
CareDB: A Context and PreferenceAware LocationBased
Database System∗

Justin J. Levandoski Mohamed F. Mokbel Mohamed E. Khalefa
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN

{justin,mokbel,khalefa@cs.umn.edu}

ABSTRACT

We demonstrate CareDB, a context and preference-aware database
system. CareDB provides scalable personalized location-based ser-
vices to users based on their preferences and current surrounding
context. Unlike existing location-based database systems that an-
swer queries based solely on proximity in distance, CareDB con-
siders user preferences and various types of context in determining
the answer to location-based queries. To this end, CareDB does
not aim to define new location-based queries, instead, it aims to
redefine the answer of existing location-based queries. To achieve
its goals, CareDB has several distinguishing characteristics that re-
volve around a generic and extensible preference and context-aware
query processing framework that addresses (a) scalable, efficient
preference joins, (b) gracefully handling contextual attributes that
are expensive to derive, and (c) support for uncertain attributes.

1. INTRODUCTION
Location-based services are viewed as the convergence of mo-

bile device technologies, GIS/spatial databases, and the Internet.
Location-based services aim to provide new services to their users
based on the knowledge of their locations. Examples of these ser-
vices include live traffic reports (“Let me know if there is conges-

tion within five minutes of my route”) and store finders (“Where is

my nearest restaurant”). A recent report from ABI Research in-
dicated that the number of location-based services subscribers will
be 315 Million by 2011 [1]. The flood of information generated
by location-detection devices, along with the large number of mo-
bile users of location-based services, calls for the integration of
location-based service functionality with database systems.

Unfortunately, the system semantics of location-based databases
are rigid as concepts of user “preference” and “context” are ig-
nored. For example, when a user looks for a restaurant, she actually
wants to find the “best” restaurant according to her current prefer-
ences and context. Existing location-based query processors reduce
the meaning of “best” to be the “closest” in terms of pre-computed

∗This work is supported in part by the National Science Founda-
tion under Grants IIS-0811998, IIS-0811935, CNS-0708604, IIS-
0952977 (NSF CAREER) and by a Microsoft Research Gift

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

distances. If desired, preferences and/or context parameters are ap-
plied as afterthought queries over the returned result from location-
based queries. The rigidness of current location-based query pro-
cessors can be shown with a simple example where a user asks for
five restaurants. After retrieving the answer (the nearest five restau-
rants), the user discovers that the first restaurant has an undesirably
long wait, while the second restaurant does not match the user’s
dietary restrictions. The third restaurant is outside of the user’s
budget, while the fourth restaurant is closed. Finally, the route to
the fifth restaurant is infeasible due to a traffic accident. Location-
based services should be useful, and a more useful set of answers
could have been given in the previous example had the database
considered user preferences (e.g., dietary restrictions, budget) and
contexts (e.g., time of day, traffic, waiting times).

It is our goal in this demo to enable the practical realization of
location-based services that embed various forms of preferences
and context into the core processing of location-based queries. To
this end, we are not aiming to define new location-based queries,

instead, we aim to redefine the answer of existing traditional

location-based queries by incorporating various types of prefer-
ences and context. Due to resource limitations on mobile devices
(e.g., small screen and limited processing), and the fact that users
may be in unstable situations (e.g., driving), it is of essence to en-
hance the quality of the answer and limit the answer to only useful

tuples according to the users’ preferences and context.
Toward the goal of adding preference and context to location-

based services, i.e., enhancing the quality of answer by limiting
the query result to only useful tuples, we propose the CareDB sys-
tem: a context and preference-aware location-based database sys-
tem. CareDB is a complete database system, implemented in Post-
greSQL, that addresses the following research challenges:

1. Defining a taxonomy of preference and context types.

2. Generically supporting various preference evaluation meth-
ods at all levels of the query processor, including core query
operators (e.g., join).

3. Integrating surrounding contextual data (e.g., current traf-
fic, weather) in core preference query processing. Con-
textual data calls for retrieving some attributes from
computationally-intense sources (e.g., third-parties).

4. Support for data uncertainty that is inherent in location-based
applications (e.g., prices reported as a range, travel-time es-
timation reported with a tolerance error).

In the rest of this paper, we describe how CareDB addresses
these research challenges as well as our demonstration scenario.
Section 2 provides an overview of the CareDB architecture. Sec-
tion 3 describes the novel technical features of CareDB. Fi-
nally, Section 4 covers our demonstration scenario that showcases
CareDB in a real-life application scenario.

User

Result

Data Sources

CareDB

Building

Preference− and

and Optimization

.
.
.
.

Query Processing

. . . .

. . . .

. . . .

. . . .

.
.
.
.

Queries

Query

DB−specific

. . . .

m
Data

2
Data

1
Data

Query

Context

Context−Aware

n
User

2
User

1
User

and Context

User Preferences
Environmental

Context

Figure 1: CareDB Architecture

2. CareDB OVERVIEW
Our prototype of CareDB is implemented inside the Post-

greSQL [10] database engine. Figure 1 gives an overview of the
CareDB architecture.

CareDB Input. Besides queries, CareDB takes preferences and
contextual data as input. Preferences are a set of users tastes for
data attributes in a particular domain. For example, whenever a
user searches for a restaurant, her profile may store preferences for
minimizing travel time and price, maximizing rating, and any con-
straints on dietary needs. User preferences are stored in a pref-

erence profile, and can be given to CareDB explicitly, or learned
through the users history [12]. CareDB has three input context

types: user context, database-specific context, and environmen-

tal context. Each context can be either static (rarely changed)
or dynamic (frequently changing). Static/dynamic context is de-
picted by solid/dotted lines and dark/light gray rectangles, respec-
tively, in Figure 1. User context is any extra information about
a user. Static user context data can include income, profession,
and age while dynamic attributes include current user location or
status (e.g., “at home”, “in meeting”). Database context refers to
application-specific data sources (e.g., restaurant, hotel, and taxi
databases) that are registered with CareDB. As an example, for a
restaurant database, static context data includes price, rating, and
operating hours while dynamic context includes current waiting
time. Environmental context is any information about surrounding
environment. This data is assumed to be stored at a third party and
accessed by the query processor during query runtime by calling
the data source through a remote API (e.g., web service interface).
A dynamic environmental context includes traffic and travel time
(e.g., from Yahoo Traffic [13]), while a relatively static context in-
cludes weather information (e.g., from NWS [9]).

Query building. The purpose of the query building module
(rounded square in Figure 1) is to personalize queries for each user
such that the best answers are returned. The user submits simple
queries without constraints (e.g., “Find me a restaurant”). The
query building module creates preference queries by augmenting
the submitted query with the preferences stored in the user’s pref-
erence profile. We describe preference queries next.

Query Processor The novelty of CareDB lies within the prefer-

ence and context-aware query processing module. The query pro-
cessor takes as input preference queries. In previous work, we built
FlexPref [7] that: (1) extended SQL syntax with a Preferring
clause for specifying preference objectives (e.g., minimize price,
maximize distance), and a Using clause that specifies which pref-
erence method should evaluate the objectives (e.g., skyline [2], top-
k dominance [14], k-dominance [3]). Examples of this syntax are
given in Figure 2. (2) Built a framework of generic, extensible
operators inside the DBMS query processor to execute the prefer-
ence query. In this demonstration, we focus on more novel features
of CareDB that address query processing challenges beyond those
covered by FlexPref, namely, providing a generic, extensible plat-
form for preference evaluation with (a) efficient join operations,

SELECT R.id, R.Location

FROM Restaurants R,

 MapPoint M

PREFERRING R.price p, R.rating r,

 M.travelTime(R.Location,

 User.Location) t

USING TopKDomination min p, min t,

 max r with k=10;

Preference

Evaluation

Restaurant R

R.price, R.rating

M.travelTime(R.Location,

User.Location)

(a) Expensive attribute query

SELECT R.id, H.id

FROM Restaurants R, Hotels H

WHERE R.city=H.city, R.groups=”yes”

PREFERRING R.price rp, H.rating hr,

 R.rating rr

USING KFrequency min rp, max hr,

 max rr with k=2;

select
groups=yes

Preference

Join

Restaurant R

R.price, R.rating

Hotel H

H.rating

(b) Join query

Figure 2: Preference and context-aware query examples

(b) expensive attributes, and (c) uncertain data. The following sec-
tion discusses the CareDB features that address these challenges.

3. CareDB TECHNICAL FEATURES
Unlike previous work that addresses query processing challenges

for specific preference methods (e.g., progressive skyline joins [6]),
all CareDB features discussed in this section are built in a generic

and extensible manner, capable of supporting multiple preference
methods. The basic idea is to create a single, generic, operator for
each feature (e.g., uncertainty, join), that performs computations
common across preference methods. Each operator is extensible

through “plug-in” functions that tell the operator about the seman-
tics of a specific preference method1. From a systems perspective,
this is a powerful method for implementing preference query pro-
cessing in a database, as the engine need only be chanced once,
while existing and future preference methods can “plug-into” the
existing framework.

3.1 Query Processing with Expensive
Attributes

In CareDB, it is assumed that some attribute values will be ex-
pensive to derive, as the derived value may require extensive com-
putations (e.g., road network travel time), or must be retrieved from
a third party (e.g., remote web service). Figure 2(a) gives an exam-
ple query (and plan) to find a preferred restaurant using the top-
k domination method [14], where attributes price and rating are
stored in a local relation, while the travel time attribute is requested
from the Microsoft MapPoint [8] web service based on the restau-
rant and user locations. Under these circumstances, computational
overhead is dominated by deriving the expensive travel time at-
tribute, thus the preference query processing operator should avoid
computing these expensive attributes whenever possible.

The CareDB query processor is designed to take these challenges
into account. CareDB employs a preference evaluation operator
that computes the preference answer by retrieving as few expen-
sive data attributes as possible. The main idea is to first perform
preference evaluation over local data attributes, forming a local an-
swer set LA using “plug-in” functions to determine the semantics
of the specific preference method used to execute the query (e.g.,
top-k domination). The operator then selectively requests expen-
sive attributes for objects in LA guaranteed to be preference an-
swers, and prunes objects that are guaranteed not to be preference

1We refer to [7] for details of the concept of extensible preference
query processing in a DBMS engine, and initial work on simple
query operations.

Figure 3: RestPref Demo Application

answers. CareDB then makes a minimum number of expensive at-
tribute requests necessary to completely and correctly execute the
preference query. In this demo, we provide sample queries that re-
quire requests to third-party web-service data in order to determine
route travel time.

3.2 Generic Preference Join
Like most query processing scenarios for real-life applications, it

is likely most data stored locally in the CareDB will not reside in a
single table. For example, Figure 2(b) gives an example preference
query (and plan) using the k-dominance preference method [3] for
a user requesting a hotel and restaurant pair. The preference ob-
jectives are to minimize the restaurant price, while maximizing
both restaurant and hotel ratings. The hotel and restaurant data is
stored in separate tables, necessitating a join to answer the prefer-
ence query. The naive method to answer this query is to perform
the join, then perform preference evaluation. Current state-of-the-
art join methods address a specific preference method (e.g., skyline
join [6]), often assuming a specific index for progressive result gen-
eration [6, 11].

CareDB, on the other hand, employs PrefJoin, an efficient pref-
erence join operation that is generic for a wide variety of preference
functions and does not assume the existence of any index structure.
The goal of PrefJoin is to make the join operation aware of the
required preference functionality through the “plug-in” functions,
and hence the join operation would be able to early prune those
tuples that have no chance of being a preferred object without ac-
tually doing the join operation. The PrefJoin algorithm consists
of four phases, namely, Local Pruning, Data Preparation, Joining,
and Refining. The Local Pruning phase filters out, from each input
relation those tuples that are guaranteed not to be in the final pref-
erence set. The Data Preparation phase associates meta data with
each non-filtered tuple that will be used to optimize the execution
of the next phase. The Joining phase uses that meta data, computed
in the previous phase, to decide on which tuples should be joined
together. Finally, the Refining phase finds the final preference set
from the output of the joining phase.

3.3 Query Processing with Data Uncertainty
It is likely that real-world data will contain uncertainty, thus

CareDB is built to handle uncertain data. CareDB assumes uncer-
tainty as a continuous range of values, common in many real-life
applications (e.g., biological data, spatial databases, sensor moni-
toring, and location-based services). The uncertainty framework of

Figure 4: Viewing executed CareDB preference query from

RestPref

CareDB associates a probability P with each object O, that gives
the chance that P is an answer to the preference query. CareDB

uncertainty processing assumes two system parameters: (1) A tol-

erance value ∆ that specificies the maximum error allowed in cal-
culating probability P , and (2) A Threshold value H , that each
object probability must exceed in order to be a preference answer.
The CareDB uncertainty framework employs a two-phase filter-
refine approach to processing preference queries over uncertain
data. Phase I calculates an estimated upper-bound preference prob-
ability for each object, and filters objects on-the-fly that have an
upper-bound probability that falls below the threshold H . Phase II
computes a final preference probability for each candidate answer
within a user-given tolerance ∆. Phase II employs a novel, efficient
probability calculation method that performs only as much compu-
tation as is needed to guarantee the final preference probability for
an object falls within ∆.

4. DEMONSTRATION SCENARIO
We now outline the demonstration scenario, focusing on the ap-

plication, data, queries, and walk-through scenarios for CareDB.

4.1 Application
The application we use is RestPref, a location-based restau-

rant and hotel finder application built specifically for this demon-
stration. RestPref, depicted in Figure 3, comes in two versions:
(1) web-based, displayed in a standard browser or (2) mobile-

based, as an iPhone application, both of which are on display in the
demonstration. Both versions use CareDB as the backend database,
which performs the query processing tasks. In RestPref, the user is-
sues a simple query by pressing a button, we provide three buttons:
(a) “Find me a restaurant”, (b) “Find me a hotel”, and (c) ”Find me
a hotel/restaurant pair”. The application forwards the simple query
to CareDB where it is injected with preference and context con-
straints based on the users’s preference profile (covered shortly).
CareDB returns (1) the personalized SQL query that was run on
CareDB, which can be displayed in RecPref using a drop-down
screen as displayed in Figure 4, and (2) the personalized query an-
swers that are displayed on an embedded Google Maps interface.

4.2 Data, Preference Profiles, and Queries
Data. The data we use in RestPref is a set of restaurant and

hotel data for Singapore. The restaurant data is stored in CareDB

as relation Restaurant(id, name, price, rating, travel time). The
travel time attribute is derived at query runtime using a remote call
to Microsoft’s MapPoint web service [8] using the RestPref user’s
current location, and is considered an expensive attribute. The hotel
data is stored in CareDB as relation Hotel(id, name, rating, price);
the price attribute for hotels is reported as a range (e.g., 100-200
dollars), and thus contains uncertainty.

Figure 5: Preference profile editor

Preference Profile. In this demo, users can set their CareDB

preference profile explicitly from RestPref using the profile editor
window, as depicted in Figure 5. The editor allows the user to spec-
ify their preference objectives, as well as the preference method
used to evaluate these objectives. Since our CareDB query pro-
cessing framework is generic and extensible, we provide a num-
ber of different preference methods in this demo, including: sky-
line [2], top-k [5], top-k domination [14], k-dominance [3], and
k-frequency [4].

Queries. As mentioned previously in Section 2, objectives listed
in the preference profile determine the preference query executed
by CareDB. For example, if the user profile contains objectives to
maximize restaurant rating and minimize restaurant travel time for
restaurants using the top-k domination method [14], and they push
the “Find me a restaurant” button, the preference query executed
by CareDB will be exactly the same as that given in Figure 2(a),
requiring CareDB to process the travel time expensive attribute ef-
ficiently. Meanwhile, if a user profile contains objectives to mini-
mize restaurant price and maximize rating, while maximizing hotel
rating using the k-dominance method [3], and they press “Find me
a restaurant/hotel pair” button, the query executed by CareDB will
be exactly the same as that given in Figure 2(b), requiring CareDB

to execute its efficient preference-aware join. Similarly, the uncer-
tain preference query processing framework is invoked if the profile
contains preferences for the hotel price attribute.

4.3 Walkthrough
The audience of the demo will be able to perform the following

actions using CareDB and the RestPref application.
Canned scenarios. We provide three pre-set user preference

profiles that cause CareDB to execute a preference query with
(1) a preference-aware join between the hotel and restaurant ta-
bles, (2) an expensive attribute (travel time), and (3) uncertainty
(hotel price). Each of these queries showcases one of the frame-
works described in Sections 3.1 through 3.3. Each of the queries
will be executed five times, each using a different preference func-
tion (e.g., skyline [2], top-k domination [14]). For each different
preference function CareDB uses the same generic operator to pro-
cess the query, while only the “plug-in” functions change according
to the specific preference function.

Edit profile. The audience will be able to edit the preference
profile to cause CareDB to execute an array of preference queries.
For instance, the audience may choose to create a profile with ob-
jectives that minimize restaurant price and maximize rating, while
minimizing hotel price and maximing hotel rating, and press “find
me a hotel/restaurant pair”, causing CareDB to combine its uncer-
tainty and join functionality.

Backend access. Backend access to the CareDB server (imple-
mented in PostgreSQL) is also available through a GUI client, as
depicted in Figure 6. If interested, users can issue ad-hoc queries to
CareDB through the backend. Users can also explore query plans
- depicted visually in the GUI application - used to execute prefer-
ence and context-aware queries. For example, Figure 6 depicts the
query plan using CareDB preference join operator on a join-query

Figure 6: CareDB GUI backend with query plan

between the restaurant and hotel relations.
Performance showcase. Our demo will showcase the perfor-

mance benefits of the expensive attribute, join, and uncertainty

query processing frameworks of CareDB. We will first disable the
join and expensive attribute frameworks, forcing CareDB to exe-
cute the respective preference query in a naive manner. A naive
join query will first perform the complete join, then evaluate the
preference objectives. A naive expensive attribute query will first
request all expensive attributes (i.e., travel time) from the third-
party source, then evaluate the preference objectives. We will then
enable the join and expensive attribute frameworks and execute the
same queries. The audience will be able to view the performance
benefit by the query processing times reported by the GUI back-
end client (Figure 6). To exhibit the performance benefits of the
CareDB uncertainty framework, we implement a naive query pro-
cessing operation that calculates the exact probability of each ob-
ject (e.g., hotel) to be a preference answer. This naive method is
compared to the CareDB filter-refine uncertainty query processing
framework.

5. REFERENCES
[1] ABI Research. GPS-Enabled Location-Based Services (LBS) Subscribers Will

Total 315 Million in Five Years.
http://www.abiresearch.com/abiprdisplay.jsp?pressid=731. September, 27,
2006.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In ICDE,
2001.

[3] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. Finding
k-Dominant Skylines in High Dimensional Space. In SIGMOD, 2006.

[4] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. On High
Dimensional Skylines. In EDBT, 2006.

[5] S. Chaudhuri and L. Gravano. Evaluating Top-K Selection Queries. In VLDB,
1999.

[6] W. Jin, M. Morse, J. Patel, M. Ester, and Z. Hu. Evaluating Skylines in the
Presence of Equi-joins. In ICDE, 2010.

[7] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. FlexPref: A Framework for
Extensible Preference Evaluation in Database Systems. In ICDE, 2010.

[8] Microsoft MapPoint: http://www.microsoft.com/mappoint/.

[9] National Weather Service Web Service: http://www.weather.gov/xml/.

[10] PostgreSQL: http://www.postgresql.org.

[11] V. Raghavan and E. Rundensteiner. Progressive Result Generation for
Multi-Criteria Decision Support Queries. In ICDE, 2010.

[12] A. M. Rashid, I. Albert, D. Coslely, S. K. Lam, S. M. McNee, J. A. Konstan,
and J. Riedl. Getting to Know You: Learning New User Preferences in
Recommender Sysetems. In IUI, 2002.

[13] Yahoo Traffic Web Services: http://developer.yahoo.com/traffic/.

[14] M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k Dominating Queries
on Multi-Dimensional Data. In VLDB, 2007.

