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Abstract

This work focuses on systems where mobile robots peridglicallect data from
(static) wireless sensor network nodes. Suppose we are gpgroximate locations
of the static nodes, and an order with which the robot wilitvisese nodes. We
present solutions to the following problems. (i) From thegistnode’s perspective:
given the stochastic nature of the robot’s arrival, whahigaergy-efficient strategy
to wake up and send/receive beacon messages? Such a stnatggymultaneously
minimize the robot’s waiting time and the number of beacossages. (i) From the
robot’s perspective: given the stochastic nature of theless link quality, what is
an energy-efficient motion strategy to find a good pose (looaind orientation)
from where the data can be downloaded efficiently? The rolust tme able to find
such a location quickly but without taking too many measigrtaso as to conserve
the static node’s energy.

For the first problem, we present an optimal algorithm basedymamic pro-
gramming. For the second problem, we present an efficietd;didven heuristic
based on experiments. Finally, we present a system impletie@m for an indoor
data collection application, and validate our results asmskistem.

1 Introduction

Wireless sensor networks (WSNSs) are finding increasingruseucial applications
such as environmental monitoring, factory automation awlisty. However, de-
ploying such sensor systems and gathering the data callbgtéhe sensors still
remains a challenge. This is especially true when the tag@tcation requires col-
lecting data over a large area such as a farm, a forest oraagehouse.

In cases where the application requires a dense samplihg efivironment, the
data can be gathered by forming a wireless network wher@seaosles also act as
relays. In certain applications, the underlying environtris very large and sam-
pling locations are apart from each other. For example, inesbabitat monitoring
applications, sensors are deployed to collect humiditytentperature data across
the entire habitat of species [11]. In building automatian)V'SN can be rapidly
deployed to collect data (temperature, light) in a few kesateons in a large ware-
house.
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In these applications, a deployment that is dense enougbrio & connected
network can be costly and difficulty to maintain. It is alsaywexpensive to in-
stall a wired network just for data acquisition. Often, @al of deploying a dense,
connected network, data is manually downloaded from themot

An alternative to collecting data manually is to use mololeats. The last decade
witnessed significant developments in mobile robot naidgatt is now feasible to
develop systems where robots periodically visit sensoesahd gather the data
collected by them. Typically mobile robots are capable afydag large batteries
and are easily rechargeable. Therefore, the life-time efstlatic nodes is usually
the most crucial factor in determining the overall life-&imf the system. In this
work, we focus on such systems and address two problemsfteet the life time
of the automation system.

Beacon Schedulingin most applications, a robot’s arrival to a sensor’s vigini
will be a stochastic process due to uncertainties in thegadion times of robots and
changes in their trajectories. Therefore, sensor nodes$ walse-up, send beacon
messages and listen to the channel for availability of rebidtthis is done very
frequently, energy consumed in beaconing can reduce théiitife of the network.
In Section 3, we address the problem of scheduling beacorages and present
optimal beaconing algorithms.

Data Download: The quality of the communication link between a robot and a
sensor can affect the time to download the data (and hencentrgy consump-
tion) drastically. If the robot can utilize its mobility arfohd a “good” location to
download data, this can yield significant energy savingss $tatement is further
justified in Section 4 where we address the search problempraseént a data-driven
strategy to find a good download location. In indoor envirents where the behav-
ior of the signal is unpredictable due to multipath effectd the dynamic nature
of the environment, it is easy to see that there is no onligerdhm with provable
performance guaranteesTherefore, we present a heuristic strategy based on ex-
tensive experiments we performed to understand the effedbot’s location and
orientation on the signal quality.

In Section 5, we present the details of a system implementdtiat utilizes
robots for gathering data, and demonstrate the utility of agorithms with ex-
periments run on this system. We start with an overview aftesl work.

2 Related Work

Mobility in collecting sensor data is extensively studiedr example, in [13], Shah
et al presented an architecture that uses mobile entitiggeirnvironment for data
delivery. In most of the related literature, mobility isated as an uncontrolled pro-
cess.

More recently, researchers proposed architectures tipddiegontrolled mobil-
ity [14, 6, 3, 18, 15]. Arecent review on the state of the aebiploiting sink mobility
can be found in [9].

1 For any given online strategy, an adversary can pick thedgamcation to be the last location
visited by the online algorithm.
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In existing approaches, the robot’s trajectory is eithgegior computed in ad-
vance. This constraint is relaxed in [6] where the robotlseiy is modified (along
a fixed path) to improve transmission quality. In more reweork, a system where
robots efficiently collect data from static sensors havenb@esented [17]. This
work demonstrates the energy savings attained by usinglenaiiots over using
static relay nodes. In the present work, we take a furth@ratel present a strategy
that fully utilizes the controllability of the robot’s mdhy (position and orienta-
tion) to find good download locations in an online fashione ®trategy does not
make strong assumptions about the wireless signal, andeveishutility with real
implementations.

We also study the interactions between the robot and statiesiduring the
discovery phase. This is related to sleep scheduling wisicisuially studied as a
topology management problem [2, 12]. In this work, we focnsaospecial case
where the arrival of the robot is given as a probability disttion, and compute
the optimal sleep schedule which simultaneously minimiaeshumber of beacon
messages and the robot’s wait time. In a real system impl&tien, we show how
such distributions can be learned over time.

The interactions between robots and a static sensor netrawék also been ad-
dressed in the robotics literature for network repair [4]peectivity [1] and navi-
gation [7] problems. In this work, we model the interactiatveen the robot and
the nodes at a lower level and address signal-strength attel seheduling issues.
Such approaches have recently started appearing in théaebierature, mostly in
tracking [8, 10] and connectivity maintenance [5, 16] apgtions.

3 Optimal beacon scheduling

A robot’s arrival to a sensor mote’s vicinity is a stochagtiocess, due to uncer-
tainties in navigation. It is thus necessary for the motediagulically send beacon
messages and execute a receiver check to establish cameitti the robat. By
adapting the beacon interval to match the robot’s arrivétepa, we can keep the
duty cycle of the mote as low as possible, thereby conserrieggy and increasing
its life-time.

3.1 Formulation

Consider a system in whicim sensor motes have been statically deployed. The
approximate location of each mote is known w.r.t. a fixediaridhe home base from
where the robot starts its journey. An ordered sequencdefd8= {s;,%,...,Sm}
is assigned to the sensor motes a priori.

Although the path of the robot is specified, there are manycesof uncertainty
that contribute to the robot’s arrival at each sensor beistpahastic process. For
instance, the robot may spend uncertain amounts of timecttdathe motes and

2 In general, listening to the channel and sending beaconagessan be decoupled. In this case,
the discussion can be modified to focus on the most energynsixeeportion (typically receiving
messages).
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download data from them. It may take alternate routes duéstacles, and spend
time to compensate for uncertainties in its own actuatodssamsors.

Ideally, if the mote knew the exact time (or the interval) tblot would be within
its communication range, then only one beacon round woufiteuA practical
alternative is to send beacon messages infrequently arelthawobot wait in the
mote’s vicinity until it hears a beacon. This has the undekaffect of making the
time to visit all nodes large which, in turn, decreases trexalVsystem performance.

The time interval between consecutive robot arrivals assemotes is called
the interarrival time. Due to the stochastic nature, we represent the robot’s inte
arrival time at sensas as a probability distribution. This distribution can beheit
guessed (e.g. by using a Gaussian which represents thetesd@edval time and
uncertainty), or can be adaptively learned by keeping th®hj. In this work, we
assume that the distribution is given and omit the detailsa? it can be learned
due to space limitations.

We assume that the time between consecutive robot arrivalsate is bounded
from above. In general, there can also be a lower bound thairiszero, because
the robot’s velocity and the length of the complete path enthat the robot takes a
non-zero amount of time to revisit the same sensor.

We now solve the following problem: Given a robot interaatiprobability dis-
tribution at a mote, find a beacon schedule for that mote gutia least number
of beacons possible, such that the expected waiting timaeofdbot between its
arrival at that mote, and receiving a beacon message is lkduinom above by a
predetermined valu&,. In Section 3.2.1, we show how such a beacon schedule can
be computed.

3.2 Optimal Solution

We now focus on the scenario where the mobile robot visitha@sin rounds. As
explained in the formulation, we assume that for any roumeljnterarrival time is
bounded: there is a time before which the robot cannot bepté@scommunication
range of the mote, and after which the robot is guaranteedue tisited the mote.
Denote this interval a§. We model time as discrete by dividing the interval
into n time instants spaced equally i units, T = {ts,...,tn}. A beacon can be
scheduled atanty (1 <i < n).

The robot’s arrival during the intervalis given as a probability distribution over
the time instants ifT . Let p(t;) denote the probability that the robot arrives at time
ti. In the case that the probability is continuous over times can interpret; to be
the end point of a time intervat;_1,t;], with the beacon being placed at the end of
that interval and(t;) being the aggregate probability for that interval.

LetB={by,...,bx =1y} be a beacon schedule. The valbedenote the times in
the intervalT at which beacons are scheduled. Given the arrival distobut, the
robot’s expected waiting timET(B, p) at sensor moteis given by

k=1 bip1

ETBP=3 5 p)bi-t) 1)
1=0 tj=bj+At
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In Equation 1, we definbg as the start time of .

Consider beacon . For any robot arrival at timig > bj, the expressiop(t;) (bj11—
t;) is the expected waiting time for the robot, until beabpn is heard. Thus the in-
ner summationin (1) gives the robot waiting times betweertbady; andb; ;. The
outer summation accumulates the expected waiting timestbgentire schedule.

We would like to simultaneously minimize the cardinality®&nd the expected
waiting time of the robot. Let the cardinality 8be denoted by = |B.

For a given value ok, we formulate the following decision problem: Given pa-
rameterk, T, and an arrival distributiom, can we find a beacon sched@esuch
that|B| = kandET(B, p) < Tw? To minimize the number of beacons used to satisfy
this Ty, we perform a search over the possible valuek by solving the decision
problem for each value.

Typically, the time taken by the robot to traverse the wholend is much larger
than the length oT . For such cases, we obtain the following insight about air opt
mal schedule.

Lemma 1. During each round, there has to be a beacon at the last instatitne
in T, to ensure that ETB, p) < Ty.

Proof. We prove this claim by contradiction. Suppose there is ne®eat the last

time instant over whiclp(t;) is distributed. Let; < t, be the time at which the last
beacon is scheduled. If the robot arrives afjeibut beforet,, then it has to wait

until the mote’s next beacon, which, according to the distion occurs only at the
estimate of the next robot interarrival time. Since this banof the order of the

duration of a round, the waiting time can grow arbitrarilygie, giving us a value
greater thary,: a contradiction.

Lemma 1 gives us a starting point to place a beacon: attijnithe end ofT).
Also, note that, in Equation 1 the robot’s waiting time isatatined by only the first
beacon that it hears after arrival. This motivates the Vathgy dynamic program-
ming solution.

3.2.1 Dynamic programming

Let the robot interarrival distribution for mosbe p, distributed over the interval.
Let k be the number of beacons to be scheduled in the time intérwale seek to
answer the question: What is the minimum valud stich that the beacons satisfy
the constraint on expected waiting ting?

Let the cost function b€(i,t;) which denotes the expected waiting time (“cost”)
for robot arrivalsafter interarrival timetj, when beaconis scheduled at timg.

C(i,tj) = min { s p(tq)-(tr—tq)+C(i+1,tr)} (2)

tj<tr<tn ‘
! tg=T+;

Since beacoiis placed at time; and beacom+ 1 at timet;, the first term on
the right-hand side in Equation 2 computes expected wadiiting for a robot arrival
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between those two beacons. The second term computes thetekpeiting time
for arrivals after time .

Since there must be a beacortatsee Lemma 1)C(k,tn) = 0. Further, we do
not allow beacork to be scheduled anywhere except at timehusC(k,ty) = o for
t; <ty < t,. We then use Equation 2 to compute the rest of the cost tablehvin
total is of sizek x n. To complete the computation, we need to increment eacle valu
C(1,t)Vvt by the expected waiting time for robot arrivals fragrto t. This accounts
for robot arrivalsbeforethe first beacon.

The time at which the first beacon should be schedulegl gich that the value
of C(1,t}) is minimum i.e.by = argmin, C(1,t;). Since the computation @(1,t;)
used a minimum value for som@&(2,t,), we backtrack to find the best possible
scheduling timeby, bs, ..., by.

We want the value ok to be the least possible to satisfy the expected waiting
time constraint. In order to do this minimization, we staitwust k = 1 beacon
i.e. a cost table of sizet n and increasé if the expected waiting time for that
exceeddly. Instead of this linear search, we could also use a binargis¢a find
the besk, but that approach does not allow us to incrementally bhiéddost table.
As a result, it ends up computing the whole table and thenirditing half of the
values at each step. The entire computation can be perfdm@gn®) steps.

3.2.2 Simulation results

We demonstrate the utility of using the dynamic programnatggprithm through
simulated robot arrival times and beacon schedules.
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Fig. 1 A comparison of optimal beacon scheduling (red circle$) taluniform scheduling (blue
circles, short) for different robot arrival patterns: uidal Gaussian (left), uniform (middle), and
bimodal Gaussian (right).

We compare three different types of robot interarrival grais: uniform, Gaus-
sian and bimodal Gaussian (mixture of two Gaussians). thiak cases, the desired
waiting time is 2.5 seconds and the robot interarrival tiffeebetween 300 sec and
500 sec.

Figure 1 (left) models the robot’s arrival pattern at a mae@animodal Gaus-
sian. Uniform beaconing uses 34 beacons for an expecteithgviiine of 2.489 sec-
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onds. In contrast, our algorithm uses 10 beacen3@% better) with an expected
waiting time of 2.233 seconds.

The algorithm is applicable to any type of arrival distribut For instance, if
the arrival pattern at a mote is a bimodal Gaussian (righigf F.4°(350,10) and
4 (450,10) with equal weights), our solution uses 7 beacengq% better) with
an expected wait time of 2.115 seconds.

4 Local search

When the robot is downloading data from a node, the qualityhefwireless com-
munication link is a crucial factor in determining the lifeie of the node: when the
link quality is high, the same amount of data can be transfeusing less energy.
In this section, we present a motion strategy for a robot t éirgood location to
download the data. The algorithm is based on insights froariasof experiments
which we describe next.

Fig. 2 Left: Experimental setup to measure the link quality of data fearfsom a mobile robot
to a base station, with the robot moving on a uniform grid.

We started our experiments by collecting data using thepsgftown in Figure 2
where we placed an 1411 grid on a & x 3m indoor environment. We mounted
a base station mote on our robot (iRobot Create with Asus ExeaRd the robot
autonomously visited grid points while pointing to a fixededition.

In the first experiment, we placed a data node at locatior0f3rl Figure 3.
The robot visited each location, and took 50 measuremeat$ Beasurement was
taken by sending a 4 byte message during which RSSI (radialsitrength indica-
tor) and LQI (link quality indicator) values were record@the left plots in Figure 3
show the mean (top) and median (bottom) values of the LQI oreagents. The
right plots show the RSSI values. As it can be seen in the fiqlkelots give a
unified view of the link quality. The main observation fronistiexperiment is that
although in general the LQI increases as we get closer t@thsos node, the surface
is not smooth and contains many deep drops due to multi-fiizitte

The next experiment illustrates the effect of link qualitytbe time to download
the data. In Figure 4, the top figure shows the time to downkfachessages from
each grid point. The peaks show a correlation with the dedipdaaffects in the
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LQI map (mean) RSSI map (mean)

Fig. 3 The robot visited each location, and took 50 measureméefs. mean (top) and median
(bottom) values of the LQI measuremerf&ght: mean (top) and median (bottom) values of the
RSSI measurements.
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Fig. 4 Time to download 50 messages from each grid point as funciidocation (top), and as
functions of LQI (bottom-left) and RSSI (bottom-right). #icontrolled mobility, the robot can
decrease the download time significantly by moving slightly

previous experiment (Figure 3). Bottom left (resp. righgufie shows the relation
between LQI (resp. RSSI) measurements and time transfeit @8 be seen in
the left figure, the transfer time is very low for LQI measugmts above 95. On
the other hand, the transfer time increases drasticallydlues lower than 95 his
observation shows the potential utility of controlled miibyzi robots can reduce
the data download time (and increase the life of the senstwar&) by finding a
“good” 2 location to download the data.

The next experiment sheds further light on path-loss anditpath affects on
link quality. To cover a wider range, we moved the robot onng4egment in a
corridor in our building and placed a mote on the mid-pointha$ line segment.
In Figure 5-left, the mote is located at= 26 and robot starts taking measurements

3 above 95 in this case.
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atx =1 and ends ax = 51 . The discretization level is 1 foot and robot takes 50
measurements from each location. Top figure shows the mdaasvaf 50 mea-
surements and bottom figure shows the median of the measut®ms expected,
the link quality increases when robots get closer to themgmaote, while it tends

to decrease while getting further away from the sensory mésfter performing
similar experiments, we concluded that the following olsagon explains the link-
quality behavior betteMVithin a certain range+{8 ft, in this case), the link quality

is consistently “good” and unpredictable (random) outstties range.

LQI map (mean) LQI map (mean)

100
> 90
80)

L L L L L L L L
0 10 20 30 40 50 60 0 a5 % 135 180 225 270 315 360

Won oo
&
=

X theta
LQ! map (median) LQI map (median)

100
1001 N
> % =
90
80|

o 10 20 30 40 50 60 0
X

Fig. 5 Left: The mote is located at= 26 and the robot moves from= 1 to x = 51. Within a
range of+8 ft, the link quality is consistently “good”. It is unpredable (random) outside this
range Right: The 8-values correspond to robot orientations. Each curve spords to a different
location on a line. The sensor is locatedkat 0. The behavior of RSSI or LQI as a function of
rotation is not easily predictable.

Most robotic systems have a rotational component which sttt we can con-
trol the orientation of the robot. Therefore, the robot dd@earch for not only a
good location but a good orientation as well. The next expenit focuses on this
aspect. Figure 5-right shows the change in link quality wh#hvarious orientations
of the base station (on the robot) at fixed locations. The éighiows the results for
4 fixed points at distances 5,10,15 and 20 feet from the madte ré@sults show that
when the base station is close to the sensor mote, the ditentioes not affect
the link quality significantly. However, when the distansdarge, small changes in
orientation may result in drastic changes in link qualityorgover, this change is
not easily predictable. For example, when the robot is afihbest point (the 20-
feet curve), sensor mote and base station point towardsahehwhen the angle
is 180. In this orientation the LQI is 95. If robot turns 4 counter-clockwise
direction, the LQI value increases to 100. If the robot tt46% more on counter-
clockwise direction, then the LQI value suddenly drops to Bfis example also
shows that measurements from various orientations mayiveggclear indication
about the direction of the sensory mote.

The results of these experiments can be summarized as ollow

e Within a certain distance (an environment dependent paeainehe signal
quality is predictably good and the orientation of the roboés not make a
significant difference.
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e When the robot is outside this range, it is very difficult t@ Uscal information
(such as gradient) to find the location or orientation of #@ser.

In the next section, we present a search strategy basedsmdabservations.

4.1 The search algorithm

In this section, we describe a search algorithm to find a gawehtbad location.
In many applications, it is beneficial to search for this tamain an online fash-
ion because the location of the mote whose data will be daad@dd can change
locally, the signal properties may change over-time, ortfit may not have the
localization capability to visit a location accurately.

As mentioned in the previous section, it is very difficultniét impossible, to
use local gradient information to seek a good location. Aergiobal approach is
needed. The strategy we present uses two environment dapgratameters. The
first parametef is a lower-bound for an acceptable signal strength (LQIealBor
example, an appropriafe value for the environment where the experiment shown
in Figure 4 was performed, is 95. The second vaiuis mainly a grid resolution
and it is set to the distance within which the link quality iegictably good. For
the environment where the experiment shown in Figure 5weft performed, an
appropriatex value is 8 ft.

Upon hearing a beacon message, the robot finds a good lobgtiacing a grid
on the environment where the dimension of each cell is déteanby o. When
the robot visits a grid cell, it rotates 90,180,270 degrees. This allows us to get
rid of local multi-path effects and to simultaneously seeffomd orientation. At
each rotation, the robot takes five link quality measuresiertte quality of each
orientation is defined as the median of these five measursniém weight of each
cellis then set to the the highest of these four median valogdise algorithm below,
measuréc) subroutine performs these steps at cell locatioVe also keep track of
a table where we store the expected link qualities. For eacisited cell, we set the
average of neighbor cells which are visited before agitpectedveightvalue for
that cell. Next, robot visits the location with maximum egfe weight.

The robot searches for a good grid cell using the followingrtstic:

Algorithm 1 LocalSearch

1: expectedweightc € C) « 0, ¢« (0,0) (initial location)

2: while there are unexplored celtio

3 if measuréc) > B then

return

end if
Forall ¢’ € Neighborc) if it is unvisited, make update:
expectedweight(c’) = mean{Ve cneighborcymeasuréc”))
7:  Cc+ maxy expectedveightc’)
8: end while

o a R

A couple of comments are in order. If tifievalue is not known, we can setitto a
high value. In this case, the robot will visit all grid-cel\&/e can then pick the best
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location. Second, it is very easy to incorporate collisisoidance into the strategy
by setting the weight of a cell to zero if there is an obstatteat cell.

In the next section, we demonstrate the utility of this siggtwith a series of
experiments.

4.2 Search experiments

We tested the search algorithm in a number of settings. fnsbhétion, we present
two of these results.

» Initial location,

Obstacle’

Initial position

(4,109 (3:96)

(2,91)

(4,84) (5,76)

!

| (1.83)

(8,88) (7.98) (6,76

(9,108

Fig. 6 Bottom figures show a virtual grid used by the search algoritfhe black rectangles show
the location of the motélop Left: The setup for an indoor experiment. The picture shows thie bes
configuration found by the search algorithBottom Left: Steps in finding a good location in the
setup shown on toplop Right: Search performed in an outdoor setting. The picture shoess th
best configuration found by the search algorithm. The shadBdorresponds to the obstacle that
robot avoidedBottom Right: Steps taken during outdoor search.

The first experiment was performed in the indoor setting shiowrigure 6-left.
The signal strength in TelosB mote was set to 3. The otheesyparameters were
o =1.5mandf = 100.

When the robot started from the initial location shown in figeire, it quickly
converged to a good location. Robot’s steps are shown inr&igrleft bottom where
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the visited cells are labeled with the forratr): sis the order the cell was visited
andr is the maximum value sampled from four orientations.

The second experiment was performed in an outdoor settitfywi= 3m and
B =100. As shown in Figure 6-right, the robot quickly converged good location.

In conclusion, the simple search strategy presented irséoson was very effi-
cientin finding a good download location. Where most locateske heuristics would
get stuck with a single cell, the presented search stratagkly converges to a
robot pose from where the data can be downloaded efficiently.

5 System design

In this section, we describe a system which incorporatesethdts presented in this
paper. In Section 5.3 we present experimental results wdeahonstrate the utility
of these components.

5.1 Hardware Components

Our system consists of three classes of devices. (i) Th@semstes are Crossbow
Telos, (rev. B) which use the CC2420 chip. They are IEEE 8R24.¢ompliant. We
deployed three static motes in the fourth floor lounge of thgitBl Technology
Center (DTC, Walter Library) at the University of Minnesptavin-Cities. The ex-
perimental setup is shown in Figure 7. (ij) The mobile rolsoain iRobot Create
without the command module. (iii) The control program foe ttobot runs on an
Asus Eee PC, which interfaces with the Create directly thhoa USB-to-Serial
cable. The system ran Linux (Ubuntu) and our Java and C++ramagjused serial
communication libraries to write motion commands to theotolm accordance with
the Create Open Interface (Ol) specifications.

5.2 Adaptive Beacon Scheduling

The control program on the TelosB motes was written inrtee C language, then
compiled and programmed onto the mote usingyOS 2. x. In our design, sens-
ing motes transmit beacon messages and the base statioattacteed to the mobile
robot listens for these messages.

To allow the TelosB motes to have an adaptive beacon schedelstore a bea-
con time interval array on each mote. A one-shot timer cyitiesugh the array, al-
lowing the mote to keep its transmitter off for arbitraryantals. We set the receiver
sleep interval using theowPower Li st eni ng interface. However, we believe
that since we have packet acknowledgments enabled, thveeoé the sensing
mote is turned on every time it sends a beacon. This desigeidecould be re-
placed with unacknowledged packets. In both cases, oumaptieacon schedule
helps save power on the mote by reducing the amount of timegluhich the
transmitter and/or the receiver are active.
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Fig. 7 A proof-of-concept deployment. The stars are approximatatlons of the data nodes. The
dashed lines show their communication range. The squaeekeations where the robot starts
either the download or the local search.

5.3 Experiments

We performed four experiments to demonstrate the utilitynebrporating both

beacon scheduling, and local search. The experiments aselibe (B), beacon
scheduling (BS), local search (LS) and both local searchitsaton scheduling
(LSBS). Each experiment consisted of 8 rounds. In each rowtdt visits a pre-

defined location for each mote, and downloads the data framntiote. The loca-

tions that the robot starts downloading (shown as squar&gin7) are fixed for

comparison purposes: For example, if in experiment B thetrdbwnloads from a

fixed location then in experiment LS, the robot starts thallsearch from the same
location.

We picked a range of download locations in a mote’s vicingysimulate the
effects of localization uncertainty: If the robot does navé accurate means of lo-
calization, even if it targets a fixed location to downloadad@ may be off from
that location by a distance given by the uncertainty randrArriving at a prede-
termined location, the robot either directly downloads dla¢a (experiment B and
BS), or performs a local search to find a good location beforendbading (LS and
LSBS experiments). After download finishes, the robot eitoatinues to the next
mote directly (experiments B and LS), or computes an updbézton schedule
based on interarrival times, uploads it to that mote andg®ds to the next mote
(experiments BS and LSBS).

In all experiments, the beacons are special messages whypkag consists of
(i) the node id of the mote, and (ii) a sequence number of tiggdred beacon.
To compare the local search with base case, we needed a nwmuhancompare
the trade-off between energy gain in efficient download ametgy spent in extra
beacons sent during the search phase. Therefore, we usepat&iages which are
the same as the beacon type messages. To download the datmate, the robot
must successfully hear 100 additional beacons. This reptescenarios where the
data stored on the mote corresponds to 100 messages andt atiust be success-
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Fig. 8 The robot interarrival times from our experiments were niedi@s normal distributions.

fully downloaded. This way, we can use the last received m@aequence number
for each mote to represent the total energy consumptioniersgtent in beaconing
and download. Even with this modest amount of data, eachrienpet lasted about
an hour.

In experiment B, we choose the beacon interval for discopéigse as 5 sec-
onds. This guarantees an expected robot waiting timebafe. The optimal beacon
scheduling algorithm of Section 3 and the robot inter-atrdistribution observed
in experiment B are used to achievé® 8ec waiting time in experiment BS. In ex-
periment LSBS, we used the interarrival times from the LSeexpent to compute
the optimal beacon schedule for this case. The recordedhimital times and the
robot’s arrival model are shown in Figure 8. In experiment 88 optimum beacon
schedule uses 8 beacons.

In comparison to the number of beacons (B58: 110) in the base experiment B,
the beaconing strategy yields significant energy savingsé&8ons) while satisfying
the same expected waiting time constraint. Comparing ttaénamber of beacons,
we can see the effect in total performance. Beacon schegdiniexperiment BS
reduced the total number of beacons to 2791 compared to 4&88@eriment B, the
baseline (first and second columns in right of Table 1).

The left one of the two tables shown in Table 1, shows the gdoks rates for
various locations in each experiment. Clearly, local degmovides a significant
reduction in packet loss rate for the first two locations (pare B versus LS and
BS versus LSBS) where the distance prevents a lossless coicatian between
the mote and robot. For example, in the experiment B, therficde has to sent 538
packets until the robot successfully downloads all of thé déta packets, whereas
after local search no packet is lost. We can see the efficiehtgcal search for
the first two rounds of the examples in table on the right @abl On the other
hand, for the rest of the rounds, the local search does neidesignificant gains.
In fact, the energy consumption slightly increases in expent LSBS compared
to BS experiment due to the overhead (i.e. number of beacamsdsiring local
search).

It is worth noting that in this indoor setting, the robot'sdbpath is relatively
short compared to the search distance. Thus, the seardheaEbecomes compa-
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rable to the number of discovery beacons. When the traveiiss are large, (e.g.
in outdoor settings), the search overhead will become gibdgi. In this case, local
search will yield more significant energy savings.

[Dist. ]| B | BS|LS|LSBS|
7.5m ||173%[36%|0%| 1%
6.25m| 7% (21%|0%| 1% | || B |BS| LS ||_s|33|

Sm__|| 11%] 0% [0%) 0% |75 111647 897] 997] 828

3.75m|| 8% | 0% |0%| 0% |I—3-513197(18943215 2152
2.5m || 2% | 3% [0%)| 3%

T7m 1T 0% 1 0% (0%l 0% [Total]]48392791]4212] 2980]
0.9m || 0% | 0% [0%| 0%
0.1m || 0% | 0% [0%| 0%

Table 1 Left table shows the package loss rates for each experimentsagBBS:Local
Search,BS: Beacon Schedule, LSBS: Local Search and Beatmu8e together) with respect
to the distance that robot starts to download or starts tdoied search. For each download we
calculate the number of packet loss until robot hears 10@dreaRight figure shows the total
number of beacons send from 3 motes during the experiment.

Overall, the experiments clearly demonstrate that (i) &dafpeaconing strate-
gies yield significant savings in the number of discoverydoaa sent, and (ii) local
search strategies can result in drastic improvements idghaload time when the
link quality is unpredictable.

6 Conclusion

In this paper, we addressed two problems that arise in atjglits where robots
collect data from static nodes. In the first problem, the goi@ minimize the energy
spent by the static nodes for beaconing. For this problemgpimal beaconing
strategy based on dynamic programming was presented. ketuad problem, the
goal is to minimize the energy spent in communication. Fgrghirpose, we present
a strategy for the robot to adaptively discover a downloadtion where the signal
is strong. The strategy is based on insights gathered byiexpets. We report these
in the paper as well. Finally, we present an indoor systend#&ba collection which
incorporates the algorithms presented in the paper. Exjertis performed on the
system demonstrate the utility of the two results in the pape

There are additional factors (e.g. robot’s interarrivalgs, the amount of data to
be downloaded at each round) which effect the overall sygterformance. Cur-
rently, we are building an outdoor system for habitat mamiwincluding a new
robotic platform. In the near future, we will demonstrate tse of these results
within the context of a field application in environmentalmitoring.



16 Onur Tekdas, Nikhil Karnad, Volkan Isler

Acknowledgments
This work is supported in part by NSF Grants 0907658, 091 &id50707939.

References

1. Atay, N., Bayazit, B.: Mobile wireless sensor network wectivity repair with k-redundancy.
In: Proceedings of the 2008 International Workshop on thgoAthmic Foundations of
Robotics, WAFR (2008)

2. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configurisgnsor Networks Topologies.
IEEE Transactions on Mobile Computiidg3), 272—285 (2004)

3. Chatzigiannakis, I., Kinalis, A., Nikoletseas, S.: H#fitt data propagation strategies in wire-
less sensor networks using a single mobile sink. Computerm@mications31(5), 896-914
(2008)

4. Corke, P., Hrabar, S., Peterson, R., Rus, D., Saripall§&hatme, G.: Autonomous deploy-
ment and repair of a sensor network using an unmanned aefhale. In: Proceedings of
the 2004 IEEE International Conference on Robotics and ratmn (ICRA), vol. 4, pp.
3602—-3608 (2004)

5. Dixon, C., Frew, E.: Controlling the mobility of networlodes using decentralized extremum
seeking. Decision and Control, 2006 45th IEEE Conferenc006)

6. Kansal, A., Somasundara, A.A., Jea, D.D., Srivastav&.MEstrin, D.: Intelligent fluid in-
frastructure for embedded networks. In: MobiSys '04, pd-124. ACM (2004)

7. Li, Q., Rus, D.: Navigation protocols in sensor networR€M Transactions on Sensor Net-
works 1(1), 3-35 (2005)

8. Lindhe, M., Johansson, K.: Communication-aware trajgdracking. Robotics and Automa-
tion, 2008. ICRA 2008 pp. 1519-1524 (2008)

9. Ma, J., Chen, C., Salomaa, J.P.. mMWSN for Large Scale M@&®hsing. Journal on Signal
Processing Systentd(2), 195-206 (2008)

10. Mostofi, Y.: Communication-aware motion planning inifedenvironments. Robotics and
Automation, 2008. ICRA 2008 pp. 3169-3174 (2008)

11. Musaloiu-E., R., Terzis, A., Szlavecz, K., Szalay,@ogan, J., Gray, J.: Life Under your Feet:
A Wireless Sensor Network for Soil Ecology. In: EmNets Warigs (2006)

12. Schurgers, C., Tsiatsis, V., Ganeriwal, S., Srivastilia Topology management for sensor
networks: exploiting latency and density. In: MobiHoc, pg5-145 (2002)

13. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data muleslefing and analysis of a three-tier
architecture for sparse sensor networks. Ad Hoc Netwib{&s3), 215—-233 (2003)

14. Somasundara, A.A., Kansal, A., Jea, D.D., Estrin, DvaStava, M.B.: Controllably mobile
infrastructure for low energy embedded networks. IEEE 3aations on Mobile Computing
5(8), 958-973 (2006)

15. Tarig, M.M.B., Ammar, M., Zegura, E.: Message ferry mdesign for sparse ad hoc networks
with mobile nodes. In: MobiHoc '06, pp. 37—48 (2006)

16. Tekdas, O., Isler, V.: Robotic routers. In: Proceedfgbe 2008 IEEE International Robotics
and Automation. ICRA 2008, pp. 1513-1518 (2008)

17. Tekdas, O., Lim, J., Terzis, A., Isler, V.: Using mobibots to harvest data from sensor fields.
IEEE Wireless Communications (2008)

18. Wang, W., Srinivasan, V., Chua, K.C.: Using mobile relayprolong the lifetime of wireless
sensor networks. In: MobiCom 05, pp. 270-283. ACM (2005)



