CSci 2021: Review Lecture 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Quiz 2 topics (in one slide)

) CPU architecture
B Y86 instructions
® Control logic and HCL
) Sequential Y86
B Pipelined Y86

) Code optimization
® Machine-independent techniques
8 Instruction-level parallelism

) Memory hierarchy and caches

® Memory and disk technologies
B Locality and how to use it

| Cache parameters and operation
| Optimizing cache usage

Outline

Topics in CPU architecture

Y86 instructions

) Simplified subset of x86, simpler encoding

) 32-bit only, 8 registers

) Four kinds of moves, only one addressing mode
) Add, subtract, bitwise and, bitwise xor

) Conditional jump and move based on equality
and signed comparison
) Call, return, push, pop

) Halt and two fatal errors, no exceptions

Logic design for control

i) Combinational circuits:

® Compute a function of bits, no memory
| Acyclic network of AND, OR, and NOT gates
| Also includes word-sized comparison, multiplexors,
and ALU
IC) Stateful elements:

B (Clocked) registers
® Random-access memory
| State updates occur on rising clock edge only

Hardware design in HCL

) Simple language for specifying control circuits

) Two types: Boolean and word

) Comparison and logic operators (no side-effects
or “short circuiting”)

) Core construct: sequential conditional

L] [C] ZV];CZ sz] ZVTJ
B “Else” case written 1

Sequential Y86

) Whole state update function is one big
combinational circuit

) Express behavior of each instruction using
smaller computations

IT) Processing split into stages for organization:

B Fetch, decode, execute, memory, write back, PC
update

) Simplest, but requires long cycle time (slow)

Pipelining basics

) Split processing into stages, and work on
multiple instructions at once

£) Reduces cycle time and increases hardware
utilization

) Pipeline registers hold data between stages

) Performance concerns: balanced stages, and
not too many

) Correctness concerns: must have same final
behavior

Pipelining techniques

IC) Hazards: dependencies introduce danger of
incorrect results

I£) Branch prediction: guesses result of conditional
jumps

i) Stalling: hold up instructions until data ready

® Simple, but introduces a lot of delay
| Used for return instruction in Y86

I£) Cancelling: kill incorrect instructions

® Must happen before they have side-effects
| Used for branch mis-predictions

) Forwarding: copy data to a different stage right
as needed

Outline

Topics in code optimization

Principles of optimization

) Concentrate on the program parts that run the

most
® Amdahl's law bounds possible speedup
) Array-style programs: concentrate on inner loops
® Complex programs: use a profiler

) Know what the compiler can and can't do

® Compiler can be smart, but is careful about
correctness
B Functions and pointers (aliasing) block optimization

i) Watch out for algorithmic problems

Machine-independent optimizations

) Move computations out of loops
) Avoid abstract functions in time-critical code

) Use temporary variables to reduce memory
operations
) Unroll loops to reduce bookkeeping overhead

Instruction-level parallelism

i) Modern processors are super-scalar
| Can do more than one thing at once
And out-of-order
B In a different sequence than the original instructions
i) Multiple functional units, each with different
throughput and latency

()

Exposing loop parallelism

) To reduce latency, avoid a long critical path
) Functional unit throughput is an ultimate limit
) Unroll to allow optimization between iterations

) Techniques to shorten the critical path:

B Re-associate associative operators
® Replace a single accumulator with multiple parallel
accumulators

Outline

Topics in memory hierarchy and caches

RAM technologies

) SRAM: several (e.g. 6) transistors per bit

) Faster
® More expensive, less dense
| Used for caches

) DRAM: one capacitor and transistor per bit

® Must be periodically refreshed

8 Cheaper, more dense

5 Slower

® Used for main memory

) Typical DIMM organized by chips, rows, and columns

Disks and SSDs

I£) (Spinning) hard drives
B Highest capacity
® Random access time limited by seek and rotation

latencies
| Always read or write an entire sector at a time

I©) Solid-state (flash) drives

® Technology descended from EEPROMs

® Random-access reads are very fast

| Can only rewrite by erasing large blocks

| Random-access writes require recopying, slower

Spatial and temporal locality

) Spatial locality: memory accesses are close
together in location
| Best case: sequential accesses
) Temporal locality: the same location is accessed
repeatedly close together in time
| Set of locations being used is called the working set
) Because of locality, different locations have very
different chances of being accessed next

Memory hierarchy

) Devices have trade-off between access time

and capacity
m Differences of many orders of magnitude

i) Combine small+fast devices with big+slow ones
in a hierarchy

) Because of locality, most uses are in small+fast
device

i) Must move data between levels

| Keeping a copy at a higher level is called caching
B First example: caches between CPU core and
memory

Cache parameters

) Data is moved in blocks of size B = 2°
) Organize cache into S = 2° sets of lines

) A set contains E = 2°¢ lines, each of which can

contain one of the same blocks
® E = 1: direct mapped
| E > 1. E-way set associative
® S = 1: fully associative

) Total capacity C=S-E-B

) b and s also give a division of addresses into
m=t+s+b

Cache operations: read

IF) Use s bits as an index to choose a set

I£) Check all lines in the set (hardware: in parallel),
to see if any is valid and has a matching tag

£) If yes, it's a hit. block offset indicates which
bytes desired

£) If not present, it's a miss

| Fetch data from lower level (e.g., main memory)
B Insert newly read data, usually evicting another
block

Cache operations: write

) Look for a matching line as for a read

) If a hit, update contents of cache block

® Write-back policy: do not copy to lower levels until
evicted (opposite is write-through)

) If a miss, the common write-allocate policy

copies the block into the cache
| Exploits locality in write-only accesses

Cache usage optimizations

) Overall goals: maximize locality, minimize
working set
i) Use more compact data representations

IC) Prefer stride-1 data accesses

| Eg, for a matrix, iterate over indexes in
outer-to-inner order

) Temporally group accesses to the same data

values
| For 2-D data, group by blocks (tiles) instead of rows

Outline

Discussion problems

Y86 “compiling”
int ary[10][10];
ary[i] [j1++;

ary is in %eax, i is in %ebx, j is in %ecx.
Step 1. write a formula for &ary[i] [j]

Y86 “compiling”

int ary[10][10];

ary [1] [j1++;

ary is in jeax, i is in %ebx, j is in ecx.
Step 1. write a formula for &ary[i] [j]

4x(j + 10 * i) + ary

Y86 “compiling”, pt. 2

ary is in %eax, i is in %ebx, j is in %ecx.
4x(j + 10 x i) + ary

rrmovl %ebx, %esi # esi = i

addl Y%esi, %esi # esi = 2*i

addl %esi, %esi # esi = 4x*i

addl Y%ebx, %esi # esi = b5*i

addl %esi, %esi # esi = 10%*i

addl %ecx, %esi # esi = 10xi + j

addl %esi, %esi # esi = 2x(10*i + j)

addl %esi, %esi # esi = 4*x(10%i + j)

addl %eax, %esi # esi = ary + 4*x(10%i + j)

Y86 “compiling”, pt. 3

Instructions for (x%esi)++

Y86 “compiling”, pt. 3

Instructions for (x%esi)++

mrmovl O0(%esi), %edi # Load into %edi
irmovl 1, %edx

addl %edx, Y%hedi # Yedi++

rmmov]l Yedi, 0(%esi) # Store back

Optimization
Why does the following program run slowly?

char *concat(char *a, char *b) {
char *c = malloc(strlen(a) + strlen(b) + 1);
strcpy(c, a); strcat(c, b);
free(a); free(b); return c;
}
int main(int argc, char *xargv) {
char xbuf = strdup("");
char *linebuf = 0; size_t len = 0; int i;
while (getline(&linebuf, &len, stdin) != -1)
buf = concat(buf, strdup(linebuf));
for (i = strlen(buf) - 1; i >= 0; i--)
putchar (buf[il);
return 0;

Cache parameters
The following caches all have 64-byte blocks:

C E| S
A |32KB| 1 | 512
B.|32KB| 8 | 64
C.|32KB|512 | 1

) Which cache needs the most gates?
) Which cache has the fastest hit time?
) Which cache has the lowest miss rate?

) Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E| S
A |32KB| 1 |512
B.|32KB| 8 | 64
C.|32KB|512]| 1

) Which cache needs the most gates? C
) Which cache has the fastest hit time?
) Which cache has the lowest miss rate?

) Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

c E| S
A |32KB| 1 | 512
B.|32KB| 8 | 64
C.|32KB|512 | 1

) Which cache needs the most gates? C
) Which cache has the fastest hit time? A
) Which cache has the lowest miss rate?

) Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

C E| S
A|32KB| 1 |52
B.|32KB| 8 | 64
C.|32KB|512]| 1

) Which cache needs the most gates? C
) Which cache has the fastest hit time? A
) Which cache has the lowest miss rate? C

) Which cache is found in a real Core i7?

Cache parameters
The following caches all have 64-byte blocks:

c E| S
A |32KB| 1 |52
B.|32KB| 8 | 64
C.|32KB |52 | 1

) Which cache needs the most gates? C
) Which cache has the fastest hit time? A

) Which cache has the lowest miss rate? C

) Which cache is found in a real Core i7? B

