
CSci 5271
Introduction to Computer Security

Day 10: OS security: access control
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Unix-style access control

Announcements intermission

Multilevel and mandatory access control

Capability-based access control

More Unix access control

UIDs and GIDs

To kernel, users and groups are just
numeric identifiers
Names are a user-space nicety

E.g., /etc/passwd mapping

Historically 16-bit, now 32

User 0 is the special superuser root
Exempt from all access control checks

File mode bits

Core permissions are 9 bits, three
groups of three

Read, write, execute for user, group,
other

ls format: rwx r-x r--

Octal format: 0754

Interpretation of mode bits

File also has one user and group ID

Choose one set of bits
If users match, use user bits
If subject is in the group, use group bits
Otherwise, use other bits

Note no fallback, so can stop yourself
or have negative groups

But usually, O � G � U

Directory mode bits

Same bits, slightly different
interpretation

Read: list contents (e.g., ls)

Write: add or delete files

Execute: traverse

X but not R means: have to know the
names



Process UIDs and setuid(2)

UID is inherited by child processes, and
an unprivileged process can’t change it

But there are syscalls root can use to
change the UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d
process will take UID of its file owner

Other side conditions, like process not
traced

Specifically the effective UID is changed,
while the real UID is unchanged

Shows who called you, allows switching
back

More different UIDs

Two mechanisms for temporary
switching:

Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to
it (System V)

Modern systems support both
mechanisms at the same time
Linux only: file-system UID

Once used for NFS servers, now mostly
obsolete

Setgid, games

Setgid bit 02000 mostly analogous to
setuid

But note no supergroup, so UID 0 is still
special

Classic application: setgid games for
managing high-score files

Other permission rules

Only file owner or root can change
permissions
Only root can change file owner

Former System V behavior: “give away
chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

Non-checks

File permissions on stat

File permissions on link, unlink, rename

File permissions on read, write

Parent directory permissions generally
Except traversal
I.e., permissions not automatically
recursive



Outline

Unix-style access control

Announcements intermission

Multilevel and mandatory access control

Capability-based access control

More Unix access control

Upcoming lectures

Next Tuesday: last OS security

Next Thursday: election security (not
for midterm)

Tuesday 10/14: midterm

Thursday 10/16: guest lecture on SFI

Deadlines reminder

Yesterday: project progress reports

Tomorrow: HA1 attack 4 and design

Week from today: Ex. 2

Outline

Unix-style access control

Announcements intermission

Multilevel and mandatory access control

Capability-based access control

More Unix access control

MAC vs. DAC

Discretionary access control (DAC)
Users mostly decide permissions on their
own files
If you have information, you can pass it on
to anyone
E.g., traditional Unix file permissions

Mandatory access control (MAC)
Restrictions enforced regardless of
subject choices
Typically specified by an administrator

Motivation: it’s classified

Government defense and intelligence
agencies user classification to restrict
access to information

E.g.: Unclassified, Confidential, Secret,
Top Secret

Multilevel Secure (MLS) systems first
developed to support mixing
classification levels under timesharing



Motivation: system integrity

Limit damage if a network server
application is compromised

Unix DAC is no help if server is root

Limit damage from
browser-downloaded malware

Windows DAC is no help if browser is
“administrator” user

Bell-LaPadula, linear case

State-machine-like model developed for
US DoD in 1970s

1. A subject at one level may not read a
resource at a higher level

Simple security property, “no read up”
2. A subject at one level may not write a

resource at a lower level
* property, “no write down”

High watermark property

Dynamic implementation of BLP

Process has security level equal to
highest file read

Written files inherit this level

Biba and low watermark

Inverting a confidentiality policy gives
an integrity one

Biba: no write up, no read down

Low watermark policy

BLP ^ Biba ) levels are isolated

Information-flow perspective

Confidentiality: secret data should not
flow to public sinks

Integrity: untrusted data should not flow
to critical sinks

Watermark policies are process-level
conservative abstractions

Covert channels

Problem: conspiring parties can misuse
other mechanisms to transmit
information
Storage channel: writable shared state

E.g., screen brightness on mobile phone

Timing channel: speed or ordering of
events

E.g., deliberately consume CPU time



Multilateral security / compartments

In classification, want finer divisions
based on need-to-know

Also, selected wider sharing (e.g., with
allied nations)
Many other applications also have this
character

Anderson’s example: medical data

How to adapt BLP-style MAC?

Partial orders and lattices

� on integers is a total order
Reflexive, antisymmetric, transitive, a � b
or b � a

Dropping last gives a partial order

A lattice is a partial order plus
operators for:

Least upper bound or join t
Greatest lower bound or meet u

Example: subsets with �, [, \

Subset lattice example Subset lattice example

Lattice model

Generalize MLS levels to elements in a
lattice

BLP and Biba work analogously with
lattice ordering

No access to incomparable levels

Potential problem: combinatorial
explosion of compartments

Classification lattice example



Lattice BLP example Another notation

Faculty
! (Faculty, ?)

Faculty//5271
! (Faculty, f5271g)

Faculty//5271//8271
! (Faculty, f5271; 8271g)

MLS operating systems

1970s timesharing, including Multics

“Trusted” versions of commercial Unix
(e.g. Solaris)

SELinux (called “type enforcement”)

Integrity protections in Windows Vista
and later

Multi-VM systems

One (e.g., Windows) VM for each
security level

More trustworthy OS underneath
provides limited interaction

E.g., NSA NetTop: VMWare on SELinux

Downside: administrative overhead

Air gaps, pumps, and diodes

The lack of a connection between
networks of different levels is called an
air gap

A pump transfers data securely from
one network to another

A data diode allows information flow in
only one direction

Chelsea Manning cables leak

Manning (née Bradley) was an
intelligence analyst deployed to Iraq
PC in a T-SCIF connected to SIPRNet
(Secret), air gapped
CD-RWs used for backup and software
transfer
Contrary to policy: taking such a
CD-RW home in your pocket
http://www.fas.org/sgp/jud/manning/022813-statement.pdf



Outline

Unix-style access control

Announcements intermission

Multilevel and mandatory access control

Capability-based access control

More Unix access control

ACLs: no fine-grained subjects

Subjects are a list of usernames
maintained by a sysadmin

Unusual to have a separate subject for
an application

Cannot easily subset access (sandbox)

ACLs: ambient authority

All authority exists by virtue of identity

Kernel automatically applies all available
authority

Authority applied incorrectly leads to
attacks

Confused deputy problem

Compiler writes to billing database

Compiler can produce debug output to
user-specified file

Specify debug output to billing file,
disrupt billing

(Object) capabilities

A capability both designates a resource
and provides authority to access it
Similar to an object reference

Unforgeable, but can copy and distribute

Typically still managed by the kernel

Capability slogans (Miller et al.)

No designation with authority

Dynamic subject creation

Subject-aggregated authority mgmt.

No ambient authority

Composability of authorities

Access-controlled delegation

Dynamic resource creation



Partial example: Unix FDs

Authority to access a specific file

Managed by kernel on behalf of process

Can be passed between processes
Though rare other than parent to child

Unix not designed to use pervasively

Distinguish: password capabilities

Bit pattern itself is the capability
No centralized management

Modern example: authorization using
cryptographic certificates

Revocation with capabilities

Use indirection: give real capability via
a pair of middlemen

A! B via A! F! R! B

Retain capability to tell R to drop
capability to B

Depends on composability

Confinement with capabilities

A cannot pass a capability to B if it
cannot communicate with A at all

Disconnected parts of the capability
graph cannot be reconnected

Depends on controlled delegation and
data/capability distinction

OKL4 and seL4

Commercial and research microkernels

Recent versions of OKL4 use capability
design from seL4

Used as a hypervisor, e.g. underneath
paravirtualized Linux

Shipped on over 1 billion cell phones

Joe-E and Caja

Dialects of Java and JavaScript (resp.)
using capabilities for confined execution

E.g., of JavaScript in an advertisement

Note reliance on Java and JavaScript
type safety



Outline

Unix-style access control

Announcements intermission

Multilevel and mandatory access control

Capability-based access control

More Unix access control

Special case: /tmp

We’d like to allow anyone to make files
in /tmp

So, everyone should have write
permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage
permissions, want a whole tree to have
a single group
When 02000 bit set, newly created
entries with have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit
02000

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly
Unix-like
Multiple user and group entries

Decision still based on one entry

Default ACLs: generalize group
inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of
legacy code

Suggests: “fail closed”

Contrary pressure: don’t want to break
functionality

Suggests: “fail open”

POSIX ACL design: old group
permission bits are a mask on all novel
permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35)
pieces

Note: not real capabilities

First runtime only, then added to FS
similar to setuid

Motivating example: ping

Also allows permanent disabling



Privilege escalation dangers

Many pieces of the root privilege are
enough to regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to
drop privileges

Use of temporary files by no-longer
setuid programs

For more details: “Exploiting
capabilities”, Emeric Nasi

Next time

Techniques for higher assurance


