
Chapter 3

The MINDS - Minnesota
Intrusion Detection System

Levent Ertöz∗, Eric Eilertson∗, Aleksandar Lazarevic†,
Pang-Ning Tan∗, Vipin Kumar∗†, Jaideep Srivastava∗†, Paul

Dokas∗∗Department of Computer Science, University of Minnesota
†Army High Performance Computing and Research Center (AHPCRC), Minnesota

Abstract:
This paper introduces the Minnesota Intrusion Detection System (MINDS), which uses
a suite of data mining techniques to automatically detect attacks against computer net-
works and systems. While the long-term objective of MINDS is to address all aspects
of intrusion detection, in this paper we focus on two specific contributions. First, we
show how the behavior-based anomaly detection approach of MINDS is suitable for de-
tecting new and previously unknown types of intrusions, which often indicate emerging
threats. Specifically, we present an anomaly detection algorithm that assigns a score
to each connection based on its probability of being an intrusion. Experimental results
on live network traffic at the University of Minnesota show that our anomaly detection
techniques are very promising and are successful in automatically detecting several
novel intrusions that could not be identified using popular signature-based tools such
as SNORT. Many of these have been reported on the CERT/CC list of recent advisories
and incident notes. Second, we show how association pattern analysis can be used to
summarize and characterize anomalous network connections. Given the very high vol-

1



2 CHAPTER THREE

ume of connections observed per unit time, such characterization of novel attacks is
essential in enabling a security analyst to understand emerging threats. Experimental
evaluation shows that the MINDS approach is useful in creating accurate summaries of
attacks.
Keywords: network intrusion detection, rare class models, novel attacks, anomaly /
outlier detection, association pattern analysis

3.1 Introduction
Traditional methods for intrusion detection are based on extensive knowledge of attack
signatures that are provided by human experts. The signature database has to be man-
ually revised for each new type of intrusion that is discovered. A significant limitation
of signature-based methods is that they cannot detect novel attacks. In addition, once a
new attack is discovered and its signature developed, often there is a substantial latency
in its deployment. These limitations have led to an increasing interest in intrusion de-
tection techniques based upon data mining [3, 4, 20, 23, 25], which generally fall into
one of two categories: misuse detection and anomaly detection.

In misuse detection, each instance in a data set is labeled as ‘normal’ or ‘intrusive’
and a learning algorithm is trained over the labeled data. Research in misuse detec-
tion has focused mainly on detecting network intrusions using various classification
algorithms [3, 7, 11, 20, 22, 23], rare class predictive models [13–16, 18], association
rules [3, 20, 25] and cost sensitive modeling [10, 14]. Unlike signature-based intrusion
detection systems, models of misuse are created automatically, and can be more sophis-
ticated and precise than manually created signatures. In spite of the fact that misuse
detection models have high degree of accuracy in detecting known attacks and their
variations, their obvious drawback is the inability to detect attacks whose instances
have not yet been observed. In addition, labeling dat ainstances as normal or intrusive
may require enormous time for many human experts.

Anomaly detection algorithms build models of normal behavior and automatically
detect any deviation from it [8,12]. The major benefit of anomaly detection algorithms
is their ability to potentially detect unforeseen attacks. In addition, they may be able
to detect new or unusual, but non-intrusive, network behavior that is of interest to a
network manager, that needs to be added to the normal profile. A major limitation of
anomaly detection systems is a possible high false alarm rate. There are two major
categories of anomaly detection techniques, namely supervised and unsupervised. In
supervised anomaly detection, given a set of normal data to train on, and given a new
set of test data, the goal is to determine whether the test data is ‘normal’ or anoma-
lous. recently, there have been several efforts in designing supervised network-based
anomaly detection algorithms, such as ADAM [3], PHAD [24], NIDES [2], and other
techniques that use neural networks [27], information theoretic measures [21], net-
work activity models [6], etc. Unlike supervised anomaly detection where the models
are built only according to the normal behavior on the network, unsupervised anomaly
detection attempts to detect anomalous behavior without using any knowledge about
the training data. Unsupervised anomaly detection approaches are based on statisti-



AUTHOR 3

cal approaches [?, 30, 31], clustering [9], outlier detection schemes [1, 5, 17, 26], state
machines [28], etc.

This paper introduces the Minnesota Intrusion Detection System (MINDS), which
uses a suite of data mining techniques to automatically detect attacks against com-
puter networks and systems. While the long-term objective of MINDS is to address
all aspects of intrusion detection, in this paper we present details of two specific con-
tributions: (i) an anomaly detection technique that assigns a score to each network
connection that reflects how anomalous the connection is, and (ii) an association pat-
tern analysis based module that summarizes those network connections that are ranked
highly anomalous by the anomaly detection module.

We also provide an evaluation of our anomaly detection and association summa-
rization schemes in the context of real life network data at the University of Minnesota.
In the absence of labels of network connections (normal vs. intrusive), we are unable to
provide any estimate of detection rate, but nearly all connections that are ranked highly
by our anomaly detection algorithms are found to be interesting and anomalous by the
network security analyst on our team. In particular, during the past few months our
techniques have been successful in automatically detecting several novel intrusions. In
fact, many of these attacks have been reported on the CERT/CC (Computer Emergency
Response Team/Coordination Center) list of recent advisories and incident notes. Fi-
nally, experiments on real network data demonstrate that association pattern analysis is
successful in creating useful summaries of many novel attacks detected by our anomaly
detection algorithms.

3.2 The MINDS project
The Minnesota Intrusion Detection System (MINDS) is a data mining based system for
detecting network intrusions. Figure 3.1 illustrates the process of analyzing real net-
work traffic data using the system. Input to MINDS is Netflow version 5 data collected
using flow-tools [29]. Flow-tools only capture packet header information (i.e., it does
not capture message content), and build one way sessions (flows). We are working
with Netflow data instead of tcpdump because we curently do not have the capacity to
collect and store the tcpdump. Netflow data for 10 minute windows, which typically
results in 1–2 million flows, are stored in flat files. The analyst uses MINDS to analyze
these 10-minute data files in a batch mode. The reason the system is running in a batch
mode is not due to the time it takes to analyze these files, but it is convenient for the
analyst to do so. Before data is fed into the anomaly detection module, a data filtering
step is performed by the analyst to remove network traffic that the analyst is not inter-
ested in analyzing. For example, data filtered may include traffic from trusted sources
or unusual/anomalous network behavior that is known to be intrusion free.

The first step in MINDS is extracting features that are used in the data mining anal-
ysis. Basic features include source and destination IP adresses, source and destination
ports, protocol, flags, number of bytes and number of packets. Derived features include
time-window and connection-windows based features. Tiem-window based features
are constructed to capture conections with similar characteristics in the last T seconds.
A similar approach was used for constructing features in KDD Cup’99 data [20]. Table



4 CHAPTER THREE

Data
Capture
Device

Storage

Network

Filtering
Feature

Extraction
Known Attack

Detection

Anomaly
Detection

Anomaly
Scores

Association
Pattern
Analysis

Summary of
anomalies

Detected known
attacks

Analyst

Labels

The MINDS System

Figure 3.1: MINDS System

Table 3.1: Time-window based features
Feature name Feature description
count-dest Number of flows to unique destination IP addresses inside the

network in the last T seconds from the same source
count-src Number of flows from unique source IP addresses inside the net-

work in the last T seconds to the same destination
count-serv-src Number of flows from the source IP to the same destination port

in the last T seconds
count-serv-dest Number of flows to the destination IP address using same source

port in the last T seconds

3.1 summarizes the time-windows based features.
“Slow” scanning activities, i.e., those that scan the hosts (or ports) and use a much

larger time interval than a few seconds, e.g. one touch per minute or even one touch per
hour, cannot be separated from the rest of the traffic using time-window based features.
To do so, we also derive connection-window based features that capture similar char-
acteristics of connections as time-window based features, but are computed using the
last N connections originating from (arriving at) distinct sources (destinations). The
connection-window based features are shown in Table 3.2.

After the feature construction step, the known attack detection module is used to
detect network connections that correspond to attacks for which signatures are avail-
able, and then to remove them from further analysis. For results reported in this paper,
this step is not performed.

Next, the data is fed into the MINDS anomaly detection module that uses an outlier
detection algorithm to assign an anomaly score to each network connection. A human
analyst then has to look at only the most anomalous connections to determine if they
are actual attacks or other interesting behavior.

MINDS association pattern analysis module summarizes network connections that
are ranked highly anomalous by the anomaly detection module. The analyst provides a
feedback after analyzing the summaries created and decides whether these summaries
are helpful in creating new rules that may be used in the known attack detection module.



AUTHOR 5

Table 3.2: Connection-window based features
Feature name Feature description
count-dest-conn Number of flows to unique destination IP addresses in-

side the network in the lastN flows from the same source
count-src-conn Number of flows from unique source IP addresses inside

the network in the last N flows to the same destination
count-serv-src-conn Number of flows from the source IP to the same destina-

tion port in the last N flows
count-serv-dest-conn Number of flows to the destination IP address using same

source port in the last N flows

3.3 MINDS Anomaly Detection Module

In this section, we only present the density based outlier detection scheme used in our
anomaly detection module. For more detailed overview of our research in anomaly
detection, the reader is referred to [19].

MINDS anomaly detection module assigns a degree of being an outlier to each
data point, which is called the local outlier factor (LOF) [5]. The outlier factor of a
data point is local in the sense that it measures the degree of being an outlier with
respect to its neighborhood. For each data example, the density of the neighborhood
is first computed. The LOF of a specific data example p represents the average of the
ratios of the density of the example p and the density of its neighbors. To illustrate the
advantages of the LOF approach, consider a simple two-dimensional data set given in
Figure 3.2. It is apparent that the density of cluster C2 is significantly higher than the
density of cluster C1. Due to the low density of cluster C1, for most examples q inside
cluster C1, the distance between the example q and its nearest neighbor is greater than
the distance between the example p2 and its nearest neighbor, which is from cluster
C2, and therefore example p2 will not be considered as outlier.

Hence, the simple nearest neighbor approach based on computing the distances fail
in these scenarios. However, the example p1 may be detected as an outlier using the
distances to the nearest neighbors. On the other hand, LOF is able to capture both
outliers due to the fact that it considers the density around examples.

LOF requires the neighborhood around all data points be constructed. This in-
volves calculating pairwise distances between all data points, which is an O(n2) pro-
cess, which makes it computationally infeasible for millions of data points. To address
this problem, we sample a training set from the data and compare all data points to
this small set, which reduces the complexity to O(n ∗ m) where n is the size of the
data andm is the size of the sample. Apart from achieving computational efficiency by
sampling, anomalous network behavior will not be able to match enough examples in
the sample to be called normal. This is because rare behavior will not be represented
in the sample.



6 CHAPTER THREE

Figure 3.2: 2-D Outlier Example

3.4 Evaluation of MINDS Anomaly Detection Results
on Real Network Data

This section reports results of applying MINDS anomaly detection module on live
network traffic at the University of Minnesota. When describing results on real network
data, we are not able to report the detection rate and false alarm rate due to difficulty in
obtaining the complete labelling of network connections.

Since a human analyst needs to manually evaluate outliers, it was not practical to
investigate all of the outlier detection algorithms on the real network data. For this pur-
pose we have selected the LOF approach, since it achieved the most successful results
on publicly available DARPA ’98 data set and it is more robust than other anomaly
detection schemes that we used. The LOF technique also showed great promise in
detecting novel intrusions on real network data.

Figure 3.3 shows the output of the system on January 27th for a 10-minute window.
Most of the top ranked connections shown belong to the SQL Slammer / Sapphire
worm. This is despite the fact that for this period (which was 2 days after the worm
started) network connections due to the worm were only about 2% of the total traffic.
This shows the effectiveness of the MINDS anomaly detection scheme in identifying
connections due to worms. The connections due to the worm are highlighted in light
gray. It can be observed that the highest contributions to the anomaly score for these
connections were due to features 9 and 11. This was due to the fact that the infected
machines outside our network were still tryingto communicate with many machines
inside our network. In Figure 3.3, it can also be observed that during this time interval,
there is another scanning activity (ping scan, highlighted in dark gray) that was detected
mostly due to features 9 and 11. The two non-shaded flows are replies from “half-life
game servers”, which were flagged anomalous since those machines were talking to
only port 27016/udp. For web connections, it is common to talk only on port 80, and it
is well represented in the normal sample. However, since half-life connections did not
match any normal samples with high counts on feature 15, they became anomalous.

The University of Minnesota network security analyst has been using MINDS to
analyze the network traffic since August 2002. During this period, MINDS has been
successful in detecting many novel network attacks and emerging network behavior
that could not be detected using siganture based systems such as SNORT. In general,
MINDs is able to routinely detect various suspicious behavior (e.g. policy violations),



AUTHOR 7

Figure 3.3: Most anomalous connections found by the MINDS anomaly detection mod-
ule in a 10-minute window, 2 days after the “slammer worm” started (January 27th,
2003)

worms, as well as various scanning activities. In the following, we present a few ex-
amples from each of these groups that demonstrate the effectiveness of the MINDS
anomaly detection algorithm, in addition to the example shown before.

Worm detection

• On October 10th 2002, our anomaly detection module detected two activities
of the slapper worm that were not identified by SNORT since they were varia-
tions of an existing worm code. Once a machine is infected with the worm, it
communicates with other machines that are also infected and attempts to infect
other machines. The most common version of the worm uses port 2002 for com-
munication, but some variations use other ports. Our anomaly detector flagged
these connections as anomalous for two reasons. First, the source or destina-
tion ports used in the connection may not have been rare individually but the
source-destination port pairs were very rare (the anomaly detector does not keep
track of the frequency of pairs of attributes; however, while building the neigh-
borhoods of such connections, most of their neighbors will not have the same
source-destination port pairs, which will contribute to the distance). Second, the
communication pattern of the worm looks like a slow scan causing the value of
the variable that corresponds to the number of connections from the source IP to
the same destination port in the lastN connections to become large. SNORT has
a rule for detecting worm that uses port 2002 (and a few other ports), but not for
all possible variations. A single general SNORT rule can be written to detect the
variations of the worm at the expense of a higher false positive rate.



8 CHAPTER THREE

Scanning and DoS activities

• On August 9th 2002, CERT/CC issued an alert for “widespread scanning and
possible denial of service activity targeted at the Microsoft-DS service on port
445/TCP” as a novel Denial of Service (DoS) attack. In addition, CERT/CC
also expressed “interest in receiving reports of this activity from sites with de-
tailed logs and evidence of an attack.” Network connections due to this type
of scanning were found to be the top ranked outliers on August 13th, 2002, by
our anomaly detection module in its regular analysis of University of Minnesota
traffic. The port scan module of SNORT could not detect this attack, since the
port scanning was slow. A rule to catch this type of attack was added later in
Septermber 2002.

• On August 13th, 2002, our anomaly detection module detected “scanning for an
Oracle server” by ranking connections associated with this attack as the second
highest ranked block of connections (top ranked block of connections belonged
to the DoS activity targeted at the Microsoft-DS service on port 445/TCP). This
type of attack is difficult to detect using other techniques, since the Oracle scan
was embedded within a much larger Web scan, and the alerts generated by Web
scan could potentially overwhelm the analysts. On June 13th, CERT/CC had
issued an alert for the attack.

Policy Violations

• On August 8th and 10th 2002, our anomaly detection techniques detected a ma-
chine running a Microsoft PPTP VPN server, and another one running a FTP
server on non-standard ports, which are policy violations. Both policy violations
were the top ranked outliers. Our anomaly detector module flagged these servers
as anomalous since they are not allowed, and therefore very rare.

• On February 6th, 2003, unsolicited ICMP echo reply messages to a computer
previously infected with Stacheldract worm (a DDoS agent) were detected by our
anomaly detection techniques. Although the infected machine has been removed
from the network, other infected machines outside our network were still trying
to talk to the previously infected machine from our network.

3.4.1 SNORT versus MINDS anomaly detection module
In addition to attacks detected only by our anomaly detection module, there are attacks
that were detected equally well by SNORT, and some attacks for which SNORT was
more successful. In order to compare general capabilities of SNORT and MINDS in
detecting novel anomalous behavior, several categories of anomalous network behavior
are considered:

• Content-based attacks

• Scanning activities

• Policy violations



AUTHOR 9

3.4.1.1 Content-based attacks

These attacks are out of scope for our anomaly detection module since it does not
consider content of the packets, and therefore SNORT is superior in identifying those
attacks. However, SNORT is able to detect only those content-based attacks that have
known signatures/rules. Despite the fact that SNORT is more successful in detecting
the content based attacks, it is important to note that once a computer has been at-
tacked successfully, its behavior could become anomalous and therefore detected by
our anomaly detection module, as seen in previous examples). This type of anomalous
behavior will be further discussed in “policy violations” section.

3.4.1.2 Scanning activities

When detecting various scanning activities SNORT and MINDS anomaly detection
module may have similar performance for certain types of scans, but they have very
different detection capabilities for other types. In general there are two types of scans:
inbound scans when an attacker outside the network is scanning for vulnerabilities
within the monitored network, and an outbound scan, when someone within the moni-
tored network is scanning outside. There are two categories of inbound scanning activ-
ities, where SNORT and our anomaly detection module might have different detection
performance:

• Fast (regular) scans

• Slow scans

When detecting regular inbound scans from an outside source, SNORT portscan
module keeps track of the number of destination IP addresses accessed by each source
IP address in a given time window (default value is 3 seconds). Let’s denote this
variable count-dest, already defined in Table 3.1. Whenever the value of count-dest
is above a specified threshold (SNORT default value is 4), SNORT raises an alarm,
thus indicating a scan by the source IP address. Our anomaly detection module is also
able to assign high anomaly score to such network connections, since for most normal
connections the value of count-dest is low. In addition, connections from many types
of scanning activities tend to have other features that are unusual (such as very small
payload), which make additional contributions to the anomaly score.

An inbound scan can be detected by SNORT provided the scan is fast enough for
chosen time window (default value is 3 seconds) and count threshold (default value is
4). If a scanning activity is not fast enough (outside specified parameters), it will not
be detected by SNORT. However, SNORT can still detect such activities by increas-
ing the time window and/or decreasing the number of events counted within the time
window, but this will tend to increase false alarm rate. On the other side, our anomaly
detection module is more suitable for detecting slow scans since it considers both time-
window based and connection-window based features (as opposed to SNORT that uses
only time-window based features), as well as other features of the connections such as
number of packets, number of bytes per packet, etc.

SNORT is unable to detect outbound scans simply because it does not examine
them. Contrary, our anomaly detection module is able to detect both inbound and



10 CHAPTER THREE

outbound scans. Reversing the inputs to the portscan module will allow SNORT to
detect outbound scans as well. However, this will increase the memory requirements,
and SNORT will still have the same problem with slow outbound scans as it has with
slow inbound scans.

3.4.1.3 Policy violations

MINDS anomaly detection module is much more successful than SNORT in detecting
policy violations (e.g. rogue and unauthorized services), since it looks for unusual
network behavior. SNORT may detect these policy violations only if it has a rule for
each of these specific activities. Since the number and variety of these activities can
be very large and unknown, it is not practical to incorporate them into SNORT for
the following reasons. First, processing of all these rules will require more processing
time thus causing the degradation in SNORT performance. It is important to note that
it is desirable for SNORT to keep the amount of analyzed network traffic small by
incorporating rules as specific as possible. On the other hand, very specific rules limit
the generalization capabilities of a typical rule based system, i.e., minor changes in the
characteristics of an attack might cause the attack to be undetected.

Second, SNORT’s static knowledge has to be manually updated by human ana-
lysts each time a new suspicious behavior is detected. In contrast, MINDS anomaly
detection module is adaptive in nature, and it is particularly successful in detecting
anomalous behavior originating from a compromised machine (e.g. attacker breaks
into a machine, installs unauthorized software and uses it to launch attacks on other
machines). Such behavior is often undetected by SNORT’s signatures.

3.5 MINDS Module for Summarizing Anomalous Con-
nections Using Association Rules

In the past decade, mining association rules has been the subject of extensive research
in data mining. Techniques for mining association rules were originally developed
to analyze sales transaction data, where analysts are interested to know what items
are frequently bought together in the same transaction. In general, an association
rule is an implication expression of the form X ⇒ Y , where X and Y are sets of
binary features. An association rule can be used to predict the occurrence of cer-
tain features in a record given the presence of other features. For example, the rule
{Bread,Butter} ⇒ {Milk} indicates that most of the transactions that contain bread
and butter also involve the purchase of milk. The sets of items or binary features are
known as item sets in association rule terminology.

Given a set of records, the objective of mining association rules is to extract all
rules of the form X ⇒ Y that satisfy a user-specified minimum support and mini-
mum confidence thresholds. Support measures the fraction of transactions that obey
the rule while confidence is an estimate of the conditional probability P (Y |X). For
example, suppose 10% of all transactions contain bread and butter, and 6% of the
transactions contain bread, butter, and milk. For this example, the support of the rule
{Bread,Butter} ⇒ {Milk} is 6% and its confidence is 6%/10% = 60%. If the



AUTHOR 11

minimum support threshold is chosen to be 1% and the minimum confidence threshold
is 50%, then this rule would be extracted by the association rule mining algorithm. In
this example, the set {Bread,Butter,Milk} is also referred to as a frequent item set.

Association patterns, often expressed in the form of frequent item sets or associa-
tion rules, have been found to be valuable for analyzing network traffic data [3,20,25].
These patterns can be used for the following purposes:

• To construct a summary of anomalous connections detected by the IDS. Often
times, the number of anomalous connections flagged by an IDS can be very
large, thus requiring analysts to spend a large amount of time interpreting and
analyzing each connection that has a high anomaly score. By applying associ-
ation pattern discovery techniques, analysts can obtain a high-level summary of
anomalous connections. For example, scanning activity for a particular service
can be summarized by a frequent set:

srcIP=X , dstPort=Y
If most of the connections in the frequent set are ranked high by the anomaly de-
tection algorithm, then the frequent set may be a candidate signature for addition
to a signature-based system.

• To construct a profile of the normal network traffic behavior in anomaly detection
systems [3,25]. As previously noted, an anomaly detection system requires some
information about how the normal network traffic behaves in order to ascertain
the anomalous connections. Association patterns can provide the necessary in-
formation by identifying sets of features that are commonly found in the normal
network traffic data. For example, a Web browsing activity, (almost always on
port 80 and uses the TCP protocol with a small number of packets) could gener-
ate the following frequent set:

protocol=TCP, dstPort=80, NumPackets=3. . . 6
In addition, association patterns generated at different time frames can be used to
study the significant changes in the network traffic at various periods of time [20]

• Recurrent patterns in normal or anomalous connections can serve as secondary
features to be augmented to the original data in order to build better predictive
models of the network traffic data.

Mining association patterns in network traffic data is a challenging task due to the
following reasons:

• Imbalanced class distribution. Standard association pattern discovery techniques
rely on a user-specified minimum support threshold to eliminate patterns that
occur infrequently in the data. For network intrusion data, the proportion of
network traffic that corresponds to an attack is considerably smaller than the
proportion of normal traffic. As a result, one has to apply a very low minimum
support threshold to detect patterns involving the attack class. This will degrade
the performance of association pattern discovery algorithms considerably and
produces an overwhelmingly large number of patterns for the normal class.

Connections that have high anomaly scores are mostly likely to be attacks and
those with low anomaly scores are most likely to be normal traffic. For associa-



12 CHAPTER THREE

tion pattern analysis, we choose connections that appear in the top few percent-
age of anomaly scores to be the attack class and the bottom few percentage of
anomaly scores to be the normal class. Connections with intermediate anomaly
scores will be ignored. We then mine the frequent patterns for each class sepa-
rately using different minimum support thresholds, depending on the number of
connections that belong to each class. If the class is small, then a low minimum
support threshold is chosen. Finally, a vertical association rule mining algo-
rithm [20, 32] is applied to efficiently discover frequent patterns of each class.

• Binarization and grouping of attribute values. The network intrusion data con-
tains several continuous attributes such as number of packets, number of bytes,
and duration of each connection. These attributes must be transformed into bi-
nary features first before applying standard association pattern algorithms. The
transformation can be performed using a variety of supervised and unsupervised
discretization techniques. Using the output scores of the anomaly detector as its
ground truth, MINDS employs a supervised binning strategy to discretize the at-
tributes. Initially, all distinct values of a continuous attribute is put into one bin.
Worst bin in terms of purity is selected for partitioning until the desired number
of bins is reached. Gini index is used to determine the best split. Binning for a
continuous attribute is illustrated in Table 3.3.

Table 3.3: Discretization of a continuous attribute
Class v1 v2 v3 v4 v5 v6 v7 v8 v9

Anomalous 0 0 20 10 20 0 0 0 0
Normal 150 100 0 0 0 100 100 150 100

bin1 bin2 bin3

In addition, the source and destination IP addresses can be grouped together by
applying varying sizes of net-masks. For example, the group 160.94.*.* repre-
sents the class B address for all IP addresses whose first two octets are 160 and
94. However, by doing so, an IP address will now belong to multiple groups,
which may give rise to multiple patterns describing similar types of connections.
For example, if the pattern (SourceIP = IP1, Protocol=TCP) is frequent, then
the pattern (SourceIP = IP1′, Protocol=TCP) where IP1

′
= IP1&mask given

a net-mask size, must also be frequent.

• Pruning the redundant patterns. Although association patterns can detect sets
of features that occur frequently in the network traffic data, the number of pat-
terns extracted can be quite large, depending on the choice of minimum support
threshold. Some of the patterns are redundant because they correspond to the
subsets of other patterns. For example, given two frequent sets:

Protocol=TCP, DstPort=8888,TCPflags=SYN
DstPort=8888,TCPflags=SYN

the first one is more descriptive than the second. If the support of these two item
sets is very close, then the second rule is redundant. MINDS applies a flexible
pruning scheme to eliminate redundant patterns by comparing the support and



AUTHOR 13

confidence of patterns that share similar features. If the support and confidence
of such patterns are almost identical, the more descriptive pattern is retained.

• Finding discriminating patterns. Eventually, the goal of mining association pat-
terns is to discover patterns that occur regularly in the normal class or anomaly
class, but not both. To do this, we need a measure that can rank the patterns
according to their discriminating power. MINDS allows the users to rank the
discovered patterns according to various measures, as illustrated in Figure 3.4.
Consider a set of features X that occur c1 times in the anomalous class and c2

Figure 3.4: Measures for ordering patterns

times in the normal class. Also, let n1 and n2 be the number of anomalous and
normal connections in the data set. Assuming that we are only interested in find-
ing profiles of the anomalous class, the ratio c1/n1 to c2/n2 would indicate how
well the pattern could discern anomalous connections from normal connections.
If the proportion of samples in each class is the same, i.e., n1 = n2, then the
ratio measure is a monotone function of precision. Ratio or precision alone is
insufficient because they often characterize only a small number of anomalous
connections. In the extreme case, a rare pattern that is observed only once in the
anomalous class and does not appear in the normal class will have a maximum
value of ratio and precision, and yet, may not be significant. To account for the
significance of a pattern, the recall measure can be used as an alternative. Un-
fortunately, a pattern that has high recall may not necessarily be discriminating.
The F1-measure, which is the harmonic mean of precision and recall, provides a
good trade-off between the two measures.

• Grouping the discovered patterns. It is worth noting that some of the extracted
patterns can describe a similar set of anomalous connections. For example, a
probe or scan may give rise to multiple patterns that are very similar to each other
(e.g., these patterns may involve the same source IP address and port number, but
different destination IP addresses). Thus, it is useful to group together the related
patterns before presenting them to the analysts.

The overall architecture of our association analysis module is shown in Figure 3.5.



14 CHAPTER THREE

As previously noted, MINDS would use the anomaly scores of the connections to de-
termine whether a connection belongs to the normal or attack class. In our experiments,
we choose connections that have the top 10% anomaly score to be the anomaly class
and the bottom 30% anomaly score to be the normal class. Connections with inter-
mediate anomaly scores are ignored. Next, the association pattern generator is applied
to each class and the patterns are ranked according to the various measures described
above. The extracted patterns can be used to create summaries and profiles for normal
and anomaly connections. Once the profile for the attack class is created, a follow-up

Figure 3.5: MINDS association analysis module

analysis is often performed to study the nature of the anomalous connections. A typi-
cal follow-up analysis involves connecting via telnet to the suspected computer at the
specific port and examining the returned information. Another possibility of analyzing
the suspected computer is to start capturing packets on that machine at the particular
port and to investigate the contents of the packets.

3.5.1 Evaluation of attack summaries on real network data
In this section, we report some of the highest ranked (most discriminative) patterns
generated by the our association pattern analysis module. These patterns represent a
summary of the most frequently occurring and discriminating anomalous traffic flagged
by MINDS anomaly detection module. A typical output of the summarization module
for a 10-minute window on May 21st is shown in Figure 3.4. In addition to the infor-
mation reported by the anomaly detection module, the summarizer has two additional
columns c1 and c2, which are used to evaluate the quality of rules discovered. Given
a rule, c1 denotes how many times this rule occurred among anomalous connections,
while c2 denotes how many times this rule occurred in normal connections. Single
network connections that are not part of a summary have dashes in these columns. In
Figure 3.4, light gray colored connections correspond to a University of Minnesota



AUTHOR 15

computer connecting to a remote FTP server, which happens to be running on port
5002. Further investigation of the local machine showed that it is also running multiple
peer-to-peer file sharing applications. These connections were not summarized due to
the large number of similar connections had low scores. The second line is a summary
of TCP reset packets received from 64.156.X.74. This computer is believed to have
been the victim of a DoS attack, and we were observing backscatter, i.e. replies to
spoofed packets. The dark gray lines are summaries of connections involved in an FTP
scan from a computer in Columbia (200.75.X.2). The summary involving destination
port 113, is a summary of IDENT lookups, where a remote computer is trying to get
the username of a user. The summary with destination port 119, is a summary ofa
USENET server transferring a large amount of data.

Table 3.4: Output of MINDS summarization module
score c1 c2 src IP sPort dst IP dPort protocol flags packets bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
31.17 - - 218.19.X.168 5002 134.84.X.129 4182 6 27 [5,6) [0,2045) 0 0.01 0.01 0.03 0 0 0 0 0 0 0 0 0 0 1 0
3.04 138 12 64.156.X.74 —– xx.xx.xx.xx —– xxx 4 [0,2) [0,2045) 0.12 0.48 0.26 0.58 0 0 0 0 0.07 0.27 0 0 0 0 0 0
15.41 - - 218.19.X.168 5002 134.84.X.129 4896 6 27 [5,6) [0,2045) 0.01 0.01 0.01 0.06 0 0 0 0 0 0 0 0 0 0 1 0
14.44 - - 134.84.X.129 4770 218.19.X.168 5002 6 27 [5,6) [0,2045) 0.01 0.01 0.05 0.01 0 0 0 0 0 0 1 0 0 0 0 0
7.81 - - 134.84.X.129 3890 218.19.X.168 5002 6 27 [5,6) [0,2045) 0.01 0.02 0.09 0.02 0 0 0 0 0 0 1 0 0 0 0 0
3.09 4 1 xx.xx.xx.xx 4729 xx.xx.xx.xx —– 6 —— ——— ——— 0.14 0.33 0.17 0.47 0 0 0 0 0 0 0.2 0 0 0 0 0
2.41 64 8 xx.xx.xx.xx —– 200.75.X.2 —– xxx —— ——— [0,2045) 0.33 0.27 0.21 0.49 0 0 0 0 0 0 0 0 0.28 0.25 0.01 0
6.64 - - 218.19.X.168 5002 134.84.X.129 3676 6 27 [5,6) [0,2045) 0.03 0.03 0.03 0.15 0 0 0 0 0 0 0 0 0 0 0.99 0
5.6 - - 218.19.X.168 5002 134.84.X.129 4626 6 27 [5,6) [0,2045) 0.03 0.03 0.03 0.17 0 0 0 0 0 0 0 0 0 0 0.98 0
2.7 12 0 xx.xx.xx.xx —– xx.xx.xx.xx 113 6 2 [0,2) [0,2045) 0.25 0.09 0.15 0.15 0 0 0 0 0 0 0.08 0 0.79 0.15 0.01 0

4.39 - - 218.19.X.168 5002 134.84.X.129 4571 6 27 [5,6) [0,2045) 0.04 0.05 0.05 0.26 0 0 0 0 0 0 0 0 0 0 0.96 0
4.34 - - 218.19.X.168 5002 134.84.X.129 4572 6 27 [5,6) [0,2045) 0.04 0.05 0.05 0.23 0 0 0 0 0 0 0 0 0 0 0.97 0
4.07 8 0 160.94.X.114 51827 64.8.X.60 119 6 24 [483,-) [8424,-) 0.09 0.26 0.16 0.24 0 0 0.01 0.91 0 0 0 0 0 0 0 0
3.49 - - 218.19.X.168 5002 134.84.X.129 4525 6 27 [5,6) [0,2045) 0.06 0.06 0.06 0.35 0 0 0 0 0 0 0 0 0 0 0.93 0
3.48 - - 218.19.X.168 5002 134.84.X.129 4524 6 27 [5,6) [0,2045) 0.06 0.06 0.07 0.35 0 0 0 0 0 0 0 0 0 0 0.93 0
3.34 - - 218.19.X.168 5002 134.84.X.129 4159 6 27 [5,6) [0,2045) 0.06 0.07 0.07 0.37 0 0 0 0 0 0 0 0 0 0 0.92 0
2.46 51 0 200.75.X.2 —– xx.xx.xx.xx 21 6 2 ——— [0,2045) 0.19 0.64 0.35 0.32 0 0 0 0 0.18 0.44 0 0 0 0 0 0
2.37 42 5 xx.xx.xx.xx 21 200.75.X.2 —– 6 20 ——— [0,2045) 0.35 0.31 0.22 0.57 0 0 0 0 0 0 0 0 0.18 0.28 0.01 0
2.45 58 0 200.75.X.2 —– xx.xx.xx.xx 21 6 —— ——— [0,2045) 0.19 0.63 0.35 0.32 0 0 0 0 0.18 0.44 0 0 0 0 0 0

In the following, we present several examples of summarization output.

• Example 1
srcIP=IP1, dstPort=80, Protocol=TCP, Flag=SYN, NumPackets=3,
NumBytes=120. . . 180 (c1=256, c2=1)
srcIP=IP1, dstIP=IP2, dstPort=80, Protocol=TCP, Flag=SYN, NumPackets=3,
NumBytes=120. . . 180 (c1=177, c2=0)

The first rule indicates that the source of the anomalous connections originates
from IP1, the destination port is 80, the protocol used is TCP with tcpflags set to
SYN, the number of packets is 3, and the total number of bytes is between 120
and 180. Furthermore, this pattern is observed 256 times (c1 = 256) among the
anomalous connections and only once (c2=1) in the normal connections. There-
fore, it has a high ratio and precision, which is why it is ranked among the top
few patterns found by the system.

At first glance, the first rule indicates a Web scan since it appears mostly in the
anomaly class with a fixed source IP address but not with a fixed destination IP
address. However, the second rule suggests that an attack was later launched to
one of the specific machines since the pattern originates from the same source
IP address but has a specific destination IP address and covers only anomalous
connections. Further analysis confirms that a scan has been performed from the



16 CHAPTER THREE

source IP address IP1, followed by an attack on a specific machine that was pre-
viously identified by the attacker to be vulnerable.

• Example 2
dstIP= IP3, dstPort=8888, Protocol=TCP (c1=369, c2=0)
dstIP= IP3, dstPort=8888, Protocol=TCP, Flag=SYN (c1=291, c2=0)

This pattern indicates a high number of anomalous TCP connections on port
8888 to a specific machine. Follow-up analysis of the connections covered by
the pattern indicates possible existence of a machine that is running a variation of
the KaZaA file-sharing protocol. KaZaA file sharing software is typically used
for sharing audio, video, and software files, which are very often illegal copies.

• Example 3
srcIP=IP4, dstPort=27374, Protocol=TCP, Flag=SYN, NumPackets=4,
NumBytes=189200 (c1=582, c2=2)
srcIP= IP4, dstPort=12345, NumPackets=4, NumBytes=189200 (c1=580, c2=3)
srcIP= IP5, dstPort=27374, Protocol=TCP, Flag=SYN, NumPackets=3, Num-
Bytes=144 (c1=694, c2=3)

The patterns above indicate a number of scans on port 27374 (which is a sig-
nature for the SubSeven worm) and on port 12345 (which is a signature for the
NetBus worm). Further analysis has shown that there are no fewer than five ma-
chines scanning for one or both of these ports within an arbitrary time window.

3.6 Conclusions and Future Work

Our overall goal is to develop MINDS into an overall framework for defending against
attacks and threats to computer systems. Data generated from network traffic moni-
toring tends to have very high volume, dimensionality and heterogeneity, making the
performance of serial data mining algorithms unacceptable for on-line analysis. In ad-
dition, cyber attacks may be launched from several different locations and targeted to
many different destinations, thus creating a need to analyze network data from several
networks in order to detect these distributed attacks. Therefore, development of new
classification and anomaly detection algorithms that can take advantage of high perfor-
mance computers and be computationally tractable for on-line and distributed intrusion
detection is a key component of this project. To detect known attacks, our approach
will use the public-domain signature-based techniques, while unknown and novel at-
tacks will be detected using our anomaly detection schemes. According to our initial
analysis, the intrusions detected by MINDS are complementary to those of SNORT,
which implies that they could be combined to increase overall attack coverage. In ad-
dition, MINDS will have a visualization tool to aid the analyst in better understanding
anomalous/suspicious behavior detected by the anomaly detection engine.



AUTHOR 17

The anomaly detection approach used by MINDS is suitable for detecting many
types of threats. Figure 3.6 shows three such types. First type of threats corresponds
to outsider attacks that represent deviations from normal connection behavior. Second
threat type is insider attack, where an authorized user logs into a system with malicious
intent. However, the malicious behavior shown by such a user is often at variance with
normal procedures, and can be picked up as anomalous behavior by our scheme. Since
no security mechanism is fool proof, an undetected successful outsider attack creates is
equivalent to an insider attack, and the same ideas apply. Third threat type corresponds
to a situation where a virus/worm has entered an environment - either undetected by a
perimeter protection mechanism such as virus scan of attachments, or through bringing
in of an infected portable hardware device, e.g. a laptop. The unusual behavior shown
by such a machine can potentially be detected by our approach of analyzing anomalous
behavior.

MINDS Research


 
 Defining normal behavior

 
 Feature extraction

 
 Similarity functions

 
 Outlier detection

 
 Result summarization

 
 Detection of attacks


Outsider attack


Insider attack


Worm/virus detection

after infection


Figure 3.6: Three types of threats that can be detected by MINDS anomaly detection
module

A number of applications outside of intrusion detection have similar characteristics,
e.g. detecting credit card and insurance frauds, early signs of potential disasters in
industrial process control, early detection of unusual medical conditions - e.g. cardiac
arrhythmia, etc. We plan to explore the use of our techniques to such problems.

3.7 Acknowledgements
The authors are grateful to Richard Lippmann and Daniel Barbara for providing data
sets. This work was supported by Army High Performance Computing Research Cen-
ter contract number DAAD19-01-2-0014. The content of the work does not necessarily
reflect the position or policy of the government and no official endorsement should be
inferred. Access to computing facilities was provided by the AHPCRC and the Min-
nesota Supercomputing Institute.



18 CHAPTER THREE



Bibliography

[1] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data.
In SIGMOD Conference, 2001.

[2] D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Detecting unusual
program behavior using the statistical component of the next-generation intrusion
detection expert system NIDES. Technical Report SRI-CSL-95-06, Computer
Science Laboratory, SRI International, 1995.

[3] Daniel Barbara, Ningning Wu, and Sushil Jajodia. Detecting novel network intru-
sions using bayes estimators. In Proceedings of First SIAM Conference on Data
Mining, Chicago, IL, 2001.

[4] Eric Bloedorn, Alan D. Christiansen, William Hill, Clement Skorupka, Lisa M.
Talbot, and Jonathan Tivel. Data mining for network intrusion detection: How to
get started. Technical report, The MITRE Corporation, 2001.

[5] Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:
Identifying densitybased local outliers. In Proceedings of the ACM SIGMOD
Conference, Dallas, TX, 2000.

[6] J. B. D. Cabrera, B. Ravichandran, and R. K. Mehra. Statistical traffic modeling
for network intrusion detection. In Proceedings of the 8th International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, San Francisco, CA, 2000.

[7] Sara Matzner Chris Sinclair, Lyn Pierce. An application of machine learning
to network intrusion detection. In Proceedings of the 15th Annual Computer
Security Applications Conference, pages 371–377, Phoenix, AZ, 1999.

[8] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Soft-
ware Engineering, SE-13:222–232, 1987.

[9] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.
A geometric framework for unsupervised anomaly detection: Detecting intru-
sions in unlabeled data. Data Mining for Security Applications, 2002.

19



20 CHAPTER THREE

[10] Wei Fan, Salvatore J. Stolfo, Junxin Zhang, and Philip K. Chan. AdaCost: mis-
classification cost-sensitive boosting. In Proc. 16th International Conf. on Ma-
chine Learning, pages 97–105, Bled, Slovenia, 1999. Morgan Kaufmann, San
Francisco, CA.

[11] Anup K. Ghosh and Aaron Schwartzbard. A study in using neural networks for
anomaly and misuse detection. In Proceedings of the Eighth USENIX Security
Symposium, pages 141–151, Washington, DC, 1999.

[12] Harold S. Javitz and Alfonso Valdes. The nides statistical component: Descrip-
tion and justification. Technical report, Computer Science Laboratory, SRI Inter-
national, 1993.

[13] M. Joshi and V. Kumar. Credos: Classification using ripple down structure (a
case for rare classes). In Proceedings of 19th International Conference on Data
Engineering, Bangalore, India, 2003.

[14] Mahesh V. Joshi, Ramesh Agarwal, and Vipin Kumar. Mining needles in a
haystack: Classifying rare classes via two-phase rule induction. In Proceedings
of ACM SIGMOD Conference on Management of Data, Santa Barbara, CA, 2001.

[15] Mahesh V. Joshi, Ramesh Agarwal, and Vipin Kumar. Predicting rare classes:
Can boosting make any weak learner strong? In KDD, Edmonton, Canada, 2002.

[16] Mahesh V. Joshi, Vipin Kumar, and Ramesh C. Agarwal. Evaluating boosting
algorithms to classify rare classes: Comparison and improvements. In ICDM,
pages 257–264, San Jose, CA, 2001.

[17] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based
outliers in large datasets. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB,
pages 392–403, New York City, NY, 1998. Morgan Kaufmann.

[18] Aleksander Lazarevic, Nitesh V. Chawla, Lawrence O. Hall, and Kevin W.
Bowyer. Smoteboost: Improving the prediction of minority class in boosting.
Technical Report 2002-136, AHPCRC, 2002.

[19] Aleksander Lazarevic, Aysel Özgur, Levent Ertöz, Jaideep Srivastava, and Vipin
Kumar. A comparative study of anomaly detection schemes in network intrusion
detection. in review.

[20] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion detection.
In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[21] Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly detec-
tion. In IEEE Symposium on Security and Privacy, 2001.

[22] Richard P. Lippmann and Robert K. Cunningham. Improving intrusion detection
performance using keyword selection and neural networks. Computer Networks
(Amsterdam, Netherlands: 1999), 34:597–603, 2000.



AUTHOR 21

[23] Jianxiong Luo. Integrating fuzzy logic with data mining methods for intrusion
detection. Master’s thesis, Department of Computer Science, Mississippi State
University, 1999.

[24] Matthew V. Mahoney and Philip K. Chan. PHAD: Packet header anomaly de-
tection for identifying hostile network traffic. Technical report, Florida Tech.,
2001.

[25] Stefanos Manganaris, Marvin Christensen, Dan Zerkle, and Keith Hermiz. A data
mining analysis of rtid alarms. In Proceedings of the 2nd International Workshop
on Recent Advances in Intrusion Detection RAID, West Lafayette, IN, 1999.

[26] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms
for mining outliers from large data sets. In Proceedings of the ACM SIGMOD
Conference, pages 427–438, Dallas, TX, 2000.

[27] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection with neu-
ral networks. In Proceedings of AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk Management, pages 72–77. AAAI Press, 1997.

[28] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification based anomaly detection: A new approach for detecting network in-
trusions. In ACM Conference on Computer and Communications Security, 2002.

[29] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical auto-
mated detection of stealthy portscans. Journal of Computer Security, 10:105–136,
2002.

[30] www.splintered.net/sw/flow tools. Flow-tools.

[31] K. Yamanishi, J. Takeuchi, G. Williams, , and P. Milne. On-line unsupervised
oultlier detection using finite mixtures with discounting learning algorithms. In
KDD, pages 320–324, Boston, MA, 2000.

[32] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. Quality and Reliability
Engineering International, 17:105–112, 2001.

[33] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. Tech-
nical Report 01-1, 2001 11, Rensselaer Polytechnic Institute, 2001.


