
CSci 5271
Introduction to Computer Security

Day 16: Cryptographic protocols and failures
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC
Berkeley grad. security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic
Stanford collaborators named Diffie and
Hellman

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a
locked box

They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by
Bob, or vice-versa

Math perspective: physical locks
commute

Public key primitives

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)



Modular arithmetic

Fix modulus n, keep only remainders
mod n

mod 12: clock face; mod 232: int

+, -, and � work mostly the same

Division: see Exercise Set 1

Exponentiation: efficient by square and
multiply

Generators and discrete log

Modulo a prime p, non-zero values and
� have a nice (“group”) structure

g is a generator if g0; g; g2; g3; : : :
cover all elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for
large p

Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob
have resp. secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard
(likely not even NP-complete), but it’s
been unsolved for a long time

If discrete log is easy (e.g., in P), DH is
insecure

Converse might not be true: DH might
have other problems

Categorizing assumptions

Math assumptions unavoidable, but can
categorize

E.g., build more complex scheme,
shows it’s “as secure” as DH because it
has the same underlying assumption

Commonly “decisional” (DDH) and
“computational” (CDH) variants

Key size, elliptic curves

Need key sizes �10 times larger then
security level

Attacks shown up to about 768 bits

Elliptic curves: objects from higher math
with analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller
keys, about 2� security level



Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

General description

Public-key encryption (generalizes
block cipher)

Separate encryption key EK (public) and
decryption key DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and
verification key VK (public)

RSA setup

Choose n = pq, product of two large
primes, as modulus

n is public, but p and q are secret

Compute encryption and decryption
exponents e and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Secret key is (n; d)

Decryption of C is Cd =Med =M

(mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M

(mod n)

Note: symmetry is a nice feature of
RSA, not shared by other systems

RSA and factoring

We’re not sure factoring is hard (likely
not even NP-complete), but it’s been
unsolved for a long time

If factoring is easy (e.g., in P), RSA is
insecure

Converse might not be true: RSA might
have other problems



Aside: stronger reduction

Public-key algorithms actually
equivalent to factoring and discrete log
exist

But not widely used because of speed or
other efficiency issues

Even symmetric-key algorithms with
such security

But they’re much less efficient than AES
et al.

Homomorphism

Multiply RSA ciphertexts ) multiply
plaintexts

This homomorphism is useful for some
interesting applications
Even more powerful: fully homomorphic
encryption (e.g., both + and �)

First demonstrated in 2009; still very
inefficient

Problems with vanilla RSA

Homomorphism leads to
chosen-ciphertext attacks

If message and e are both small
compared to n, can compute M1=e

over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up
symmetric session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES
key) size to match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01
FF FF .. FF

Surprising discovery
(Bleichenbacher’98): allows adaptive
chosen ciphertext attacks on SSL

Modern “padding”

Much more complicated encoding
schemes using hashing, random salts,
Feistel-like structures, etc.

Common examples: OAEP for
encryption, PSS for signing

Progress driven largely by improvement
in random oracle proofs



Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto
used for symmetric-key setup

Also applies to DH

Choose RSA message r at random
mod n, symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e
and r reused with different n

Box and locks revisited

Alice and Bob’s box scheme fails if an
intermediary can set up two sets of
boxes

Real world analogue: challenges of
protocol design and public key
distribution

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

Upcoming assignments

Exercise set 3 due Thursday night

Project meetings continue this week

Progress report: due Monday 11/4

Grades on Moodle

Ex 1, HW1, midterm all posted
Note HW1 split 8 + 92

Current estimate of weighted average
and letter grade

Formula by hand, syllabus is authoritative

Crypto textbook show and tell 4/5

Schneier, Applied Cryptography

Historically important, fun, not up to
date

Arguably led to many insecure systems



Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

A couple more security goals

Non-repudiation: principal cannot later
deny having made a commitment

I.e., considers proving fact to a third party

Forward secrecy: recovering later
information does not reveal past
information

Motivates using Diffie-Hellman to generate
fresh keys for each session

Abstract protocols

Outline of what information is
communicated in messages

Omit most details of encoding, naming,
sizes, choice of ciphers, etc.

Describes honest operation
But must be secure against adversarial
participants

Seemingly simple, but many subtle
problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice
intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the
pre-shared key KA

Without revealing it directly

Using encryption for authenticity and
binding, not secrecy

Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make
a message unique

Best practice: pseudorandom

In constrained systems, might be a
counter or device-unique serial number



Replay attacks

A nonce is needed to prevent a
verbatim replay of a previous message
Garage door difficulty: remembering
previous nonces

Particularly: lunchtime/roommate/valet
scenario

Or, door chooses the nonce:
challenge-response authentication

Man-in-the-middle attacks

Gender neutral: middleperson attack

Adversary impersonates Alice to Bob
and vice-versa, relays messages

Powerful position for both
eavesdropping and modification

No easy fix if Alice and Bob aren’t
already related

Chess grandmaster problem

Variant or dual of MITM

Adversary forwards messages to
simulate capabilities with his own
identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Needham-Schroeder

Authenticated key exchange assuming
public keys (core):
A! B : fNA; AgKB
B! A : fNA; NBgKA
A! B : fNBgKB

Needham-Schroeder MITM

A! C : fNA; AgKC
C! B : fNA; AgKB
B! C : fNA; NBgKA
C! A : fNA; NBgKA
A! C : fNBgKC
C! B : fNBgKB

Certificates, Denning-Sacco

A certificate signed by a trusted
third-party S binds an identity to a
public key

CA = SignS(A;KA)

Suppose we want to use S in
establishing a session key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB



Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can
pretend to be Alice to Charlie

Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an
envelope, not outside. Two reasons:

Attacker gets letter, puts in his own
envelope (c.f. attack against X.509)
Signer claims “didn’t know what was in
the envelope” (failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for
freshness

Be explicit about the context

Don’t trust the secrecy of others’
secrets

Whenever you sign or decrypt, beware
of being an oracle

Distinguish runs of a protocol

Implementation principles

Ensure unique message types and
parsing

Design for ciphers and key sizes to
change

Limit information in outbound error
messages

Be careful with out-of-order messages

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

BCVS vulnerabilities

Type 1: Buffer overflows and similar
Some easy to spot, but hard to exploit

Type 2: Logic errors in running
programs, file accesses, etc.

Usually easier to exploit once found



BCVS exploiting overflows

Make sure control flow reaches the
return

Compensate for collateral damage

Find your shellcode

Writing shellcode

BCVS design changes

Avoid unnecessary changes to benign
functionality

Restricting length or character sets of
arguments
Though, what is the benign functionality?

Not a great candidate for privilege
separation

Outline

Public-key crypto basics

Public key encryption and signatures

Announcements

Cryptographic protocols

HW1 debrief

More causes of crypto failure

Random numbers and entropy

Cryptographic RNGs use cipher-like
techniques to provide indistinguishability
But rely on truly random seeding to
stop brute force

Extreme case: no entropy ! always
same “randomness”

Modern best practice: seed pool with
256 bits of entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL
(1994-1995) seeded with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit
encryption)

But worse because many bits
guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme
using /dev/urandom

Also mixed in some uninitialized
variable values

“Extra variation can’t hurt”

From modern perspective, this was the
original sin

Remember undefined behavior discussion?

But had no immediate ill effects



Debian/OpenSSL RNG failure (2)

Debian maintainer commented out
some lines to fix a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all
but 16 bits)

Brief mailing list discussion didn’t lead
to understanding

Broken library used for �2 years before
discovery

Detected RSA/DSA collisions
Up to about 1% of the SSL and SSH
keys on the public net are breakable

Some sites share complete keypairs
RSA keys with one prime in common
(detected by large-scale GCD)

One likely culprit: insufficient entropy in
key generation

Embedded devices, Linux /dev/urandom

vs. /dev/random

DSA signature algorithm also very
vulnerable

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired
Equivalent Privacy (WEP)

F&S: designed by a committee that
contained no cryptographers
Problem 1: note “privacy”: what about
integrity?

Nope: stream cipher + CRC = easy bit
flipping

WEP shared key

Single key known by all parties on
network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key
(export restrictions) plus 24-bit IV =
64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes
hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key,
similar IV)
First stream bytes used

Not a practical problem for other RC4
users like SSL

Key from a hash, skip first output bytes

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by
your adversary

In a public spec, most worrying are
unexplained elements

Best practice: choose constants from
well-known math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST
standard, based on elliptic curve

Looks like provable (slow enough!) but
strangely no proof

Specification includes long unexplained
constants
Academic researchers find:

Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of
constants allows prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to
US govt. FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed
recently by Snowden leaks

NIST and RSA immediately recommend
withdrawal

Next time

Crypto in SSH, TLS, DNSSEC

Public-key infrastructure


