Program Optimization

CSci 2021: Machine Architecture and Organization
Lecture #22-23, March 13th-16th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

Performance Realities

u There’s more to performance than asymptotic complexity

m Constant factors matter too!
= Easily see 10:1 performance range depending on how code is written
= Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops
= Must understand system to optimize performance
= How programs are compiled and executed
® How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

Limitations of Optimizing Compilers

m Operate under fundamental constraint
= Must not cause any change in program behavior
= Often prevents it from making optimizations when would only affect behavior
under pathological conditions.
m Behavior that may be obvious to the programmer can be obfuscated by
languages and coding styles
= e.g., Data ranges may be more limited than variable types suggest
= Most analysis is performed only within procedures
® Whole-program analysis is too expensive in most cases
= Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative

These Slides

m Overview
m Generally Useful Optimizations

® Code motion/precomputation

® Strength reduction

" Sharing of common subexpressions

® Removing unnecessary procedure calls
m Optimization Blockers

® Procedure calls

" Memory aliasing

Optimizing In Larger Programs: Profiling

Exploiting Instruction-Level Parallelism

Dealing with Conditionals

Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies

m Don’t (usually) improve asymptotic efficiency
= up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors

= but constant factors also matter

m Have difficulty overcoming “optimization blockers”
= potential memory aliasing
= potential procedure side-effects

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless
of processor / compiler

m (Loop Invariant) Code Motion
= Reduce frequency with which computation performed
= If it will always produce same result
= Especially moving code out of loop

void set_row(double *a, double *b,
long i, long n)

{

long j; -_— long j;
for (3 = 0; j < n; j++) int ni = n*i;
a[n*i+j] = b[jl; for (j = 0; j < n; j++)

} alni+j] = b[jl;

Compiler-Generated Code Motion

void set_row(double *a, double *b,

long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[3];

long j;

long ni = n*i;

double *rowp = atni;

for (j = 0; 3 < n; j++)
*rowpt+ = b[j];

~N

AVhere are the FP operations?

set_row:
testq $rcx, %rex # Test n
jle .L4 # If 0, goto done
movg $rex, %rax # rax = n
imulg $rdx, $rax # rax *= i
leagq (%rdi,%rax,8), %rdx # rowp = A + n*i*g
movl $0, %r8d #3=0
JL3: # loop:
movg (%rsi,%r8,8), $rax # t = b[3]
movg $rax, (%rdx) # *rowp = t
addq $1, 3r8 # o34+
addq $8, trdx # rowp++
cmpq %18, %rex # Compare n:j
jg .13 # If >, goto loop
.L4: # done:
rep ; ret ;
Share Common Subexpressions

= Reuse portions of expressions

= Compilers often not very sophisticated in exploiting arithmetic

properties
/* Sum neighbors of i,j */ long inj =
up = val[(i-1)*n + j 1; up =
down = val[(i+1)*n + 3 1; down =
left = wval[i*n + 3-11; left =
right = val[i*n + 3411 right = vallinj + 1];
sum = up + down + left + right; sum = up + down + left + right;

3 multiplications: i*n, (i-1)*n, (i+1)n

1 multiplication: i*n

leaq 1(%rsi), srax # i+l imulq
leag -1(%rsi), %r8 # i-1 addq
imulq %rex, srsi i*n movq
imulq %rex, $rax (i+1)*n subq
imulq ®rcx, sr8 (i-1)*n leaq

£

%rcx, srsi # i*n
trdx, %rsi # i*n+j

trsi, srax # i*n+j

trcx, %rax # i*n+j-n
(%rsi,srcx), trcx # i*n+j+n

addq %rdx, srax (i+1)*n+j

#
#

addq %rdx, %rsi # i*n+j
#

addq %rdx, %r8 # (i-1)*n+j

Lower Case Conversion Performance

Quadratic performance

Time quadruples when double string length

200 lower

180

160
140

120

100

CPU seconds

/

20 o
0

String length

0 100000 200000 300000 400000 500000

Reduction in Strength

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x --> x << 4
= Utility machine dependent
= Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles
= Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[jl;

n; i) {
j < n; j+4)
bl31;

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lower (char *s)
{
int i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a');

= Extracted from 213 lab submissions, Fall, 1998

Convert Loop To Goto Form

void lower (char *s)
{
int i = 0;
if (i >= strlen(s))
goto done;
loop:
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');
it+;
if (i < strlen(s))
goto loop;
done:

}

®= strlen executed every iteration

Calling Strlen

/* My version of strlen */
size t strlen(const char *s)
{
size t length = 0;
while (*s != '\0') {
s++;
length++;
}
return length;
}

m Strlen performance

= Only way to determine length of string is to scan its entire length, looking for
null character.

= Overall performance, string of length N
® N calls to strlen
® Require times N, N-1, N-2, ..., 1
= Overall O(N?) performance

Lower Case Conversion Performance

= Time doubles when double string length
= Linear performance of lower2

200
180
160

140 /

8 raal
£ 120
S lower /
g 100 -
2 80
S 4 /
0 //
20
e lower2
0
0 100000 200000 300000 400000 500000
String length

Exercise Break: Weird Pointers

m Can the following function ever return 12, and if so how?

int £(int *pl, int *p2, int *p3) {

*pl = 100;
*p2 = 10;
*p3 = 1;

return *pl + *p2 + *p3;

m Yes, for instance:

int a, b;
f(&a, &b, &a);

Improving Performance

void lower (char *s)
{
int i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a'");

®= Move call to strlen outside of loop
= Since result does not change from one iteration to another
= Form of code motion

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of innerloop?
= Procedure may have side effects
= Alters global state each time called
= Function may not return same value for given arguments
= Depends on other parts of global state
= Procedure lower could interact with strlen
= Warning:
= Compiler treats procedure call as a black box
= Weak optimizations near them -
int lencnt = 0;
u Remedies: size t strlen(const char *s)
® Useof inline functions {
= GCC does this with 02
= See web aside ASM:OPT
= Do your own code motion

size_t length = 0;
while (*s != '\0') {
s++; length++;

}
lencnt += length;
return length;

Memory Matters

/* Sum rows is of n X n matrix a
and store in vector b */
void sum_rowsl(double *a, double *b, long n) {

long i, j;
for (i = 0; i < n; i++) {
b[i] = 0;

for (j = 0; j < n; j++)
b[i] += a[i*n + j1;

sum_rowsl inner loop

.L53:
addsd (%rcx), txmm0 # FP add
addq $8, trex
decq srax
movsd %xmm0, (%rsi,3r8,s8) # FP store
jne .153

= Code updates b [i] on every iteration
= Why couldn’t compiler optimize this away?

Memory Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum_rowsl(double *a, double *b, long n) {

long i, 3/
for (i = 0; i <n; i+d) {
b[i] = 0;

for (3 = 0; j < n; j++)
bli] += al[i*n + j];

Value of B:
e T
{o, 1, 2
4, 8, 16}, B

= Code updates b [i] on every iteration

= Must consider possibility that these updates will affect program
behavior

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
= Get in habit of introducing local variables
= Accumulating within loops

= Your way of telling compiler not to check for aliasing

Amdahl’s Law

m If you speed up one part of a system, the total benefit is
limited by how much time that part took to start with

m Speedup Sis:

_ 1

T -a)+ a/k

where the acceleration factor is k and the original time

fraction is a.

S

m Limiting case: even if k is effectively infinite, the upper
limit on speedup is
1

)

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */

void sum_rows2(double *a, double *b, long n) {
long i, 3;

for (i = 0; i < n; i++) {
double val = 0;
for (3 3 < n; 3++)
val += al[i*n + 3];
b[i] = val;

}

sum_rows2 inner loop

.L66:
addsd (%rcx), %xmm0 # FP Add
addq $8, %rex
decq frax
jne .L66

® No need to store intermediate results

What About Larger Programs?

m If your program has just one loop, it’s obvious where to
change to make it go faster

= In more complex programs, what to optimize is a key
question
= When you first write a non-trivial program, it often has a
single major algorithm performance problem
= Textbook’s example: insertion sort

= Last program | wrote: missed opportunity for dynamic
programming

= Fixing this problem is way more important than any other changes

Knowing What'’s Slow: Profiling

m Profiling makes a version of a program that records how
long it spends on different tasks
= Use to find bottlenecks, at least in typical operation
= Common Linux tools:

= gprof:GCC flag plus a tool to interpret output of the profiled
program
= Counts functions and randomly samples for time
= Discussed in textbook’s 5.14.1
= Valgrind callgrind/cachegrind
= Counts everything, precise but slow
= OProfile

= Uses hardware performance counters, can be whole-system

Benchmark Example: Data Type for

Vectors
m Need general understanding of modern processor design /* data structure for vectors */
= Hardware can execute multiple instructions in parallel typeid:: f::‘f"” len 0 1 len-1
m Performance limited by data dependencies double *data; CEERs] | [eeceee | |

} vec;

Exploiting Instruction-Level Parallelism

m Simple transformations can have dramatic performance
improvement

/* retri t 1 t and st t val */
= Compilers often cannot make these transformations intr:ezi?,:z_g:m::;:,:i? i::’ :ozﬁ:*v:i)
® Lack of associativity and distributivity in floating-point arithmetic {
if (idx < 0 || idx >= v->len)
return 0;
*val = v->data[idx];
return 1;
}
25
Benchmark Computation Cycles Per Element (CPE)
void combinel (vec_ptr v, data_t *dest) m Convenient way to express performance of program that operates on
{ ! - vectors or lists
long int i; C°’:P“‘e :""‘ or m Length=n
= 5 roduct of vector
SEDE S DI . pI = In our case: CPE = cycles per OP
for (i = 0; i < vec_length(v); i++) { elements
data_t val; - m T=CPE*n + Overhead
get_;ec_element(v, i, &val); = CPEis slope of line
*dest = *dest OP val; 1000
} 900 -
} i:z vsuml: Slope=4.0_~ .
mData Types mOperations £ s
yp P 3 wz e
= Use different declarations = Use different definitions of o 4= vsum2: Slope=3.5
fordata_t OP and IDENT o =
" int =+ /0 w0
= float = x /1 ’ 50 100 150 200
* double n=Number of elements
z
Benchmark Performance Basic Optimizations
void combinel (vec_ptr v, data t *dest)
{ - void combined (vec_ptr v, data_t *dest)
long int i; Compute sum or {
*dest = IDENT; product of vector int i;
for (i = 0; i < vec length(v); i++) { elements int length = vec_length(v);
data t val; - data_t *d = get vec start(v);
get_;ec_element(v, i, &val); data_t t = IDENT;
*dest = *dest OP val; for (i = 0; i < length; it++)
) t =t OP d[i];
} *dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult = Move vec_length out of loop
Combinel 29.0 29.2 27.4 27.9 m Avoid bounds check on each cycle
”"°ptfm'zed m Accumulate in temporary
Combinel -O1 12.0 12.0 12.0 13.0

Effect of Basic Optimizations

{
int i;
int length = vec_length(v);
data_t *d = get_vec_start(v);
data_t t = IDENT;
for (i = 0; i < length; i++)
t =t OP d[i];

void combined (vec_ptr v, data_t *dest)

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel -O1 12.0 12.0 12.0 13.0
Combine4 2.0 3.0 3.0 5.0

m Eliminates sources of overhead in loop

Superscalar Processor

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are

usually scheduled dynamically.

Benefit: without programming effort, su

perscalar

processor can take advantage of the instruction level

parallelism that most programs have

Intel: since Pentium Pro

x86-64 Compilation of Comb

m Inner Loop (Case: Integer Multiply)

Most CPUs since about 1998 are superscalar.

ined

.L519:
imull (%rax,%rdx,4), %ecx
addq $1, %rdx

Loop:

itd

=

t =t *d[i]

cmpg %rdx, $rbp Compare length:i
jg .L519 If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Latency 1.0 3.0 3.0 5.0
Bound

Modern CPU Design

Instruction Control

Fetch Address

Control Instruction

Cache

Instruction JLELNALL

Decode
Operations
Register Updates Prediction OK?

Integer/ § General FP Functional
Branch | Integer | Add Units

i] i i i i

‘Operation Results
Ader Adr)
Data Data

Data
Cache

Execution

Nehalem CPU

= Multiple instructions can execute in parallel
1 load, with address computation
1 store, with address computation
2 simple integer (one may be branch)
1 complex integer (multiply/divide)
1 FP Multiply
1FP Add

= Some instructions take > 1 cycle, but can be pipelined

Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 11--21 11--21
Single/Double FP Multiply 4/5 1
Single/Double FP Add 3 1
Single/Double FP Divide 10--23 10--23

Combine4 = Serial Computation (OP = *)

m Computation (length=8)
(CCCCCC * do]) * d[1]) * d[2]) * d[3])
* d[4]) * d[5]) * d[6]) * d[7])

1d,

m Sequential dependence
= Performance: determined by latency of OP

Loop Unrolling

void unroll2a combine(vec_ptr v, data_t *dest)

int length = vec_length(v);
int limit = length-1;
data_t *d = get_vec_start(v);
data_t x = IDENT;
int i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+l];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i];
}
*dest = x;

m Perform 2x more useful work per iteration

Loop Unrolling with Reassociation

void unroll2aa_combine (vec_ptr v, data_t *dest)
{
int length = vec_length(v) ;

int limit = length-1;

data_t *d = get_vec start(v);
data_t x = IDENT;

int i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i]; Compare to before

[x = (x op d[il) op d[i+1];

}
*dest = x;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

Reassociated Computation

m What changed:

= Ops in the next iteration can be
started early (no dependency)

[x = x op (d[i] oP d[i+1]); |

m Overall Performance
= N elements, D cycles latency/op
= Should be (N/2+1)*D cycles:
CPE =D/2
= Measured CPE slightly worse for
FP mult

Effect of Loop Unrolling

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 15 3.0 5.0
Latency 1.0 3.0 3.0 5.0
Bound

m Helps integer multiply

= below latency bound

= Compiler does clever optimization
m Others don’t improve. Why?

= Still sequential dependency

[x = (x op d[4]) oP dli+1]; |

Effect of Reassociation

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 15 3.0 5.0
Unroll 2x, 2.0 1.5 1.5 3.0
reassociate

Latency 1.0 3.0 3.0 5.0
Bound

Throughput 1.0 1.0 1.0 1.0
Bound

m Nearly 2x speedup for Int *, FP +, FP *
= Reason: Breaks sequential dependency

[x = x op (d[i] OP d[i+1]);

= Why is that? (next slide)

Loop Unrolling with Separate Accumulators

void unroll2a_combine(vec_ptr v, data_t *dest)
{

int length = vec_length (v) ;

int limit = length-1;

data_t *d = get_vec_start(v);
data_t x0 = IDENT;

data t x1 = IDENT;

int i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x0 = x0 OP d[i];
x1 = x1 OP d[i+l];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 OP d[i];
}
*dest = x0 OP x1;

}

m Different form of reassociation

Effect of Separate Accumulators

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Unroll 2x 2.0 15 3.0 5.0
Unroll 2?(, 2.0 15 15 3.0
reassociate

Unroll 2x Parallel 2x il 15 il 1 25
Latency Bound 1.0 3.0 3.0 5.0
Throughput Bound 1.0 1.0 1.0 1.0

m 2x speedup (over unroll2) for Int *, FP +, FP *

= Breaks sequential dependency in a “cleaner,” more obvious way

x0 = x0 OP d[i];
x1 = x1 OP d[i+1];

Unrolling & Accumulating

m Idea
= Can unroll to any degree L
= Can accumulate K results in parallel
= L must be multiple of K

= Limitations
= Diminishing returns
= Cannot go beyond throughput limitations of execution units
= Large overhead for short lengths
= Finish off iterations sequentially

Unrolling & Accumulating: Int +

m Case
= Intel Nehalem
= |nteger addition
= Latency bound: 1.00. Throughput bound: 1.00

FP * Unrolling Factor L

K 1 2 B] 4 6 8 10 12

1 200 200 100 1.01 102 1.03
o 2 1.50 1.26 1.03
o
§ B3] 1.00
g 4 1.00 1.24
= 6 1.00 1.02
S
O
< 8 1.03

10 1.01

12 1.09

Separate Accumulators

x0 = x0 OP d[i];

= What changed:

= Two independent “streams” of
operations

m Overall Performance
= N elements, D cycles latency/op
= Should be (N/2+1)*D cycles:
CPE =D/2
= CPE matches prediction!

What Now?

Unrolling & Accumulating: Double *

m Case
= |ntel Nehalem
= Double FP Multiplication
= Latency bound: 5.00. Throughput bound: 1.00

FP* Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 500 500 500 500 500 5.00
14 2 2.50 2.50 2.50
g 3 1.67
S 4 1.25 1.25
§ 6 1.00 1.19
S 8 1.02
<
10 1.01
12 1.00
Achievable Performance
Method Integer Double FP
Operation Add Mult Add Mult
Scalar Optimum 1.00 1.00 1.00 1.00
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 1.00 1.00 1.00 1.00]

= Limited only by throughput of functional units
= Up to 29X improvement over original, unoptimized code

Using Vector Instructions

What About Branches?

m Make use of SSE Instructions
= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page

Modern CPU Design

Method Integer Double FP u Challenge
Qi allC e arlt [l ® Instruction Control Unit must work well ahead of Execution Unit
Scalar Best 1.00 1.00 1.00 1.00 to generate enough operations to keep EU busy
Vector Best 0.25 0.53 0.53 0.57
Latency Bound 1.00 3.00 3.00 5.00 80489£3: movl $0x1,%ecx
80489£f8: xorl %$edx, $edx Executing
Throughput Bound 1.00 1.00 1.00 1.00 80489fa: cmpl %esi,%edx
Vec Throughput 0.25 0.50 0.50 0.50 80489fc: jnl 8048225 «—————— How to continue?
Bound 80489fe: movl %esi,%esi
8048a00: imull (%eax,%edx,4),%ecx

= When encounters conditional branch, cannot reliably determine where to
continue fetching

Branch Outcomes

Instruction Control

Fetch

Retirement Control

Unit
Register
File

Instruction
Decode

t Operations

Address

Instructions

Instruction
Cache

® When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

Register Updates Prediction OK?

80489f3: movl $0x1,%ecx

80489f8: xorl %edx, $edx

80489fa: cmpl %esi, %$edx Branch|Not-Taken
80489fc: jnl 8048a25 K
80489fe: movl %esi,%esi

integer/ [General | P Functional
Branch || Integer | Add Units
] i i]

‘Operation Results

Execution

8048a00: imull (%eax,%edx,4) ,%ecx > Branchiaren
'

8048a25: cmpl %edi, %edx
8048a27: jl 8048a20
8048a29: movl Oxc (%ebp) , %eax
8048a2c: leal Oxffffffe8 (%ebp) , Yesp
8048a2f: movl %ecx, (%eax)

Branch Prediction

m Idea
= Guess which way branch will go

® Begin executing instructions at predicted position

= But don’t actually modify register or memory data

80489£3: movl $0x1,%ecx
80489£8: xorl %edx, $edx

80489fa: cmpl %esi, $edx Predict Taken

80489fc: jnl 8048a25 —

8048a27: 3jl 8048a20

8048a2f: movl %ecx, (%eax)

8048a25: cmpl %edi,%edx “

8048a29: movl Oxc (%ebp) , $eax
8048a2c: 1leal Oxffffffe8 (%ebp) , $esp

Branch Prediction Through Loop

80488bl: movl (%ecx,%edx,d),%eax Assume

80488b4: addl %eax, (%edi) vector length = 100
80488b6: incl %edx .
80488b7: cmpl %esi,%edx | =98
80488b9: jl 80488b1 @ —

7 Predict Taken (OK)
80488bl: movl (%ecx,%edx,d),%eax
80488b4: addl %eax, (%edi)
80488b6: incl $edx .
80488b7: cmpl %esi,tedx =99

80488b9: jl 80488b1 @ —— | Predict Taken
80488b1: movl (%ecx,%edx,d),%eax 2 (0ops) T
80488b4: addl %eax, (%edi) L
80488b6: incl %edx Read Executed

Begin ggnatﬂf cmpl %esi,%edx j=100 invalid

X 488b9: jl 80488b1 — | |ocation

Execution >
80488bl: movl (%ecx,%edx,d),%eax
80488b4: addl %eax, (%edi) Fetched
80488b6: incl %edx
80488b7: cmpl %esi,%edx =101 _l_
80488b9: 3l 80488b1

Branch Misprediction Invalidation

80488bl: movl (%ecx,%edx,4),%eax Assume

80488b4: addl %eax, (%edi) vector length = 100
80488b6: incl %edx)
80488b7: cmpl %esi,tedx |=98
80488b9: jl 80488b1 — |

? Predict Taken (OK)
80488bl: movl (%ecx, %edx,4) ,%eax
80488b4: addl %eax, (%edi)
80488b6: incl %edx .
80488b7: cmpl %esi,%edx | =99

80488b9: jl 80488b1 —— | A
2 7 Predict Taken (Oops)
—movi—(fecx tedx A teax
£0488b4+ ddl— <. (Redi)
804807 ompi—Sesi bedn——100
8048850+ 51 8048801 7 Invalidate
80488b1: CETY Sodx 4) %
£0488b4+ a1l s, (Sediy
80488b6-: inel sed i=101

Effect of Branch Prediction: Good News

m Loops void combinedb (vec_ptr v,
.) data t *dest)
= Typically, only miss when { -
hit loop end long int i;

n Checking code long int length = vec_length(v);
data_t acc = IDENT;

® Reliably predicts that error for (i = 0; i < length; i++) {

won’t occur if (1 >= 0 && i < v->len) {
acc = acc OP v->data[i];
}
}
*dest = acc;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 2.0 3.0 3.0 5.0
Combine4b 4.0 4.0 4.0 5.0

Summary: Getting High Performance

= Good compiler and flags

u Don’t do anything stupid
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references
= Look carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly (Covered later in course)

Branch Misprediction Recovery

80488bl:
80488b4:
80488b6:
80488b7:
80488b9:
80488bb:
80488be:
80488bf:
80488c0:

movl
addl
incl
cmpl
j1

leal
popl
popl
popl

(%ecx, %edx, 4) ,%eax
Seax, (%edi)

%edx .
Sesi,%edx i=99
80488b1
OxfEEEE£e8 (Sebp) , $esp
%ebx

%esi

%edi

— Definitely not taken

m Performance Cost
= Multiple clock cycles on modern processor
= Can be a major performance limiter

Branch Prediction: Bad News

m Some program branches are inherently unpredictable
= E.g., if based on input data, binary search tree, etc.
= Indirect jumps are also often hard to predict

m These can be a major performance bottleneck
= Misprediction penalty is typically 10-20 cycles

m Partial solution: write code to be compiled to conditional

moves

® For GCC: use math and ? : instead of if
= Textbook gives min/max and mergesort examples

10

