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Abstract

In recent years, it is becoming increasingly difficult to ignore the impact Web
robots have on both commercial and research institutional Web sites. In particular,
e-commerce retailers are concerned about the unauthorized deployment of robots for
gathering business intelligence at their Web sites. Web robots also tend to consume
considerable network bandwidth at the expense of other users. Sessions due to Web
robots are making it more difficult to perform clickstream analysis effectively on the
Web data. Thus, it is crucial to identify visits by Web robots and distinguish them
from other accesses. Conventional techniques for detecting Web robot sessions are
often based on the User Agent and IP Address of clients. These techniques are not
sufficient for detecting previously unidentified robots. In this paper, we propose a
solution to this problem by detecting Web robots based on the characteristics of
their access patterns. Our experimental results showed that highly accurate robot
classification models can be obtained using these access features. We have used our
models to isolate mislabeled sessions and found that most of the mislabeling are due
to camouflaging and previously unidentified robots.

1 Introduction

Web robots are software programs or agents that automatically traverse the hyperlink
structure of the World Wide Web in order to locate and retrieve information from the

Internet. The emergence of the World Wide Web as an information dissemination medium,
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along with the availability of many Web robot authoring tools have resulted in the rapid
proliferation of Web robots unleashed on the Internet today. These robots are sent out to
scour the Web for various purposes. For instance, they can be used to collect statistics
about the structure of the World Wide Web [10]. Internet search engines such as Google [9]
and Altavista [1] rely on the documents retrieved by Web robots to build their index
databases. Web administrators employ Web robots to perform site maintenance tasks
such as mirroring and checking for broken hyperlinks. Web robots are also used to collect
email addresses and online resumes, monitor product prices and corporate news, etc. The
widespread deployment of robots has made it important to understand the impact of Web
robot visits to any given Web site.

There are many situations in which it is desirable to identify visits by Web robots and
distinguish them from other users. Firstly, e-commerce retailers are particularly concerned
about unauthorized deployment of Web robots, which are used for gathering business
intelligence at their sites. In such a situation, the e-commerce site may want to stop
responding to HTTP requests coming from the unauthorized robot. For example, eBay
filed a lawsuit against an auction aggregator site last year for using unauthorized shopbots
to retrieve auction information from their Web site.!

Secondly, many of the e-commerce Web sites perform Web traffic analysis in order to
infer the demographic and browsing behavior of their site visitors. Unfortunately, such
analysis can be severely distorted by the presence of Web robots. For example, Figure
1 shows the total number of sessions and HTML pages requested at the University of
Minnesota Computer Science department Web site between the period of January 1, 2001
and January 31, 2001. On average, about 5% of the total sessions are due to visits by Web
robots. However, Web robot sessions may account for as many as 85% of the total number
of HTML pages requested. If these robot sessions are not identified and eliminated, an
analyst may end up making the wrong inferences about his/her site visitors.

Thirdly, the deployment of Web robots usually comes at the expense of other users
because they often consume considerable network and server resources. Poorly-designed
robots may tie up these resources and overload the Web server. In this situation, it will be
desirable to detect the disruptive robots and reduce their priority of service immediately.

Fourthly, Web robot accesses could be indicative of fraudulent behavior. For example,

! An auction aggregator combines information from various on-line auction sites and list the integrated
results at their own Web site. As a result, consumers using an aggregator site can buy products from
sellers who posted their auctions at another auction site without ever visiting the auction site. This is of
great concern to many auction site operators because consumers and sellers may stop visiting their Web

site and use the services of aggregator sites instead.
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Figure 1: Total number of sessions and HTML requests due to robot sessions (compare to the
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site mapping robot called linbot.

there are many click-through payment programs established on the Web, in which an
advertiser (i.e. the target site) would reward the referring Web site for every visitor who
reach the target site by clicking on the referrer’s advertisement banner. Such a payment
scheme can be easily abused by unscrupulous referrer site owners who use Web robots to
inflate the clickthrough rate. Thus, detection of Web robot sessions is absolutely necessary
to protect the target site owner from such malpractice.

Even though Web robot detection is a widely recognized problem, there are very few
published papers in this area. A standard way to identify robots is by examining the client’s
identity in the HTTP request messages sent to a Web server [30, 24]. By comparing the
IP Address and User Agent fields of the request messages against those of known robots?,
accesses by many of the well-known robots can be detected. Unfortunately, since Web
robots can be easily constructed and deployed, it has become almost impossible to keep a
comprehensive database of all robots. This problem is exacerbated by robots that attempt
to disguise their identities by declaring their User Agents to be similar to conventional Web
browsers such as Netscape or Microsoft Internet Explorer (e.g. the last entry in Table 1).

Thus, standard techniques may fail to detect the presence of such robots.

2Currently, there are various Web robot repositories available on the Internet. These repositories
maintain a list of User Agents and/or IP addresses of known robots. The most popular one is the Web

Robots Database at http://info.webcrawler.com/mak/projects/robots/active/.



Table 1: List

of IP Addresses and User Agents for several Web clients.

Client’s Type

IP Address

User Agent

Browser (Netscape)

160.94.178.152

Morzilla/4.7 [en] (X11; I; Linux 2.2.14-5.0 i686)

Browser (Microsoft IE)

160.94.178.205

Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)

Browser (Opera)

160.94.103.248

Opera/5.01 (Windows NT & Opera 5.0; U) [en]

Search Engine 64.208.37.53 Googlebot /2.1 (+http://www.googlebot.com /bot.html)
Email Harvester 4.41.77.204 EmailSiphon

Offline Browser 24.43.172.37 Teleport Pro/1.29

Link Checker 204.94.209.1 LinkScan/6.1b Unix http://www.elsop.com/

Search Engine

(looksmart.com)

207.138.42.10

Mozilla/4.5 [en] (Win95; I)

In this paper, we offer a potential solution by detecting Web robots according to their
navigational behavior. Our main assumption is that Web robots traversing a Web site
with the same information need will exhibit similar access behavior, regardless of the
identities they present to the Web server. Our goal is to build classification models that
will distinguish robot from non-robot sessions. Since a Web client’s behavior is dynamic

in nature, our classification models must be able to capture the temporal changes of the

navigational patterns.

The main contributions of the paper are as follows:

1. We present an analysis of the navigational behavior for various types of Web robots

and show empirically that such behavior depends on their navigational goals.

2. We propose a robust session identification technique to preprocess the Web server

logs. This technique can identify sessions having multiple IP addresses (e.g. accesses

by AOL users).

3. We show that highly accurate robot classification models can be induced using the

navigational features of Web clients.

4. We present a technique for identifying mislabeled training and validation samples.

This technique can be used to detect both camouflaging and previously unknown

Web robots.

The rest of the paper is organized as follows. In Section 2, we present an overview of the
Web robot detection problem and discuss some of the techniques used to solve the problem.

Section 3 describes the preprocessing steps needed to convert the raw click-stream data




Table 2: Some of the common Web Robots and their typical characteristics.

Client’s Type ‘ Examples ‘ Navigational Goals Characteristics
Search Engine | T-Rex[18], maximize coverage of Breadth first search,
Robots Scooter[1] a Web site Unassigned referrer
Offline Teleport Pro[25], download entire or portion | varied behavior
Browser Offline Explorer[19] of Web site to local disk
Email EmailDigger][7], maximize coverage of unassigned referrer,
Collector Extractor Pro[§] home pages ignore image files
Link Checker | LinkScan[17], check for broken links use HEAD request method,
Xenu’s Link Sleuth|[28] unassigned referrer

into server sessions. A discussion about how to derive the session features and class label
is also presented. This is followed by our experimental results in Sect. 4. Finally, Section 5

concludes with suggestions for future work.

2 Web Robot Detection: Overview

2.1 Characteristics of Web Robots

Before presenting the various techniques for Web robot detection, it is important to know
what are the different types of Web robots that are available today (Table 2). This is
because each type of robot may exhibit different characteristics based on the goal of their
navigation. Knowing the navigational goals of these robots can help us to identify the set
of relevant features for predicting robot sessions.

Eichman [6] divides Web robots into two distinct categories: (1) agents that are designed
to accomplish a specific task (such as browsing assistants and hyperlink checkers), and (2)
agents that are used to build information bases (such as email collectors and search engine
robots).

The goal of an Internet search engine is to index the Web pages of all the Web sites.
Search engine robots are deployed with the goal of maximizing their coverage of a par-
ticular Web site. As a result, they tend to use a breadth-first Web-retrieval strategy or
parallel retrieval in order to speed up their operations. Most HTTP requests coming from
popular search engine robots do not assign any values to their referrer fields. The refer-
rer field is provided by the HTTP protocol to allow a Web client (particularly, a Web
browser) to specify the address of the Web page that contains the link the client followed

in order to reach the current requested page. For example, a user, who wants to access



the page http://www.xyz.com/A.html by clicking on a link found at http://www.xyz.com,
causes the Web browser to generate an HTTP request with the referrer value equals to
http://www.xyz.com. Most search engine robots do not care about assigning a value to
their referrer fields. As a result, the referrer fields due to these robot accesses appear as
“-” in the Web server logs.
Link checkers [28, 17] are utility programs that are designed to assist Web site admin-
istrators in checking for broken hyperlinks and missing pages. Many link checkers would
send a special type of HTTP request message (called a HEAD request type) to determine
the validity of a hyperlink. A Web server responds to a HEAD request by sending an
HTTP response header, which contains a status code indicating whether the request has
succeeded or failed. The response to a HEAD request message does not involve a transfer of
the requested file, unlike the typical GET request message from Web browsers. Note that
Web browsers can also send HEAD request messages to validate the recency of a cached
HTML page.

Web robots are also designed for various other reasons. For example, email collectors
8, 7] are robots that automatically collect email addresses posted on the Web. These robots
tend to retrieve HI'ML pages only, and ignore image and other file formats. Offline browsers
are either stand-alone browsers or add-on utilities that allow a Web user to download an
entire Web site (or portion of it) to a local directory for offline viewing [27, 25]. The
characteristics of these robots vary, depending on their navigational goals. For instance,
offline browsers that download an entire Web site behaves similarly to search engine robots,
while those that download a small portion of the Web site (for pre-caching purposes)
resemble the characteristics of human users.

Table 2 summarizes the characteristics and navigational goals of several types of Web
robots. Other types of Web robots include personal browsing assistants [2, 16], shopbots

[11, 3], resume hunters and other special-purposed software agents.

2.2 Common Robot Detection Techniques

In this section, we will present some of the common techniques used to identify Web robot

sessions:

1. By examining sessions that access a specially-formatted file called robots.txt

The Robot Exclusion Standard [13, 22| was proposed to allow Web administrators
to specify which part of their site is off-limits to visiting robots, by using a specially-
formatted file called robots.txt. According to this Standard, whenever a robot vis-

its a Web site, say at http://www.xyz.com/, it should first look for a file called

6



http://www.xyz.com/robots.txt. This file contains a list of access restrictions speci-
fied by the administrator. For example, the following entry in robots.txt forbids all

robots from accessing the file http://www.xyz.com/private.html.

User-agent: *

Disallow: /private.html

Hence, Web robot visits can be inferred from sessions that access the robots.txt file.
This is a reasonably good heuristic because most Web sites do not provide a hyperlink
from any of its other pages to this file. Therefore, normal users are seldom aware of
the existence of this file. However, one can not rely solely on this criteria because
compliance to the Robot Exclusion standard is voluntary, and many robots do not
follow this standard.

. By examining the User Agent field of HTTP request messages from Web

clients

It is commonly agreed that poor implementation of Web robots can lead to serious
network and server overload problems. Thus, a protocol is needed to provide guid-
ance to appropriate robot behavior. Eichman [6] and Koster [14, 12] have proposed
several ethical guidelines for Web robot developers. The purpose of these guidelines
is to ensure that both the Web robot and Web server can cooperate with each other
in a way that will be beneficiary for both parties. Under these guidelines, a cooper-
ative robot should declare its identity to a Web server via its User Agent field. For
instance, the User Agent field for many of the well-known browsers often contain the
string “Mozilla”. Figure 2 illustrates such an example where an Internet Explorer
browser, identified by its user agent Mozilla/4.0 (compatible; MSIE 5.01), was used
to request for the HTML page, http://www.xyz.com/A.html. In practice, there are
many exceptions to this rule. Some robots (and browsers) would use multiple User
Agent fields within the same session. For example, an offline browser called Tele-
port Pro has an empty User Agent field when accessing the robots.txt file, but uses
“Teleport Pro” when downloading other documents. Even standard Web browsers
may issue requests with multiple User Agents. For instance, when plugins are used
by the Microsoft Internet Explorer browser to download certain types of documents,
such as PDF files, an additional HT'TP request is generated with a User Agent field
called “contype”; producing the following entries in the Web log:

203.94.250.186 - - [01/Jan/2001:15:18:04 -0600] "GET /grad-info/finapp.pdf



Browser

HTTP Request Header

GET /A.html HTTP/1.1

Host: www.xyz.com

Referer: /

Accept: image/gif, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0
(compatible; MSIE 5.01;

Windows NT)
Connection: Keep-Alive

HTTP Response
Header

HTTP/1.1 200 OK
Date: Mon, 26 Jan 2001
20:54:26 GMT
Server: Apache/1.3.6 (Unix)
Last-Modified: Fri, 14 Dec 2000
11:01:23 GMT
ETag: "le5cd-964-381elbd6"
Accept-Ranges: bytes
Content-length: 327
Connection: close
Content-type: text/html

Web Server

Figure 2: HTTP request and response header messages.

HTTP/1.1" 200 3993 "http://www.cs.umn.edu/grad-info/" "Mozilla/4.0 (compatible;
MSIE 5.01; Windows 98; bplnet-100)"

203.94.250.186 - - [01/Jan/2001:15:18:08 -0600] "GET /grad-info/finapp.pdf
HTTP/1.1" 200 3993 "-" "contype"

The problem becomes more complicated when robot designers attempt to disguise
their identities by using the same User Agent information as standard browsers.
In such a situation, detecting Web robots using the User Agent field is a hopeless
solution. Similarly, the presence of anonymizer Web sites can disguise the appearance
of Web users by changing the User Agent field of a browser to robot-like values such

as “SilentSurf” 3 and “Turing Machine” ?.

3. By matching the IP address of sessions with those of known robot clients

Various Web sites have begun to compile a list of IP addresses (and User Agents) for
known Web robots. However, such a list is often incomplete because it is infeasible
to obtain a comprehensive listing of all robots. Furthermore, the same IP Address
can be used by both humans, to browse the Web, and robots, to automatically
download some files. This approach also fails to detect camouflaging and previously
unknown robots. Alternatively, one can examine only the top visiting I[P addresses
of clients and verify the origin of each client. Unfortunately, this technique often

discovers only robots that are already well-known. Some robots use multiple IP

3 Anonymizer Web site at http://www.noproxy.com.
4 Anonymizer Web site at http://www.free.anonymizer.com.



addresses to parallelize their Web document retrieval. This complicates both the
session identification and robot detection problem. For example, a robot may access
the robots.txt file using one of its available IP addresses and fetches other documents
using the rest of the IP addresses. If accesses by these IP addresses are not identified
to be the same session, one can potentially lose information about the actual traversal
path of the robot.

4. By examining sessions with an unusually large number of HEAD requests

or HTTP requests with unassigned referrer fields

The guidelines for Web robot designers suggest that ethical robots should help to
reduce the burden on Web servers by using a low retrieval rate and the HEAD
request method, whenever possible, or by operating only when the server is lightly
loaded (e.g. at night). Therefore, one can examine sessions with a large number
HEAD requests to discover potential robots. Another reasonable heuristic is to look
for sessions having large number of requests with unassigned referrer fields. Most
robots (except for offline browsers and some utility programs such as Wget) do not
assign any value to this field in their HT'TP request messages. Nevertheless, these two
heuristics are not entirely reliable because Web browsers can sometimes generate both
HEAD request types (to check the validity of a cached page) and HTTP messages
with unassigned referrer values (e.g. when a user clicks on a bookmarked page or

type in a new URL in the address window).

2.3 Proposed Robot Detection Technique

The previous discussion suggests that a more robust technique is needed to identify visits
by camouflaging or previously unknown Web robots. In this paper, we propose to build
a classification model to identify robot sessions. This work is based on the assumption
that the navigational behavior of Web robots is distinct from the navigational behavior of
human users. In this paper, the navigational behavior of a Web client is characterized in
terms of what are the different types of pages being requested, how long is the session or
time between requests, what is the coverage of the Web site, etc.

Figure 3 shows a graphical comparison of the characteristics for several known robots
in contrast to those of human users. The width and depth parameters are used to infer
the search strategy employed by the Web client. For instance, search engine robots tend
to have large traversal width and shallow depth, indicative of a breadth-first behavior.
Discussion about how the width and depth parameters are computed will be given in the

next section. Note the agreement between the observed characteristics of robots and their
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Figure 3: Comparison of navigational patterns for serveral known Web clients: (1) A group of
users from Computer Science department at University of Minnesota (2) Search engine robots (3)
Offline browsers (4) Link checkers (5) Email collectors. Note that the width and depth parameters

are plotted on a logarithmic scale.

navigational goals as specified in Table 2. For example, most of the search engine robots,
link checkers and email collectors do not assign any values to their referrer fields. Offline
browsers have very similar characteristics as human users, in terms of the rate of HEAD
requests and unassigned referrer fields. Nevertheless, it is possible to distinguish the two
clients based on the width and depth of their access patterns.

The results of Figure 3 show that different Web clients collectively exhibit different
access characteristics, depending on their navigational goals. This suggests that it could
be possible to construct reasonably accurate classification models to detect the presence
of Web robots based on their navigational features. This is exactly the approach taken in

this paper.

3 Methodology

3.1 Data Source and Preprocessing

Web server logs are the data source used in our experiments. A typical Web log entry
contains information such as the IP address of the client, the date and time a request is
made, the request method and protocol used, the URI of the requested page, the status
code of the response message, the size of the document transferred, the referrer page and

its User Agent information.
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During preprocessing, the log entries are grouped into server sessions using a variation
of the session identification heuristic proposed in [4]. Unlike [4], our approach is capable of
identifying sessions having multiple IP Addresses or User Agents. The session identification

technique will be described in the Appendix.

3.2 Feature Vector Construction

Once the server sessions are created, the next step is to construct a feature vector to
represent each session. Table 3 presents a summary of attributes that can be derived from
the server sessions. Each session can be broken up into several episodes. In our analysis,
the events of interest within a session are the requests for HIML pages. Thus, each
episode is associated with a tuple, (p;,p;), where p; and p; are the requested and referred
HTML pages®. The computation of temporal attributes such as totalTime, AvgTime and
stdevTime is illustrated in Fig. 4. The totalTime attribute is approximated by the interval
between the first and last log entry of the session. On the other hand, avgTime and
stdevTime is computed using the intervals between successive episodes in the session.

The width and depth attributes are computed by constructing a graph representing
all episodes within a session. For example, if a session contains the following episodes,
{ (/A-), (/A/B,/A), (/A/B/C,/A/B)}, then its width will be 1 and its depth will be 3.
Basically, the width attribute measures the number of leaf nodes generated in the graph
while the depth attribute measures the maximum depth of the tree(s) within the graph.
Therefore, a session that contains requests for {(/A,-) (/A/B,/A), (/C,-) (/D,-) } will have
a width of 3 and a depth of 2. Sessions without HTML requests, denoted as {(-,-)}, are
assumed to have depth and width equal to 1.

Multil P and MultiAgent are binary flags to indicate whether a session contains log
entries with multiple IP addresses and User Agents. Attributes 2 to 10 correspond to the
various types of files requested, whereas attributes 17 to 20 measure the various request
methods used during a particular session. The Night attribute is used to determine if the
session made at least one request between 12am and 7am (local server time). The Repeated
attribute computes the percentage of non-unique page requests within a session. For in-
stance, if the total number of pages requested in a session is 10 and the total number of
unique pages is 4, then the Repeated value is (10 —4)/10 = 0.6. The Error attribute com-

putes the rate of unsuccessful requests made within the session. The rest of the attributes

5Note that our definition of an episode is different from the terminology adopted by the W3C committee.
Also, a session that do not contain any HTML requests will have a single episode, (—, —), associated with

its last log entry.
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Figure 4: This session contains two episodes. t1, t2, 3, t4 and t5 are the timestamps recorded
in the server logs. The approximated total time of the session is £5 — 1 while the period between

the two episodes is t4 — ¢1.

are self-explanatory.

3.3 Session Labeling

The assignment of class label to a session is based on the following heuristics:

1. If a session contains a request for the robots.txt file, then the session is identified as

a robot session (denoted by Class = 1).

2. If the agent field of a session corresponds to the agent of a known or suspected Web
robot, then it will be assigned the value Class = 1. In our work, we have divided
the User Agents into 4 distinct categories: Type 1 (known robots), Type 2 (known
browsers), Type 3 (possible robots) and Type 4 (possible browsers or plugins used to
retrieve files of specific formats). The partitioning of User Agents according to their
categories is done semi-automatically. We manually verify the identity of some of
the unknown agents by doing a Web search on the unidentified User Agent. Type 3
and Type 4 agents contain names that would suggest they are likely to be robots and
browsers, respectively. Some examples of these agents are shown in Table 4. In our
experiments, we assign sessions with Type 4 agents as browsers (Class = 0), while

those with Type 3 agents as robots (Class = 1).

There are other heuristics we can use to supplement the above labeling scheme. For

example, if all the requests are made using the HEAD method, then the session is most
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Table 3: Summary of attributes derived from server sessions. The attributes are used for class

labeling (denoted as Classify) or constructing the feature vector representation (Feature).

Id | Attribute Remark Purpose
Name
1 | totalPages Total number of pages requested. Feature
2 | % Image % of image pages (.gif/.jpg) requested. Feature
3 | % Binary Doc | % of binary documents (.ps/.pdf) requested. Feature
4 | % Binary Exec | % binary program files (.cgi/.exe/.class) requested. Feature
5 | robots.txt binary; indicates whether robots.txt file is requested Classify
6 | % HTML % of HTML pages requested. Feature
7 | % Ascii % of Ascii files (.txt/.c/.java) requested. Feature
8 | % Zip % of compressed files (.zip/.gz) requested. Feature
9 | % Multimedia | % of multimedia files (.wav/.mpg) requested. Feature
10 | % Other % of other file formats requested. Feature
11 | totalTime Server session length (Fig. 4). Feature
12 | avgTime Average time between episodes (Fig. 4). Feature
13 | stdevTime Standard deviation of time between episodes (Fig. 4). Feature
14 | Night binary; for requests made between 12am and 7am (local time). | Feature
15 | Repeated Reoccurence rate of file requests. Feature
16 | Error % of requests with status > 400. Feature
17 | GET % of requests made with GET method. Feature
18 | POST % of requests made with POST method. Feature
19 | HEAD % of page requests made with HEAD method. Classify
20 | OTHER % of requests made with other methods. Feature
21 | width width of the traversal (in the URL space). Feature
22 | depth depth of the traversal (in the URL space). Feature
23 | length Session length (total no of episodes). Ignore
24 | referrer = “-” % of requests with unassigned referrer Classify
25 | MultilP binary; indicates whether session contains multiple IP Feature
26 | MultiAgent binary; indicates whether session contains multiple agents Feature

13



Table 4: Examples of different User Agent types.

‘ User Agent ‘ Agent Type
ArchitextSpider Type 1
Mozilla/4.0 (compatible; MuscatFerret/2.0; http://www.webtop.com/) | Type 1
Mozilla/4.0 (compatible; MSIE 4.01; Windows NT) Type 2
Mozilla/4.0 (compatible; MSIE 5.0; AOL 6.0; Windows 98; DigExt) Type 2
Mozilla/4.0 (compatible; MSIE 5.0; Windows 98) Opera 5.01 [en] Type 2
Lynx/2.8.3rel.1 libwww-FM/2.14 SSL.-MM/1.4.1 OpenSSL/0.9.6 Type 2
www4dmail/2.4 libwww-FM/2.14 (Unix; I) Type 3
unknown/1.0 Type 3
contype Type 4
Windows-Media-Player/7.00.00.1956 Type 4

likely created by a link checker robot. Another heuristic could be based on the referrer
field of the session. If a Web client does not assign a referrer value to any of its requests,
then there is a strong possibility that the Web client is a robot, as long as the number
of requests is large. If number of requests is small, the session is more likely created by
a Web user. This is because a Web browser does not have a referrer value when a user
submits a URI from the address window or clicks on a bookmark entry (these are known as
user-input clicks). For long sessions, the likelihood that a Web browser generates only user-
input clicks are minimal. By selecting an appropriate threshold on the minimum number
of requests, one can potentially identify new robot sessions.

A summary of the session labeling algorithm is shown in Table 5. First, the algorithm
would find all types of User Agents that appear in a given session. Sessions that contain
only a single agent type will be identified as robots if their User Agents are of Type 1 or
3, and non-robots otherwise (line 6). A labeling scheme that favors non-robots is used to
handle sessions with more than one agent type (lines 10 to 12). There are two reasons for
using such a labeling scheme. Firstly, it was observed that the majority of the multi-agent
type sessions contain either combinations of Type 2 and Type 3 agents, or Type 3 and Type
4 agents. These sessions are due to users who invoke a helper application while browsing

the Web as illustrated in the following example:®

1565.239.194.112 - - [01/Jan/2001:14:38:37 -0600] "GET /“mein/blender/plugins/
HTTP/1.1" 200 1562 "http://www.rash.f2s.com/links.htm"
"Mozilla/4.0 (compatible; MSIE 5.0; Windows 98)"

6Go!Zilla is a download manager that allows a user to recover from any failed downloads.
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Table 5: Session Labeling Algorithm.

Labeling Algorithm (H: array of sessions, ¢: length threshold) {
1. for each session s € H do

2 if s contains a request for robots.txt then s.Class =1
3 Let Agents = getUserAgent(s)

4 Let AgentTypes = getAgentTypes(Agents)

5. if s.MultiAgent =1 then

6 if Typel € AgentTypes or Type3 € AgentTypes

7 then s.Class =1

8

9

else s.Class = 0

else
10. if (T'ype2 € AgentTypes or Typed € AgentTypes)
11. then s.Class =0
12. else s.Class =1
13.  if Class(s) = 0 and s.length > t then
14. it s HEAD = 100% or s.(referrer="-") = 100%
15. then s.Class =1
16. end;
165.239.194.112 - - [01/Jan/2001:14:43:34 -0600] "GET /“mein/blender/plugins/plugins.zip

HTTP/1.1" 206 626775 "http://www-users.cs.umn.edu/ mein/blender/plugins/"
"Go!Zilla 3.5 (www.gozilla.com)"

Secondly, there are a few multi-agent type sessions with combinations of Type 1 and
Type 2 agents. These sessions contain a browser-like Type 2 agent as well as a robot-
like Type 1 agent such as “Javal.l””. Further analysis revealed that such sessions are
created by Web browsers accessing HITML pages containing Java applets. This explains
the rationale for choosing a labeling scheme that favors non-robots. Finally, for sessions
that are still classified as non-robots, we use the HEAD and referrer tests to verify the

correctness of their class labels (line 14).

3.4 Classification

Once the set of relevant features have been identified, classification models are built using
the well-known C4.5 decision tree algorithm [21]. There are two main classification ob-

jectives we would like to achieve : (1) to find a good predictive model for detecting Web

"This User Agent is often associated with the various Java-based agents crawling our Web site. This is

why it is initially categorized as a Type 1 agent.
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Table 6: Summary of Data set.

G1 : contains samples with Type 1 (known Robot) and Type 2 (known Browser) User Agents.

G2 : contains samples with Type 3 (possible Robot) and Type 4 (possible Browser) User Agents

Experiment | Description ‘

EO Both training and test data sets contain only G1 samples.

E1l Both training and test data sets contain G1 and G2 samples.

robots based upon their access patterns, and (2) to determine the minimum number of
episodes (HTML requests) needed to produce reasonably accurate models.

The overall data set is partitioned into two groups:
1. G1 (clean data), which contains all samples of Type 1 and Type 2 User Agents; and
2. G2 (noisy data), which contains all samples of Type 3 and Type 4 User Agents.

Our classification models can be built using samples from G1 (E0), or mixture of G1 and
G2 (E1). A summary of the properties of the different data sets is given in Table 6.
There are various metrics we can use to evaluate the classifier performance. Accuracy
is a reasonable metric, as long as the data set remains evenly distributed (between robots
and non-robots). Otherwise, we need to compensate the imbalanced class distribution via
stratification, or use other meta-learning techniques such as bagging and boosting. In the
area of information retrieval, recall and precision are two popular metrics used to evaluate

binary classifiers :

no of robot sessions found correctly
recall,r = , (1)
total no of actual robot sessions

o no of robot sessions found correctly 2)
recision,p = - : )
P P total no of predicted robot sessions

A classifier that assigns the value 1 to every session will have perfect recall but poor
precision. In practice, the two metrics are often summarized into a single value, called the

Fj-measure [26] :

B 2rp
= )

This value is maximized when r and p are close to each other. Otherwise, the value of

Fj-measure is dominated by the smaller of r and p [29].
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3.5 Identifying Mislabeled Sessions

Despite our concerted effort, some robot sessions are still wrongly labeled. These are mostly
robots that have the same User Agent field as Web browsers. In this section, we present
an ensemble technique for identifying the mislabeled sessions. Basically, this technique
assigns a score to each sample, predicting the likelihood of the sample being mislabeled.

The technique uses the C4.5 classification models built from all the attributes described
in Table 3. This may include attributes that are used to determine the class label of the
session (robots.txt, HEAD request, etc). Since C4.5 uses a pessimistic pruning strategy
to avoid overfitting, the leaf nodes of the decision tree it produces contain a probability
distribution for each class. We denote these probabilities as P(0/X, m) and P(1]X,m),
where P(i| X, m) is the probability that a sample X belongs to class i according to classifier
Ch.

Suppose there are k classifiers, C, Cy, .-+, Cy, built from the training samples. Let
t(X) be the true class of sample X according to our labeling heuristics, while ¢(X, m)
is the predicted class label assigned by classifier C,,. Furthermore, let A(m) denotes the

accuracy of classifier C,.
Using the above definitions, for each sample X and classifier C,, we define a false
positive F/P(X|C,,) or false negative F'N (X |C,,) score according to the following formulas:

0 if t(X) = ¢(X,m),
FP(X|Cy,) = (4)
{A(m) x |P(e(X,m)|X,m) — P(t(X)|X,m| if t(X) # ¢(X,m) and t(X) = 0.
0 if t¢(X) = e(X,m),
FN(X) = (5)
{A(m) x |P(c(X,m)|X,m) — P(t(X)|X,m)| if t(X) # ¢(X,m) and t(X) = 1.

The overall false positive or false negative score of a sample, X, is given by FP(X) =
S FP(X|Cp) and FN(X) = Y2F _ FN(X|C,,). High FP(X) scores indicate that
these sessions are currently assigned as non-robots, but the classification models suggest
that they are very likely to be robots. By examining the log entries for these sessions,
one can verify whether the sessions are indeed non-robots or are mislabeled by the session
labeling heuristics. Later, we will show that many of the high FP-score sessions are indeed
mislabeled sessions due to camouflaging robots.

Sessions with high FN-score are most likely due to offline browsers and Type 3 robots.
As shown in Figure 3, the characteristics of an offline browser may resemble that of human
users. This explains why they are often mistakenly identified as non-robots. Type 3 robots
are mostly utilities that are used to download files from the Web. Sessions due to these
robots are often very short, thus making it difficult for our classifiers to distinguish them

from other non-robot accesses.
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4 Experimental Evaluation

4.1 Experimental Data Set

Our experiments were performed on the University of Minnesota Computer Science depart-
ment server logs collected from January 1st to January 31st, 2001. We have consolidated
the logs from the two main Computer Science department servers, http://www.cs.umn.edu
(main server) and http://www-users.cs.umn.edu. Log entries that correspond to redirec-
tion requests from the main server to the other are also removed to eliminate duplicate
entries. The consolidated Web logs contain a total of 1,639,119 entries. After prepro-
cessing, 180,602 sessions are created; with different proportions of agent types as shown
in Table 7. Class labels are assigned to every session according to the session labeling
heuristic described in Section 3.3 (with threshold ¢ = 100).

Each session is then converted into a feature vector representation and broken up into
several episodes (i.e. HTML requests). A data set is created for each episode in the
following way. The data set for one episode is generated from all the sessions because each
session has at least one episode®. Sessions with more than one episode will be truncated
by computing their feature values up to the first HI'ML request. For dataset with two
episodes, we ignore all single episode sessions, and consider only those sessions with at
least two episodes. Again, sessions with more than two episodes are truncated. This
procedure is repeated up to sessions of length 7 (i.e. sessions having at least 7 episodes) as
shown in Table 7.

The training and test sets are created by randomly sampling into each data set. In order
to account for the unequal sizes of robot and non-robot sessions, we stratify the training
and test samples such that both robots and non-robot sessions have equal representation.
Stratification can be done by oversampling (E0 and E1) or undersampling (E3 and E4)
the overall population. For instance, suppose the original data set contains 200 robot and
2000 non-robot sessions. We first divide both the robot and non-robot sessions equally
between the training and test sets. As a result, both the training and test sets contain
100 robots and 1000 non-robots. For stratification by oversampling, each robot session
is duplicated 10 times to ensure that both classes are equally represented during model
building. In practice, the ratio of non-robot sessions to robot sessions can be quite large.
Replicating the robot sessions by a factor larger than 10 slows down the performance of the
C4.5 algorithm considerably. We decided to sample the non-robot sessions in the training

and test data sets such that the number of non-robot sessions is at most 10 times larger

81t was previously stated that sessions that do not contain any request for HTML pages are assumed

to have one episode (—, —) associated with its last log entry.
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Table 7: Number of sessions with different agent types for various session lengths.

Session length ‘ # Type 1 ‘ # Type 2 ‘ # Type 3 ‘ # Type 4 ‘ Total Sessions

1 8487 165354 2795 3966 180602
2 3171 49311 949 1234 94265
3 2115 30189 246 827 33377
4 1678 21367 158 658 23861
3 1458 15560 99 939 17656
6 1127 12057 74 439 13697
7 937 9732 29 393 11121

than the number of unique robot sessions. For stratification by undersampling, we sample
100 out of 1000 non-robots in both training and test sets. In addition to stratification, we
have also experimented with the full unstratified data set for E1. The unstratified data
set will be denoted as E2. A summary of the size of each data set, E0, E1, E2, E3 and E4
is given in Table 8. The C4.5 algorithm is then used to build the classification models for

each data set. Finally, the random sampling and model building procedure is repeated 10

times for all five data sets.

4.2 Correlation Analysis

Figure 5 shows the correlation ? between each attribute with the class label. The bar graph
is plotted for various session lengths (i.e. number of episodes in a session): The following

observations can be made from the results of Figure 5:

1. As expected, the attributes used for creating class labels (i.e. attributes 5, 19 and 24)
have very strong positive correlation with robot sessions, even though the majority
of the robot sessions are identified by their agent types rather than by the values
of these attributes. This confirms the validity of our session labeling heuristics.
Nevertheless, the correlation coefficient for each of these attributes are less than 1.
This suggests that using any of these attributes alone are insufficient to determine
Web robot sessions. More importantly, the values of these attributes can be easily

manipulated by robot designers.

2. After one request, the best predictors for robots, beside the attributes used for class

labeling, are % image (attribute 2) and % GET request (attribute 17). These at-

9Note that linear correlation may not be the best measure of attribute dependence when non-linear

dependencies exist in the data.
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Table 8: Size of training and test sets for various experiments. E0 and E1 are data sets created
using stratification by oversampling the population. E2 is the unstratified data set. E3 and E4
are samples from the same population as E1 and E2 respectively, except they are created using

stratification by undersampling the population.

Session length | Data | # Unique # Unique # Train # Train # Test # Test
(# Requests) Set Robots Non-Robots | Robots | Non-Robots | Robots | Non-Robots
1 EO 8487 165354 42430 42430 42440 42440
E1l 11282 169320 56410 56410 56410 56410
E2 11282 169320 5641 56410 5641 56410
E3 8487 165354 4243 4243 4244 4244
E4 11282 169320 5641 5641 5641 5641
2 EO0 3171 49311 15850 15850 15860 15860
El 3720 50545 18600 18600 18600 18600
E2 3720 50545 1860 18600 1860 18600
E3 3171 49311 1585 1585 1586 1586
E4 3720 50545 1860 1860 1860 1860
3 EO 2115 30189 10570 10570 10580 10580
E1l 2361 31016 11800 11800 11810 11810
E2 2361 31016 1180 11800 1181 11810
E3 2115 30189 1057 1057 1058 1058
E4 2361 31016 1180 1180 1181 1181
4 EO0 1678 21367 8390 8390 8390 8390
E1l 1836 22025 9180 9180 9180 9180
E2 1836 22025 918 9180 918 9180
E3 1678 21367 839 839 839 839
E4 1836 22025 918 918 918 918
5 EO 1458 15560 7290 7290 7290 7290
E1l 1557 16099 7780 7780 7790 7790
E2 1557 16099 778 7780 779 7790
E3 1458 15560 729 729 729 729
E4 1557 16099 778 778 779 779
6 EO0 1127 12057 5630 5630 5640 5640
E1l 1201 12496 6000 6000 6010 6010
E2 1201 12496 600 6000 601 6010
E3 1127 12057 563 563 564 564
E4 1201 12496 600 600 601 601
7 EO 937 9732 4680 4680 4690 4690
E1l 996 10125 4980 4980 4980 4980
E2 996 10125 498 4980 498 4980
E3 937 9732 468 468 469 469
E4 996 10125 498 498 498 498
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Figure 5: Correlation between access attributes and the Robot class label for various session

lengths. The x-axis corresponds to the attribute Ids given in Table 3.

tributes have strong anti-correlation with robot sessions, agreeing with our intuition
that most robots tend to ignore image files and use other HT'TP request methods
to retrieve the files (such as the HEAD request method). Another HTTP request
method called POST (attribute 18) has very small negative correlation because it
is used mostly by browsers to send HTML forms. Attributes 8 (% Zip) and 9 (%
Multimedia) are positively correlated due to sessions with Type 3 agents (which are
mostly downloading robots). Attributes such as avgTime, stdevTime, width and
depth do not play a significant role because their values are either all zeros or all

ones.

3. After two requests, the avgTime, width and depth attributes become more significant.
The Repeated attribute also emerges as another predictor for robot sessions. This
is because with a single request, the Repeated flag is always zero. The width is
positively correlated with robot sessions, whereas the depth attribute is negatively
correlated. This confirms our previous claim that many of the robots, especially the
search engine ones, use a breadth-first search strategy and unassigned referrer fields
to retrieve documents from a Web site. Also, notice that the MultilP attribute is

positively correlated, due to robots that parallelize their retrieval process.
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4. After three requests, the stdevTime attribute becomes non-zero. A somewhat sur-
prising fact is that this attribute is positively correlated with robot sessions, indicating
that robots seem to have more irregular interval between requests compare to human
users. We verified this by comparing the average standard deviations for various User

Agents as shown in Figure 6.

5. The Night attribute has a positive correlation with the robot session. Figure 7
illustrates the hourly traffic at our Web server, after filtering out the anomalous
Linbot session of figure 1. Notice that the number of page requests due to Web
robots are almost uniformly distributed throughout the day, while the number of
page requests due to non-robot sessions peaked at normal business hours!’. Thus,
it is surprising that the Night attribute is positively correlated with robot sessions.
Upon closer examination, we found that this is because most of the robot sessions have
long session interval, spanning into the 12am to 7am time window, which was used
to determine the Night attribute. Out of the 10845 robot sessions, 3127 (28.8%) of
them are night crawlers, compare to 30661 (18.1%) out of 169757 non-robot sessions
that have Night = 1.

4.3 Classifier Performance

Figure 8 illustrates the overall classification accuracies for various models induced from
our data sets. Our results show that after four requests, we can attain an overall accuracy
close to 90%. Also, the precision and recall results in Figure 9 consistently reach above 82
% and 95% respectively, after more than three requests. The addition of noisy data (for
E1l and E4) does not degrade the classifier precision accuracy by much. The recall however
will decrease by as large as 5%. The small difference between the EQ and E1 (along with
E3 and E4) curves for large session lengths can be explained by the relatively few number
of Type 3 and Type 4 agents (see Table 7). Our results for E2 indicate that the accuracy
measure can be misleading especially when there is an uneven distribution of robot and
non-robot sessions. The recall and precision for E2 are extremely poor compare to those
for EO and E1 (E3 and E4). The different stratification strategies (oversampling versus
undersampling) also seems to affect the precision-recall curve. Undersampling seems to aid
recall at the expense of higher precision, in comparison to oversampling. However, more
experiments are needed to confirm this phenomena.

There is a dramatic improvement in all three performance measures when the number of

10The observed traffic pattern is very similar to the e-commerce traffic observed by Rosenstein in [23].
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Figure 6: Comparison of average avgTime and stdevTime for various User Agents.
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request increases from one to two. This is due to the fact that attributes such as avgTime,
width, depth and Repeated have different values for different sessions after more than one
request is made.

The decision trees produced by the C4.5 algorithm can be used to generate classification
rules, by using an auxiliary program called C4.5rules. Table 9 presents some of the high-
confidence rules for the robot classes generated for each session length. Most of the rules
seem to agree intuitively with our initial correlation analysis. For sessions of length 1, the
rules that characterize the robot sessions are rather spurious, and tend to contain many
attributes in their antecedent. This is because many of the good predictors (such as time
attributes, width and depth attributes) are insignificant when the session length is 1. This
explains the low recall of the results. Table 9 show one such spurious rule which states
that a robot is a client that retrieves more than 4 files at night, out of which 1 of them
is an HTML file, while the rest could be image, binary executable, ascii or other type of
document files. Classifiers built with sessions of length 1 are often characterized by the
absence of requests for image files and the presence of binary executable, ascii or zipped
files.

For sessions of length 2, the avgTime, width and depth attributes help to improve the
accuracy of predicting non-robot sessions. In the example rule given in Table 9, robots
are classified by sessions that access the server at night, with average request time be-
tween 32 and 737 seconds, having low traversal depth and retrieves very few image and
binary executable files. For longer sessions, notice the importance of the width attribute

in characterizing robot sessions compare to non-robot sessions.

4.4 Finding Mislabeled Data

In this section, we analyze the samples that are often misclassified by the classification
models generated from the C4.5 algorithm. The misclassification could be due to inaccuracy
of the classifiers or incorrect class labels of the samples. We believe that such analysis can
reveal useful information about some of the previously unknown Web robots.

The technique described in Section 3.5 is used to find sessions that are classified wrongly
by most of the classifiers. The collection of classifiers used to determine the false positive
and false negative scores could be based on all (or a subset of) the classifiers built in the
previous section. However, one drawback of doing this approach is that different samples
may appear in different number of classifiers (e.g. a session of length 7 will be classified
by many more classifiers compare to those of length 1). One way to get around this

problem is by taking a weighted sum of false positive and false negative scores, i.e. by
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Table 9: Some of the high-confidence decision rules produced by the different classification

models.

Session | Induced rules [Confidence]

length

1 Night = 1, total Pages > 3, % Image < 0.0026, % Binary Exec < 0.9285,

% HTML < 0.0526, % Ascii < 0.9, MultiAgent = 0, % Other < 0.0312

—> class 1 [97.1%)]

2 avgTime < 737, Night = 1, % Image < 0.2592, % Binary Exec < 0.3636,
avgTime > 32, depth < 1, multilP = 1 — class 1 [98.2%]

3 % Binary Doc < 0.0096, % Binary Exec < 0, totalT'ime > 1861, Error > 0.1,
width > 2 — class 1 [99.6%]

4 total Pages > 4, % Image < 0.1, % HTML > 0.6666,

width > 2, MultiAgent = 1, GET > 0.9473 — class 1 [98.5%)

Night = 1, width < 1, height > 1 — class 0 [99.7%]

dividing each FP(X) and FN(X) score with the number of classifiers used to classify
the sample. However, we found that this approach is rather unsatisfactory because most
of the samples with high F'P(X) and FP(Y) scores are the ones that are misclassified
only once or twice. An alternative approach is to build k& classifiers using the overall data
set, where each sample is represented by the features of a session at its maximum session
length. In addition, attributes that are used to determine the class labels are also included
in the classification task. This is a reasonable approach considering our goal here is to
find samples that are most likely being mislabeled, rather than to build accurate predictive
models.

Figure 10 showed some of the sessions having the highest false positive scores (i.e.

sessions predicted to be a robot by classifier but labeled as a non-robot).

1. The first session contains a User Agent that looks similar to a Netscape Navigator
browser. However, the session seems to cover a significant portion of the Web site!!
without focusing on any specific topic, which is why it is highly likely that the session
in fact belongs to a Web robot. Upon resolving the hostname of the session, our
suspicion becomes even greater since NEC Research, which owns the domain address,
are known to have a Scientific Bibliography Search Engine. Thus, the session is very

likely created by a search engine robot.

2. The second session also looks suspicious, despite having a User Agent declared as

'We have only showed five of the requested pages.
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Microsoft Internet Explorer. It is highly unlikely that a human user will be able to
access all the four separate HT'ML pages within the same timeframe. Unfortunately,

we were unable to resolve their I[P Address to confirm the origin of the client.

3. The third example is especially interesting since almost all of the pages retrieved
during the session are resumes. Our classifiers were able to detect the large width of
the traversal to infer that the session belongs to a Web robot. This observation is

confirmed after resolving the IP address of the session (i.e. hire.com).

4. The fourth example is another session we believe is created by a resume hunter robot
since all the retrieved files are resumes. It is interesting to note that the domain name
of the client belongs to a broadband Internet Service Provider. Thus, traditional
techniques of finding robots based on the User Agent and IP Address fields will not

work in this example.

Note that these four sessions also have high false positive scores when we apply the tech-
nique on classifiers built without using the class labeling attributes (i.e. robots.txt, %
HEAD and referrer = “-7).

The false negative sessions contain mostly robots that behave almost similar to human
users (e.g. offline browsers) and robots with extremely short session lengths. Figure 11
showed some of the robots that are being mislabeled as non-robots. Note that SilentSurf
(the fourth session) was initially thought to be a Type 3 robot. However, the classifiers
identified it to be a non-robot. Upon further examination, we discovered that SilentSurf is
in fact an anonymizer Web site which changes the User Agent of a browser into a robot-like

value. Thus, it should be labeled as a non-robot session.

5 Conclusion

Our results show that highly accurate robot classifiers can be built using features based
upon the access patterns of Web clients. These features are easily derived from Web server
logs. Unlike attributes such as robots.txt, HEAD request methods and unassigned referrers,
these features are harder to camouflage since they depend on the navigational goals of the
client. Some of the most discriminating features used to predict robot sessions include
the % of image files requested, width and depth of the traversal, % GET request methods
and average time between request. Our experimental results suggest that Web robots can
be detected using these features with reasonably high accuracy after 4 episodes. We have
also shown that classifiers built using this technique can effectively identify camouflaging

robots that have similar access patterns as other well-known robots.
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IP Address/Hostname

Time Requested Page

User Agent

kablam.nj.nec.com
kablam.nj.nec.com
kablam.nj.nec.com
kablam.nj.nec.com
kablam.nj.nec.com
kablam.nj.nec.com

14:47:23 [~iu
14:48:32 [~fjsieh/misc/misc.html

14:49:06 /Rgsearch/dmc/html/abstracts.html
14:49:15 /~Hencham/.fabstracts/VCR-Ops.html
15:14:03 /~gini/motion.html

15:36:13 /~Wijesek/research/qosMetrics.html

Mozilla/4.05 [en] (Win95; U)
Mozilla/4.05 [en] (Win95; U)
Mozilla/4.05 [en] (Win95; U)
Mozilla/4.05 [en] (Win95; U)

Mozilla/4.05 [en] (Win95; U)
Mozilla/4.05 [en] (Win95; U)

64.3.57.99
64.3.57.99
64.3.57.99
64.3.57.99

5:06:42 /employment
5:06:43 /grpd-info

5:06:43 /rep-info/csMinor.html
5:06:43 finflustry.html

Microsoft Internet Explorer/4.40.426 (Windows 95)
Microsoft Internet Explorer/4.40.426 (Windows 95)

icrosoft Intemnet Explorer/4.40.426 (Windows 95)

icrosoft Internet Explorer/4.40.426 (Windows 95)

tpal.hire.com
tpal.hire.com
tpal.hire.com
tpal.hire.com

13:59:42 ~hhgolvnsa/may27-jul24/msg01844.html
14:01:20 /~gsparikhiresume/shwetal_resume.html
14:12:27 ~fhalen/resume.html

4:31:38 |~qteinmet/pages/steinmetzresume.html

Mozilla/4.75 [en] (X11; U; Linux 2.2.16-3 686)
Mozilla/4.75 [en] (X11; U; Linux 2.2.16-3 686)
Mozilla/4.75 [en] (XL1; U; Linux 2.2.16-3 i686)
Mozilla/4.75 [en] (X11; U; Linux 2.2.16-3 i686)

rfx-64-6-194-38.users.reflexcom.com
rfx-64-6-194-38.users.reflexcom.com
rfx-64-6-194-38.users.reflexcom.com
rfx-64-6-194-38.users.reflexcom.com

14:51:00 /~myers/resume.html
14:58:25 /~tjiang/resume.html
15:03:45 /~Ifttau/resume.html
15:11:17 /~fhnguyen/resume

Mo
Mo
Mo

pilla/4.0 (compatible; MSIE 5.01; Windows 98; DigExt)
pilla/4.0 (compatible; MSIE 5.01; Windows 98; DigExt)

Mo

(
pilla/4.0 (compatible; MSIE 5.01; Windows 98; DigExt)
pilla/4.0 (compatible; MSIE 5.01; Windows 98; DigExt)

Figure 10: Sessions identified as having large false positive scores.

IP Address/Hostname |Time Requested Page User Agent
ns.mof.go,p 18:42:16 I~qubramanlcgi-binfart cgi
ns.mof.go,p 18:48:13 [~qubramanlcgi-binart cgi
ns.mof.go,p 18:48:20 /~qubramanfarts/main. html
ns.mof.gojp 18:48:20 /~qubraman/arts
Cip123.studcs.uni-sb.de 7:06:13 I~mabasherfwebminer/survey/survey.himl Javal.18
Cip123.studcs.uni-sh.de 7:2051 I~mabasherfwebminer/survey/survey.himl Javal.18
Cip123.studcs.uni-sh.de 7:28:20 [~mobasher/webminer/survey/survey.himl Javal.L8
212.160.138.34 8:16:31 I~fjougen Offline Explorer/1.3
212.160.138.34 8:21:05 [dgpartmental Offline Explorer/1.3
212.160.138.34 8:21:06 /Rlsearch/airvl Offline Explorer/1.3
63.87.244.2 44502 ~gsparikh SilentSurf/L x [en] (XLL; I; $MyVersion)
63.87.244.21 44505 [~gsparikh/imagesfheadsil jpg SilentSurffL 1x [en] (XLL; I; $MyVersion)
63.87.244.21 44506 /~]sparikh/images/back/ivy.gif SilentSurf/L. 1x [en] (XL1; I; $MyVersion)

Figure 11: Sessions identified as having large false negative scores.

28




However, our technique may fail for robots that behave in a manner similar to human
users. For example, we observe that most of our false negatives are due to offline browsers
and other download utility programs that have very similar characteristics with human
users. Further investigation is needed to study the effect of other types of navigational
patterns not captured by our data.

Our models can be made much more accurate by refining the features used for building
the classifiers. For instance, we can incorporate other metrics as defined by W3C Web
Characterization Metrics [15] into the feature vector construction. Our current model can
also be improved by incorporating Web content and structure information. Our techniques
could also be improved by using more reliable session tracking techniques such as cookies

and embedded session Ids.
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A Session Identification Heuristic

One of the main challenges of mining Web data from server logs is to transform the click-
stream data into server sesions. Without the benefits of client-side tracking, cookies or
embedded session Ids, it is extremely difficult to reliably preprocess the Web server logs
into server sessions. A standard way of doing this is to group together log entries that
have the same TP Address and User Agent fields [20, 5]. However, the drawback of this
approach is that requests with the same [P Address and User Agent may have come from
more than one active session. Cooley [4] proposed a potential solution to this problem by
using the referrer field to distinguish sessions that share a common IP Address and User
Agent.

In this work, we have extended the session identification heuristic suggested in [4] to
handle the situation in which a session may contain multiple IP addresses and User agents.

This is of great importance to our work because we have noted that Web robots can
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multiplex several [P addresses together in order to parallelize their retrieval operations.
Both Web robots and browsers can also use more than one User Agent in the same session.
There are several notable differences between the session identification heuristic of [4]

and our proposed work:

1. We do not have to sort the log entries according to their User Agent and IP Address
combination. This allows sessions to contain log entries from multiple IP addresses

or User Agents.

2. In order to match a log entry [; to its corresponding session, we partition the list
of active sessions H into 4 candidate groups: candidateSet[1], candidateSet[2], can-
didateSet[3] and candidateSet[4]. The first group contains sessions that have the
same IP Address and User Agent as [;'*. They are the ones that ; will most likely
belong to. candidateSet[2] contains sessions that share a common domain name as
l; (e.g. requests from crawlerl.googlebot.com and crawler2.googlebot.com have the
same domain name, google.com) and have the same User Agent. We use a reverse
DNS lookup program to resolve the hostname of each Web client. A suffix of the
hostname is used to represent the domain name of the client. The third group, can-
didateSet[3], contains sessions that have the same User Agent and share a common
prefix IP address as ;. This step is needed because not all hostnames can be re-
solved by our DNS server. Some hostnames are not resolved due to server timeout,
non-existent host/domain errors, etc. The fourth group, candidateSet[4], contains
sessions that have the same IP Address but not the same User Agent field'® as I;.

They are the last set of candidate sessions that will be matched against ;.

Table 10 summarizes the key steps of our algorithm. For each log entry [;, we use the
getCandidates function to generate the four sets of candidate sessions that will most likely
contain /;. Next, the BestCandidate function will select the most likely session among the
sets of candidate sessions. In the BestCandidate function, sessions in candidateSet[1] are
compared first, since they are the ones that have the most similar characteristics to /;. If no
similar sessions are found, then candidateSet[2] is compared, followed by candidateSet|[3]
and finally, candidateSet[4]. A log entry is said to be similar to an active session if its
referrer field is the same as one of the requested or referred pages in the active session and
the time interval between the last request of the active session and /; is not too large. This

similarity measure is analogous to the Distance function of [4]. However, unlike [4], the

12This is the only candidate set used in [4].
13 As mentioned in Section 2, some browsers use a different User Agent field, such as contype, when

retrieving non-HTML files
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referrer field is matched against both the request field and referrer field of active sessions,
depending on whether the referred page is an internal or external Web page.

One potential pitfall of our session identification heuristic is that it could group together
sessions that actually belong to different users. For example, different sessions coming from
the same domain (e.g. Inx02.cs.umn.edu and Inx03.cs.umn.edu) could be grouped together
even though they are created by different users. This seems to be the case for many
sessions that originate from our own university. This is because for any given 30 minute
time window (which is our session timeout interval, T'), there is a large number of requests
that come from the domain umn.edu. The likelihood that the referrer field of any one
of the requests being the requested or referred page of another requests (from the same
domain) is extremely high; thus causing the different requests to be grouped together in
the same session (even though they may be part of different sessions). This problem is not
as critical for other domains.

The problem can be resolved by restricting the candidateSet[2] group to contain sessions
with domains other than umn.edu (and several other known non-sharing ISPs). We verified
this step by inspecting the domains of all the remaining sessions that contain multiple

hostnames.
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Table 10: Modified Session Identification Heuristic.

type logEntry { type session {
ip : string, request : URI count : integer
time : seconds, referrer : URI list : array of logEntry

agent : string, method : string | }

status : string  protocol : string

}
1. Let H denotes the set of active sessions.
2. Let L denotes a time-ordered log entries.
3. Let T denote the session timeout.
4. for each!l; € L do
5.  foreach s; € H do
6. it (s;.list[s;.count].time —I;.time > T') then
7. close session s;
8. end;
9.  candidateSet = getCandidates(H, [;)
10. if (candidateSet is NULL)
11. create new session s’
12. add I to s and increment s'.count.
13. add s’ to H.
14.  else
15. assign = bestCandidate(candidateSet, ;)
16. if (assign is NULL)
17. create new session s’
18. add [; to s’ and increment s'.count.
19. add s’ to H.
20. else
21. add [; to assign
22. increment assign.count
23. end;
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Table 11: getCandidate and bestCandidate functions.

function getCandidate(H: set of session, [;: logEntry)
1. Let candidateSet[][] be a two-dimensional array of sessions
2. for each s; € H do

3. if (containsAgent(s;, I;.agent)) then

4. if (containsIP(s;, I;.ip) then

5. add s; to candidateSet[1]

6. else if (sameDomain(s;, I;.ip)) then

7. add s; to candidateSet[2]

8. else if (sameAddressClass(s;, [;.ip)) then

9. add s; to candidateSet[3]

10.  else

11. if (containsIP(sj, I;.ip)) then

12. add s; to candidateSet[4]

13. end;

function bestCandidate(C: two dimensional array of sessions, [;: logEntry)

1.

- N

10
11.

© X N o>

assign = NULL
if (I;.referrer is a local page) then
for i=1 to 4 do
assign = find s; € C[i] such that (I;.time — sy list[sy.count].time)
is minimum and l;.referrer € requestSet(sy)
if assign is not NULL then return assign
end;
else  /x if [;.referrer is an external page or unassigned */
for i=1 to 4 do
assign = find s; € C[é] such that (I;.time — sy .list[s.count].time)
is minimum and I;.referrer € referrerSet(sy)
if assign is not NULL then return assign

end;

)

12. return NULL
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