
CSci 2021: Review Lecture 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Quiz 2 topics (in one slide)

CPU architecture
Y86 instructions
Control logic and HCL
Sequential Y86
Pipelined Y86

Code optimization
Machine-independent techniques
Instruction-level parallelism

Memory hierarchy and caches
Memory and disk technologies
Locality and how to use it
Cache parameters and operation
Optimizing cache usage

Outline

Topics in CPU architecture

Topics in code optimization

Topics in memory hierarchy and caches

Discussion problems

Y86 instructions

Simplified subset of x86, simpler encoding

32-bit only, 8 registers

Four kinds of moves, only one addressing mode

Add, subtract, bitwise and, bitwise xor

Conditional jump and move based on equality
and signed comparison
Call, return, push, pop

Halt and two fatal errors, no exceptions

Logic design for control

Combinational circuits:
Compute a function of bits, no memory
Acyclic network of AND, OR, and NOT gates
Also includes word-sized comparison, multiplexors,
and ALU

Stateful elements:
(Clocked) registers
Random-access memory
State updates occur on rising clock edge only

Hardware design in HCL

Simple language for specifying control circuits

Two types: Boolean and word

Comparison and logic operators (no side-effects
or “short circuiting”)

Core construct: sequential conditional
[C1 : V1;C2 : V2; : : : 1 : Vn]

“Else” case written 1



Sequential Y86

Whole state update function is one big
combinational circuit
Express behavior of each instruction using
smaller computations

Processing split into stages for organization:
Fetch, decode, execute, memory, write back, PC
update

Simplest, but requires long cycle time (slow)

Pipelining basics

Split processing into stages, and work on
multiple instructions at once
Reduces cycle time and increases hardware
utilization
Pipeline registers hold data between stages

Performance concerns: balanced stages, and
not too many
Correctness concerns: must have same final
behavior

Pipelining techniques

Hazards: dependencies introduce danger of
incorrect results
Branch prediction: guesses result of conditional
jumps
Stalling: hold up instructions until data ready

Simple, but introduces a lot of delay
Used for return instruction in Y86

Cancelling: kill incorrect instructions
Must happen before they have side-effects
Used for branch mis-predictions

Forwarding: copy data to a different stage right
as needed

Outline

Topics in CPU architecture

Topics in code optimization

Topics in memory hierarchy and caches

Discussion problems

Principles of optimization

Concentrate on the program parts that run the
most

Amdahl’s law bounds possible speedup
Array-style programs: concentrate on inner loops
Complex programs: use a profiler

Know what the compiler can and can’t do
Compiler can be smart, but is careful about
correctness
Functions and pointers (aliasing) block optimization

Watch out for algorithmic problems

Machine-independent optimizations

Move computations out of loops

Avoid abstract functions in time-critical code

Use temporary variables to reduce memory
operations
Unroll loops to reduce bookkeeping overhead



Instruction-level parallelism

Modern processors are super-scalar
Can do more than one thing at once

And out-of-order
In a different sequence than the original instructions

Multiple functional units, each with different
throughput and latency

Exposing loop parallelism

To reduce latency, avoid a long critical path

Functional unit throughput is an ultimate limit

Unroll to allow optimization between iterations

Techniques to shorten the critical path:
Re-associate associative operators
Replace a single accumulator with multiple parallel
accumulators

Outline

Topics in CPU architecture

Topics in code optimization

Topics in memory hierarchy and caches

Discussion problems

RAM technologies

SRAM: several (e.g. 6) transistors per bit
Faster
More expensive, less dense
Used for caches

DRAM: one capacitor and transistor per bit
Must be periodically refreshed
Cheaper, more dense
Slower
Used for main memory
Typical DIMM organized by chips, rows, and columns

Disks and SSDs

(Spinning) hard drives
Highest capacity
Random access time limited by seek and rotation
latencies
Always read or write an entire sector at a time

Solid-state (flash) drives
Technology descended from EEPROMs
Random-access reads are very fast
Can only rewrite by erasing large blocks
Random-access writes require recopying, slower

Spatial and temporal locality

Spatial locality: memory accesses are close
together in location

Best case: sequential accesses

Temporal locality: the same location is accessed
repeatedly close together in time

Set of locations being used is called the working set

Because of locality, different locations have very
different chances of being accessed next



Memory hierarchy

Devices have trade-off between access time
and capacity

Differences of many orders of magnitude

Combine small+fast devices with big+slow ones
in a hierarchy
Because of locality, most uses are in small+fast
device
Must move data between levels

Keeping a copy at a higher level is called caching
First example: caches between CPU core and
memory

Cache parameters

Data is moved in blocks of size B = 2b

Organize cache into S = 2s sets of lines

A set contains E = 2e lines, each of which can
contain one of the same blocks

E = 1: direct mapped
E > 1: E-way set associative
S = 1: fully associative

Total capacity C = S � E � B

b and s also give a division of addresses into
m = t+ s+ b

Cache operations: read

Use s bits as an index to choose a set

Check all lines in the set (hardware: in parallel),
to see if any is valid and has a matching tag
If yes, it’s a hit: block offset indicates which
bytes desired

If not present, it’s a miss
Fetch data from lower level (e.g., main memory)
Insert newly read data, usually evicting another
block

Cache operations: write

Look for a matching line as for a read

If a hit, update contents of cache block
Write-back policy: do not copy to lower levels until
evicted (opposite is write-through)

If a miss, the common write-allocate policy
copies the block into the cache

Exploits locality in write-only accesses

Cache usage optimizations

Overall goals: maximize locality, minimize
working set
Use more compact data representations

Prefer stride-1 data accesses
E.g., for a matrix, iterate over indexes in
outer-to-inner order

Temporally group accesses to the same data
values

For 2-D data, group by blocks (tiles) instead of rows

Outline

Topics in CPU architecture

Topics in code optimization

Topics in memory hierarchy and caches

Discussion problems



Y86 “compiling”

int ary[10][10];

ary[i][j]++;

ary is in %eax, i is in %ebx, j is in %ecx.
Step 1: write a formula for &ary[i][j]

Y86 “compiling”

int ary[10][10];

ary[i][j]++;

ary is in %eax, i is in %ebx, j is in %ecx.
Step 1: write a formula for &ary[i][j]

4*(j + 10 * i) + ary

Y86 “compiling”, pt. 2

ary is in %eax, i is in %ebx, j is in %ecx.
4*(j + 10 * i) + ary

rrmovl %ebx, %esi # esi = i
addl %esi, %esi # esi = 2*i
addl %esi, %esi # esi = 4*i
addl %ebx, %esi # esi = 5*i
addl %esi, %esi # esi = 10*i
addl %ecx, %esi # esi = 10*i + j
addl %esi, %esi # esi = 2*(10*i + j)
addl %esi, %esi # esi = 4*(10*i + j)
addl %eax, %esi # esi = ary + 4*(10*i + j)

Y86 “compiling”, pt. 3

Instructions for (*%esi)++

Y86 “compiling”, pt. 3

Instructions for (*%esi)++

mrmovl 0(%esi), %edi # Load into %edi

irmovl 1, %edx

addl %edx, %edi # %edi++

rmmovl %edi, 0(%esi) # Store back

Optimization
Why does the following program run slowly?
char *concat(char *a, char *b) {

char *c = malloc(strlen(a) + strlen(b) + 1);
strcpy(c, a); strcat(c, b);
free(a); free(b); return c;

}
int main(int argc, char **argv) {

char *buf = strdup("");
char *linebuf = 0; size_t len = 0; int i;
while (getline(&linebuf, &len, stdin) != -1)

buf = concat(buf, strdup(linebuf));
for (i = strlen(buf) - 1; i >= 0; i--)

putchar(buf[i]);
return 0;

}



Cache parameters
The following caches all have 64-byte blocks:

C E S
A. 32 KB 1 512
B. 32 KB 8 64
C. 32 KB 512 1

Which cache needs the most gates?

Which cache has the fastest hit time?

Which cache has the lowest miss rate?

Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E S
A. 32 KB 1 512
B. 32 KB 8 64
C. 32 KB 512 1

Which cache needs the most gates? C

Which cache has the fastest hit time?

Which cache has the lowest miss rate?

Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E S
A. 32 KB 1 512
B. 32 KB 8 64
C. 32 KB 512 1

Which cache needs the most gates? C

Which cache has the fastest hit time? A

Which cache has the lowest miss rate?

Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E S
A. 32 KB 1 512
B. 32 KB 8 64
C. 32 KB 512 1

Which cache needs the most gates? C

Which cache has the fastest hit time? A

Which cache has the lowest miss rate? C

Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E S
A. 32 KB 1 512
B. 32 KB 8 64
C. 32 KB 512 1

Which cache needs the most gates? C

Which cache has the fastest hit time? A

Which cache has the lowest miss rate? C

Which cache is found in a real Core i7? B


