPv6 address per user.

Denial of Service. While we have implemented some measures to prevent distinguish-
ing or denial of service attacks due to packet dropping, our scheme is vulnerable to a
selective denial of service attack. An adversary who modifies all packets on a network
by consistently rewriting sequence numbers or timestamps can cause MAC verification
to fail at sknockd, while not impacting the status of most standard TCP traffic. We
note that this attack is both expensive, in that it requires the attacker to touch every
packet in — and maintain per-flow state for — all connections on a network, and may
effect other protocols that authenticate the TCP header, such as IPsec [30] or TCP-
MD5 [22]. Additionally, such selective denial of service is much easier for other port
knocking or general IP service authentication schemes, as in those cases it is easy to
identify knock sequences or authenticated packets and drop them, while maintaining no
other state. Finally, if the server logs failed connection attempts, it will be easy to no-
tice such attacks since, for instance, altering the timestamp will still give a 24-bit MAC
match in the sequence number, which is unlikely.

4.2 Conclusion

Following our formal security model for port knocking, the SILENTKNOCK imple-
mentation provides a provably indistinguishable system with reasonable overhead, and
an especially light load on the server. The system is currently usable by any Linux
2.6 application using TCP/IP as its network protocol, and is completely compatible
with TCP/IP as described by relevant RFCs [26, 31]: it is possible for a client running
knockproxy to connect to a server not running sknockd. Furthermore, since all
“knocks” are destined for ports potentially providing services, the system is compatible
with all currently-deployed firewalls, including host-based software firewalls.

We provide per-flow, not per-source (IP address) authentication, meaning that even if
host A already has an active and authenticated connection to host B, a new connection
from host A to host B (presumably using different outgoing port on host A’s side) would
need to be uniquely authenticated. Furthermore, all of the knock “sequences” we use
are one-time (not replayable) since we employ a connection counter that is unique to
every IP address, and thus every client.
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4.3 Future Work

For future work, there are a number of implementation-level issues to address. The most
pressing issue of these is porting sknockd to a kernel module, to eliminate the over-
head of kernel/user space switching. Along with this conversion, we plan to implement
several other optimizations, including more aggressive pre-computation. We expect that
these modifications will further decrease overhead for sknockd.

Other possibilities for future work include the use of additional TCP/IP fields for
steganographic embedding. For instance, under Linux 2.6, ephemeral TCP ports and IP
IDs are assigned pseudorandomly per destination host, and change every five minutes.
Thus, in an environment that requires a longer MAC, these fields could be utilized,
gaining an additional 34 bits of authentication, at the expense of disallowing more than
one connection to a given IP address and port per five minute period. Using the source
port number and IP ID field, and limiting connections to once per five minute period
would also allow extension of SILENTKNOCK to the UDP protocol, with 34 bits of
authentication; unfortunately, the UDP header format does not include any other stan-
dard, variable elements, so 34 bits per five minutes seems to be an upper bound on the
authentication strength for UDP.

Another important issue to address in the future is usability. Our current implementa-
tion is fairly configurable and relatively straightforward for computer scientists or sys-
tem administrators to use. However, in order to be deployed widely, (say, as widely as
VPNs), we will require a more friendly interface. A related issue that we have not ad-
dressed here is key management. It will be interesting to consider these issues in depth.
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