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Abstract

This paper introduces the hash-merge join algorithm
(HMJ, for short); a new non-blocking join algorithm that
deals with data items from remote sources via unpre-
dictable, slow, or bursty network traffic. The HMJ algo-
rithm is designed with two goals in mind: (1) Minimize the
time to produce the first few results, and (2) Produce join
results even if the two sources of the join operator occasion-
ally get blocked. The HMJ algorithm has two phases: The
hashing phase and the merging phase. The hashing phase
employs an in-memory hash-based join algorithm that pro-
duces join results as quickly as data arrives. The merging
phase is responsible for producing join results if the two
sources are blocked. Both phases of the HMJ algorithm
are connected via a flushing policy that flushes in-memory
parts into disk storage once the memory is exhausted. Ex-
perimental results show that HMJ combines the advantages
of two state-of-the-art non-blocking join algorithms (XJoin
and Progressive Merge Join) while avoiding their short-
comings.

1. Introduction

Traditional join algorithms [9, 16, 19] assume that all
input data is available beforehand. This assumption is not
valid for web-based applications. A web query retrieves
data items from remote sources via a network connec-
tion. Network traffic may be unpredictable, slow, or bursty,
which may result in blocking input data [1, 20]. The block-
ing behavior of network traffic makes the traditional join
algorithms unsuitable for pipelined query plans [18]. In ad-
dition, traditional join algorithms optimize the query execu-
tion for the production of the entire join result. However a
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typical internet user may be interested only in the first few
results [3, 4].

With the goals of avoiding the blocking behavior of re-
mote data sources and producing join results as quickly as
possible, a family of non-blocking join algorithms are de-
veloped (e.g., see [7, 14, 10, 13, 15, 21, 23, 24]). Non-
blocking join algorithms have the ability to produce join
results even if one or both sources are blocked. Thus, a
fully pipelined query plan can still function properly even
with blocking sources. In addition, non-blocking join al-
gorithms are optimized to produce the first few results as
quickly as possible. Thus, it is suitable for the case when
the users are interested only in getting the first few an-
swers. In addition to web-based applications, non-blocking
join algorithms are useful in data integration [13], paral-
lel databases [6], online aggregation [10, 12], providing
approximate answers [17, 22], spatial databases [15], and
adaptive query processing [2, 11].

In this paper, we propose the Hash-merge join algorithm
(HMJ, for short); a novel non-blocking join algorithm that
deals with unpredictable and slow network traffic. The
Hash-merge join algorithm is designed with two goals in
mind: (1) Minimizing the time to produce the first few re-
sults. (2) Providing the ability to produce join results even
if the two sources of the join operator are blocked.

The Hash-merge join algorithm has two phases: The
hashing and merging phases. The hashing phase employs
an in-memory hash-based join algorithm that produces join
results as quickly as data arrives. Once the memory gets
filled, certain parts of the memory are flushed into disk stor-
age to free memory space for the newly incoming tuples.
If one of the sources is blocked for any reason, e.g., due
to slow or bursty network traffic, the hashing phase can
still produce join results from the unblocked source. If the
two input sources are blocked, the HMJ algorithm starts its
merging phase. In the merging phase, previously flushed
parts in disk are joined together using a sort-merge-like join
algorithm. Thus, the HMJ algorithm can produce join re-
sults even if the two sources are blocked. Once the block-



ing of any of the two sources is resolved, the HMJ algo-
rithm switches back to the hashing phase. The HMJ algo-
rithm switches back and forth between the two phases until
all data items are received from remote sources. Then, the
whole memory is flushed into disk storage and the merging
phase takes place to produce the final part of the join result.

The HMJ algorithm combines the advantages of two
state-of-the-art non-blocking join algorithms, XJoin [20,
21] and Progressive Merge Join (PMJ) [7, 8] while avoiding
their shortcomings. XJoin stores incoming tuples in mem-
ory while employing an in-memory hash-based join algo-
rithm to produce fast join results. When memory gets filled,
the largest hash bucket is flushed into disk. Although XJoin
produces fast results, its I/O complexity is high and hence
a large total time to produce the entire join result. On the
other side, PMJ partitions the memory into only two par-
titions, one for each source. Once the memory gets filled,
each partition is sorted and is joined with the other partition,
and then is flushed to disk. Thus, in PMJ, no join results
are produced until the memory gets filled. This results in a
higher initial delay than that of XJoin for producing the first
results. However, PMJ employs a sort-merge-like join al-
gorithm to join disk-resident data. Thus, PMJ performs less
I/O’s and hence less overall time than XJoin for producing
the entire results of a join.

Similar to XJoin, the proposed Hash-merge join algo-
rithm employs an in-memory hash-based join algorithm to
produce fast and early results. To avoid the drawbacks of
XJoin, HMJ employs a new flushing policy, termed the
Adaptive Flushing policy that aims to synchronously flush
two hash buckets, one from each source, into disk stor-
age. By using the Adaptive Flushing policy, HMJ can use
a refined version of the sort-merge-like join algorithm as in
PMJ. Thus, HMJ results in less I/Os and overall time than
XJoin for producing the total result. In summary, the con-
tributions of this paper are as follows:

1. We propose the Hash-merge join algorithm; a new
non-blocking join algorithm that is applicable in envi-
ronments where data arrives from remote sources via
unpredictable network connections (Section 3).

2. We propose a synchronized flushing policy, termed the
Adaptive Flushing policy that can be used in conjunc-
tion with any hash-based non-blocking join algorithm.
The Adaptive Flushing policy is adaptable to the fluc-
tuations of data arrival rates. The main goal of the
Adaptive Flushing policy is to always keep the mem-
ory balanced between the two remote sources, even if
one of the sources has a higher arrival rate than the
other. As we will see in Section 4, and in the perfor-
mance section, keeping the memory balanced makes
the join algorithm more responsive to producing fast
results once a new data item is received.

3. We prove the correctness of HMJ by proving the fol-
lowing: (a) Completeness, i.e., all join results will be
produced by HMJ. (b) Uniqueness, i.e., HMJ produces
duplicate-free results (Section 5).

4. We provide experimental evidence that HMJ (with the
Adaptive Flushing policy) outperforms XJoin and PMJ
(Section 6).

The rest of the paper is organized as follows: Section 2
highlights related work for non-blocking join algorithms.
Sections 3 introduces the HMJ algorithm. The Adaptive
Flushing policy is introduced in Section 4. The proof of
correctness of the HMJ algorithm is given in Section 5. A
study of the performance of HMJ and a discussion of the
results are presented in Section 6. Finally, Section 7 con-
cludes the paper.

2. Related Work

Hash-based join algorithms. The non-blocking symmet-
ric hash join [23, 24] extends the traditional hash join al-
gorithm to support pipelining. Two in-memory hash tables
with m buckets are maintained for sources A and B. Once a
new tuple t, with a hash value h(t), is received from source
A, t is used to probe bucket h(t of source B. Then, t is
stored in bucket h(t) of the hash table of source A. The
symmetric hash join algorithm requires that the two rela-
tions fit in memory. The XJoin algorithm [20, 21] extends
the symmetric hash join to be applied for disk-resident data.
XJoin starts by joining tuples in memory, similar to the
symmetric hash join. When memory gets filled, the largest
hash bucket among all A and B buckets is flushed into disk.
When both sources are blocked, XJoin performs join us-
ing the buckets previously flushed into disk. The double
Pipelined Hash Join (DPHJ) [13] is another extension of the
symmetric hash join algorithm. DPHJ has two stages. The
first stage is similar to the in-memory join in the symmetric
hash join and XJoin. In the second stage, pairs that are not
joined together in the first phase are marked and are joined
in disk. DPHJ is suitable for moderate size data, but does
not scale well for large data sizes.

Sort-based join algorithms. The progressive-merge join
(PMJ) algorithm [7, 8] is the non-blocking version of the
traditional sort-merge join. The main idea of PMJ is to read
as much data as can fit in memory. Then, in-memory data is
sorted and is joined together, and then is flushed into disk.
When all data is received, PMJ joins the disk-resident data
using a refinement version of the sort-merge join that allows
producing join results while merging.
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Figure 1. The Hash-merge join algorithm.

Nested-loop-based join algorithms. The family of rip-
ple joins [14, 10] generalize block nested-loop join and hash
join. Ripple joins automatically adjust their behavior to pro-
vide precise confidence interval for online aggregation. The
scalability of ripple joins is discussed in [14]. However,
ripple joins are geared towards online aggregation, thus the
quality of the results (obtained from statistical measures)
controls the join processing.

3. Hash-Merge Join Algorithm

The Hash-merge join algorithm (HMJ, for short) has two
phases: The hashing and the merging phases. Figure 1 pro-
vides a state diagram of HMJ. HMJ starts with the hashing
phase where input tuples from two remote sources A and
B are received. Incoming tuples are stored in in-memory
hash buckets based on their hash values. In-memory tuples
are joined together during the hashing phase and are added
to the output result. Once the memory gets filled, certain
parts of memory are flushed into disk. If both sources are
blocked for any reason, e.g., due to a slow network, then
HMJ transfers control to the merging phase. In the merging
phase, tuples that are previously flushed to disk are joined
together. Thus, HMJ has the ability to produce join results
even if both sources are blocked. If the blocking of any
source is resolved, HMJ returns to the hashing phase. HMJ
alternates between the hashing and merging phases till the
whole data is processed. Then, the merging phase takes
control to output the final part of the result.

3.1. Phase I: Hashing

Figure 2 sketches the hashing phase of HMJ. Two in-
memory hash tables, each with N buckets, are maintained

hash (A) hash (B)

Join  results

Source SourceA B

1 2 Nk1 2 Nk
..... ..... ..... .....

Hash table for Hash table forA B

(2) (2)
(1) (1)

Memory

Figure 2. Sketch of the hashing phase.

for sources A and B. Buckets are allowed to have different
sizes. As a consequence, the memory is not necessarily di-
vided evenly between sources A and B. In the following,
we use the symbols Ak and Bk to denote the kth bucket in
the hash table for sources A and B, respectively.

The pseudo code of the hashing phase is given in Fig-
ure 3. Once a new tuple t with hash value h(t) is received
from source A (respectively, source B), we check if there is
enough memory to accommodate t (Step 1 in Figure 3). If
there is enough memory space, t is used to probe the hash
table of source B (respectively, source A). Thus, t is joined
with all tuples in bucket Bh(t) (respectively Ah(t)) (Step 3
in Figure 3). Then, the tuple t is stored in bucket Ah(t) (re-
spectively, Bh(t)) (Step 4 in Figure 3). However, if memory
is exhausted, we need to free some part of memory to ac-
commodate t and other incoming tuples. A certain flushing
policy (see Section 4) is used to free part of the memory.
The main idea is to choose two buckets Ak and Bk with the
same hash value k. Then, Ak and Bk are sorted internally
in memory, and are synchronously flushed into disk.

If one of the sources, say source A, is blocked for any
reason (e.g., a slow or bursty network connection), the hash-
ing phase can still produce join results. Tuples from the un-
blocked source B can still be received and are used to probe
the in-memory hash table of A to produce join results. HMJ
transfers the control from the hashing phase to the merging
phase only if: (1) The two sources are blocked, or (2) All
data is processed. In the former case, the Hash-merge join
algorithm returns to the hashing phase when the blocking
behavior of any of the sources is resolved.

The idea of the hashing phase is similar to that of
the symmetric hash join [23, 24] and to the first stage
of both XJoin [21] and the Double Pipelined Hash Join
(DPHJ) [13]. However, there are two major differences:



Procedure HashingPhase(tuple t, source A (B))
Begin

1. If there is no enough memory to accommodate t

(a) The flushing policy chooses two buckets Ak and
Bk as victims.

(b) Sort buckets Ak and Bk in memory.

(c) Flush buckets Ak and Bk into disk.

2. Compute the hash value h(t) of tuple t.

3. Join tuple t with all tuples in bucket Bh(t) (Ah(t)).

4. Store tuple t in bucket Ah(t) (Bh(t)).

End.

Figure 3. Pseudo code of the hashing phase

(1) In HMJ, selecting the victim partitions to be flushed
into disk is handled in a different way than in the cases of
XJoin and DPHJ. Basically, HMJ selects two victim parti-
tions (with the same hash value), one from each source. On
the other hand, both XJoin and DPHJ choose only one par-
tition from one source to be flushed. Notice that in the sym-
metric hash join, there is no such victim partitions, where
it is assumed that all data items can fit in memory. (2) In
HMJ, flushed partitions need to be sorted in memory before
flushing.

3.2. Phase II: Merging

The merging phase of the Hash-merge join algorithm
deals with in-disk hash buckets that are previously flushed
into disk during the hashing phase. Figure 4 gives a snap-
shot of the disk storage upon the start of the merging phase.
For each hash bucket with hash value h, there are mh blocks
for sources A and B. The mh blocks indicate that this
bucket has been chosen as a victim mh times in the hashing
phase. For example, in Figure 4, bucket 1 has four blocks
while bucket 2 has only two blocks.

The pseudo code of the merging phase is given in Fig-
ure 5. The main idea of the merging phase is to apply a re-
finement version of the traditional sort-merge join algorithm
for each individual bucket. Thus, the sort-merge algorithm
is applied N times (Step 1 in Figure 5). We introduce a
parameter f to tune the performance of the merging phase.
f indicates the fan in of the sort-merge algorithm, i.e., the
number of partitions to be merged in each step of the merg-
ing phase. Thus, to merge all blocks in each bucket, we
need LogfAmi passes for each bucket, where Ami is the
number of blocks in bucket Ai (Step 2 in Figure 5). For
each pass, we use the sort-merge join with two refinements:

Join  results

1 2 Nk1 2 Nk
..... ..... ..... .....

Disk

Figure 4. The layout of the disk at the start of
the merging phase.

(1) Join results are produced during the merging. Thus,
the blocking behavior of separating the sorting and merg-
ing steps is avoided (Step 3a in Figure 5). (2) To avoid
producing duplicate results, we do not produce the tuples
that result from blocks that are of the same number (Step 3b
in Figure 5). These tuples are already produced either in
the hashing phase or in an earlier merging pass. Notice that
such two blocks have been flushed into disk concurrently,
after being completely joined with each other in memory.
The duplicate-free results are continuously sent to the out-
put stream for further processing (e.g., a pipelined query
plan) (Step 3c in Figure 5).

Figure 6 gives an example of the merging phase in the
non-blocking HMJ algorithm. One bucket from source A
(respectively, B) has two blocks Ab1 and Ab2 (respectively,
Bb1 and Bb2). The pairs of (Ab1,Bb1) and (Ab2,Bb2) are
already joined together either in the hashing phase or in
an early merging pass where the tuples (4,4) and (6,6) are
produced. In the merging phase, only the pair of blocks
(Ab1,Bb2) and (Ab2,Bb1) need to be joined. Duplicate
avoidance is employed by checking whether the produced
tuples come from buckets with the same number or not.

The merging phase of HMJ is similar to the merging
phase of the progressive merge join algorithm (PMJ) [7, 8]
in the sense that both algorithms employ a refinement ver-
sion of the traditional sort-merge join algorithm. However,
two differences can be distinguished: (1) HMJ applies the
sort-merge join algorithm N times for the N hash buck-
ets, while in PMJ, the sort-merge join algorithm is applied
only once, where there is only one bucket per data source.
(2) HMJ transfers control back and forth between the hash-
ing and merging phases, while in PMJ, the merging phase
starts after the data is finished and is processed in memory.



Procedure MergingPhase()
Input:

• A and B: Two disk partitions, each with N hash buckets,
correspond to sources A and B (e.g., see Figure 4). Ai (Bi)
is the ith bucket of source A (B) with mi blocks. Aik (Bik)
denotes the kth block of the ith bucket for source A(B).

• f : The fan in; the number of blocks to be merged each time.

Begin

1. For i =1 to N

2. Do LogfAmi times

3. For k =1 to Ami/f step f

(a) Sort and merge the blocks
Aik, Ai(k+1), · · · , Ai(k+f−1) with the blocks
Bik, Bi(k+1), · · · , Bi(k+f−1) using a modified ver-
sion of the traditional sort-merge join algorithm that
can produce join results (x,y) while sorting.

(b) If a join result (x,y) comes from two similar blocks,
i.e., x ∈ Aij , y ∈ Bij , then ignore the tuple (x,y).
Otherwise, add the tuple (x,y) to the result set S.

(c) Send S to the output stream.

End.

Figure 5. Pseudo code of the merging phase.

3.3. Number of Hash Buckets

The choice of the number of hash buckets in HMJ re-
sults in a trade-off between the efficiency of the hashing and
merging phases. The hashing phase favors a large number
of hash buckets (i.e., many small-sized buckets) for two rea-
sons: (1) A newly arriving tuple will be tested for the join
condition with a limited number of tuples. (2) Flushed par-
titions will have small sizes, thus memory is almost always
full, which results in more join results during the hashing
phase. On the other hand, the merging phase favors a small
number of hashing buckets (i.e., few large-sized buckets)
for two reasons: (1) Having large sized buckets results in
less number of in-disk buckets, hence, less number of times
to apply the merging among in-disk buckets (Step 3 in Fig-
ure 5). (2) Flushing large size buckets results in almost full
disk pages. Thus, the utilization of disk pages is increased.

To resolve this issue, we use a large number of hashing
buckets during the hashing phase. However, when flush-
ing, we combine each p consecutive buckets together. Thus,
if the number of hashing buckets in the hashing phase is
h, then the number of hash buckets in disk would be h/p.
The flushing policy chooses one corresponding pair (i.e.,
ones with the same hash value from each source) of the h/p
buckets as the victim buckets.

4

7

9

1

6

1

4

2

6

7

1

4

6

7

9

6

7

1

2

4

Memory result (4,4), (6,6) 

Disk result (1,1), (7,7) 

B A BA

b2B

B

Ab2

Ab1
b1

Figure 6. Example of the merging phase.

4. Flushing Memory Partitions

Flushing in-memory buckets into disk plays an important
role in the efficiency of HMJ. In this section, we discuss
some flushing policies that can fit in HMJ. Based on the
naive policies, we distinguish three requirements that need
to be satisfied by an efficient flushing policy. Then, we de-
velop the Adaptive Flushing policy that produces the best
results for HMJ. To illustrate our ideas, we use the example
given in Figure 7. A memory of size 100 is divided into ten
hash buckets; five for each source. A flushing policy needs
to choose two victim buckets; one from each source, with
the same hash value. To speed up the process of selecting
victim buckets, we maintain an in-memory summary table
that keeps track of the number of tuples in each bucket pair
for both sources, along with the total number of tuples.
Flush All Policy. In this policy, we combine all the in-
memory buckets into only one bucket. Then, the whole
memory is flushed into disk. Flush All policy is used in the
progressive merge join algorithm [7], where there is only
one bucket for each source. The main motivation for the
Flush All policy is: (1) Flushing the whole memory results
in less I/O where pages are completely full. (2) Hash buck-
ets are organized in disk in large blocks. Large blocks result
in a more efficient merging phase. However, the Flush All
policy results in major drawbacks: (1) After flushing, the
whole memory is freed. Free memory results in a signif-
icant delay in producing join results in the hashing phase.
Consider the case that a new tuple arrives while the mem-
ory is only 10% full. The new tuple has little chance to be
joined with any other in-memory tuple. (2) Combining all
tuples in only one bucket results in joining unnecessary tu-
ples in disk. For example, a tuple with hash value h1 will
be joined with tuples with hash value h2.
Flush Smallest Policy. The Flush Smallest policy selects
victim bucket pairs with smallest total size. For example,
in Figure 7, the Flush Smallest policy chooses the fourth
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bucket pair, where it has the smallest total (10) among all
in-memory bucket pairs. The Flush Smallest policy is bi-
ased towards the hashing phase. The main idea is to always
keep the memory almost full. Then, a newly arriving tuple
has a high chance to be joined with other in-memory tu-
ples. However, the performance deteriorates in the merging
phase since most disk-based blocks are of small sizes. In
addition, the hashing phase results in excessive I/Os due to
the continuous flushing of small partitions.
Flush Largest Policy. The Flush Largest policy selects vic-
tim bucket pairs with largest total size. For example, in
Figure 7, the Flush Largest policy chooses the fifth bucket
pair, where it has the largest total (27) among all in-memory
bucket pairs. The Flush Largest policy is biased towards
the merging phase. The main idea is to always have in-disk
large blocks. Large blocks result in an efficient merging
phase. At the same time, the Flush Largest policy does not
free all the memory. Thus, join results can still be produced
from the hashing phase. However, the Flushing Largest pol-
icy has the following drawbacks: (1) Selecting the largest
sum bucket pair may result in flushing small buckets. For
example, in Figure 7, a bucket with size two from source B
is flushed. (2) If the memory is not balanced between the
two sources, i.e., source A has 80% of the memory, while
source B has only 20%, selecting the largest bucket pair
may result in increasing the memory skewing.

Based on the above discussion, we identify three main
requirements that need to be considered when designing a
flushing policy for the HMJ.

1. Supporting the hashing phase. The flushing pol-
icy should always keep enough in-memory tuples such
that newly incoming tuples can produce in-memory
join results.

2. Supporting the merging phase. The flushing policy
should avoid flushing small partitions that deteriorate
the performance of the merging phase.

3. Keeping balanced memory. The flushing policy
should try to keep the memory balanced between

sources A and B. To illustrate the importance of hav-
ing a balanced memory, assume the case where 90%
of the memory is allocated for source A while only
10% is allocated for source B. A newly arrived tuple
from A has little chance to find matching tuples from
B. Thus, the performance of the hashing phase is re-
duced. In addition, flushed buckets from B tend to
have small sizes. Thus, the performance of the merg-
ing phase deteriorates.

In the rest of this section, we propose the Adaptive Flush-
ing policy; a flushing policy that works along with HMJ and
fulfills the above three requirements.

4.1. Adaptive Flushing Policy

The main idea of the Adaptive Flushing policy is to make
the flushing adaptable to the changes in the blocking behav-
ior of both sources. For example, if source A blocks, then,
the memory may have more tuples from B than A. The
Adaptive Flushing policy aims to balance the memory to
have similar number of tuples from each source. To tune the
adaptability of the Adaptive Flushing policy towards mem-
ory balancing, we use the parameter b. If |A| and |B| are
the ratios of tuples from A and B, respectively, to all mem-
ory tuples, then we say that the memory is balanced only
if absolute(|A| − |B|) < b. To avoid flushing small buck-
ets, the Adaptive Flushing policy uses the parameter a to
indicate the smallest acceptable size for a certain bucket to
be flushed. Figure 8 gives the pseudo code of the Adaptive
Flushing policy.

Initially, the Adaptive Flushing policy has a search space
S that contains all the possible bucket pairs (Ak, Bk). If the
memory is balanced (Step 1 in Figure 8), the search space S
is limited to the bucket pairs whose sizes are greater than the
acceptable bucket size a. If there is no bucket pair that satis-
fies the smallest bucket size threshold, the search S is kept
to the whole set of bucket pairs. Furthermore, the search
space S is limited (if possible) to those bucket pairs that
will not affect memory balancing upon flushing. Finally,
the victim bucket pair is the pair with largest total size from
the limited search space S.

In the case of unbalanced memory (Step 2 in Figure 8),
the search space S is limited to those bucket pairs that re-
duce the memory unbalancing. For example, if the mem-
ory has more tuples from A than from B, then the victim
bucket pair should have more A tuples than B tuples. Fur-
thermore, if possible, the search space S is limited to those
bucket pairs of size larger than a. Finally, the victim bucket
pair is the one with largest total size from the limited search
space S.

For example, consider applying the Adaptive Flushing
policy with b = 25 and a = 10 to the memory layout in
Figure 7. The difference in memory ratio is 59% − 41% =



Procedure Adaptive Flush Policy()

• Input: S: The set of all bucket pairs (Ak, Bk), a: The ac-
ceptable partition size, b: Balancing threshold.

• Output: Two victim partiitons Ah and Bh.

Begin

1. If absolute(|A| − |B|) < b //Memory is balanced

• S‘ = Set of pairs (Ak, Bk), where |Ak| ≥ a, |Bk| ≥ a.

• If S‘ 6= φ, then S = S‘

• S‘ = Set of pairs (Ak, Bk) ∈ S, such that removing
(Ak, Bk) will not affect the memory balancing.

• If S‘ 6= φ, then S = S‘

• Return (Ah, Bh) ∈ S, where |Ah|+|Bh| is maximum.

2. If |A| ≥ |B|

• S = Set of pairs (Ak, Bk), where |Ak| ≥ |Bk|.

else

• S = Set of pairs (Ak, Bk), where |Bk| ≥ |Ak|.

3. S‘ = Set of pairs (Ak, Bk) ∈ S, where |Ak| ≥ a, |Bk| ≥ a.

4. If S‘ 6= φ, then S = S‘

5. Return (Ah, Bh) ∈ S, where |Ah| + |Bh| is maximum.

End.

Figure 8. The Adaptive Flushing Policy.

18% < 25%. Thus, the memory is considered balanced.
Then, the search space is limited to the second (11,13) and
third (13,10) bucket pairs where all buckets are of size ≥ 10.
Since both bucket pairs do not affect the memory balancing
with respect to b, we choose the bucket pair with largest
total size (11,13). If the balanced factor is set to b = 10,
while keeping a = 10, then the memory is considered un-
balanced. The search space is limited to those bucket pairs
with |Ak| ≥ |Bk|, i.e., the third (13,10) and fifth (25,2)
pairs. With the acceptable threshold a = 10, the search
space is limited to only the third bucket pair (13,10). Notice
that the idea of having the parameter a is to avoid selecting
small buckets. Thus, if we set a = 1, while keeping b = 10,
then the Adaptive Flushing policy would select the bucket
pair (25,2).

5. Correctness of the Hash-merge Join Algo-
rithm

In this section, we give a proof of correctness of the non-
blocking Hash-merge join algorithm (HMJ). The correct-
ness proof is divided into two parts: First, we prove that
HMJ is complete i.e., all result tuples are produced. Sec-
ond, we prove that HMJ is a duplicate-free join algorithm,

i.e., output tuples are produced exactly once.

Theorem 1 For any two sources A and B, HMJ produces
all output results of A on B.

Proof: Assume that ∃(r, s) : r ∈ A, s ∈ B, and (r, s)
satisfies the join condition. However, the tuple (r, s) is not
reported by HMJ. Since (r, s) satisfies the join condition,
then r ∈ Ah and s ∈ Bh. Assume that r ∈ Ahk, s ∈ Bhm,
which means that r and s are in the kth and mth blocks of
the hash buckets with value h, respectively. Then, there are
exactly two possible cases:

Case 1: k = m. In this case, the flushing policy guar-
antees that the blocks Ahk and Bhm were in memory at the
same time. If the data item r arrives before s, then r will
be stored in bucket Ahk (Step 4 in Figure 3) without joining
with s. Later when s arrives, it will probe the block Ahk

(Step 3 in Figure 3), and join with r. Notice that we guar-
antee that r is still in memory at the arrival of s. Otherwise
the condition k = m is violated. The same proof is appli-
cable when s arrives before r. Thus, the tuple (r, s) cannot
be missed in case of k = m.

Case 2: k 6= m. In this case, one of the blocks Ahk or
Bhm is flushed to disk before the other one is created. Thus,
Ahk and Bhm are disk-based blocks. In the merging phase,
all disk-based blocks are joined together using a refinement
version of the traditional sort-merge join algorithm (Step 3a
in Figure 5). Thus, the tuple (r, s) cannot be missed in the
merging phase.

From Cases 1 and 2, we conclude that the assumption
that (r, s) is not reported by the Hash-merge join algorithm
is not possible. Thus, HMJ produces all output results.

�

Theorem 2 For any two sources A and B, HMJ produces
all output tuples of A on B exactly once.

Proof: Assume that ∃(r, s) : r ∈ A, s ∈ B, and (r, s)
satisfies the join condition. Assume that HMJ reports the
tuple (r, s) twice. We denote such two instances as (r, s)1
and (r, s)2. Thus, we identify the following three cases:

Case 1: (r, s)1 and (r, s)2 are both produced in the
hashing phase. Assume that the data item r arrives after s.
Once the tuple r arrives, r probes the hash bucket of s and
outputs the result (r, s)1. Then, during the hashing phase,
only newly incoming tuples are used to probe the hash buck-
ets of r and s. Thus, the tuple (r, s) cannot produced again
in the hashing phase.

Case 2: (r, s)1 and (r, s)2 are produced in the merg-
ing phase. Once the tuple (r, s)1 is reported in the merging
phase (Step 3a in Figure 5), then r and s are merged into
bigger blocks with similar block numbers b. Step 3b in Fig-
ure 5 avoids the reporting of output tuples that comes from
similar block numbers. Thus, the tuple (r, s)2 cannot be
produced in the merging phase.



Case 3: One of the tuples, say (r, s)1, is produced in
the hashing phase, while the other one is produced in
the merging phase. Since (r, s)1 is reported in the hashing
phase, then we guarantee that the blocks that contain r and
s are flushed into the disk at the same time. Thus, these
blocks have the same block number. Similar to the proof of
Case 2, blocks with similar numbers do not report any join
results. Thus, the tuple (r, s)2 cannot be produced by the
merging phase.

From the above three cases, we conclude that the as-
sumption that the tuple (r, s) is reported twice is not valid.

�

6. Experimental Results

In this section, we give experimental evidence that HMJ
is superior to other non-blocking join algorithms (e.g.,
XJoin [21] and the Progressive Merge Join (PMJ) [7]). The
experiments in this section are divided into three categories:

• Flushing policy. The objective of this set of experi-
ments is to study the effect of different flushing poli-
cies on the performance of HMJ.

• Fast and reliable networks. This set of experiments
compares the performance of HMJ to both XJoin and
PMJ in the case of fast and reliable networks, i.e., the
sources are never blocked.

• Slow and bursty networks. This set of experiments
compares the performance of HMJ to both XJoin and
PMJ in the case of slow and bursty networks (i.e., the
sources are subject to blocking).

All the experiments in this section are conducted on Intel
Pentium IV CPU 1.4GHz with 256MB RAM running Linux
2.4.4. HMJ, XJoin, and PMJ are implemented using GNU
C++. Unless mentioned otherwise, the data set involved
in the join operation contains 1,000,000 tuples. Join keys
are uniformity distributed in a range of 2,000,000 values.
The memory size is set to accommodate 10% of the input
data. For most of the experiments, we measure the time
and I/O needed to produce the kth output tuple. For large
output results, a typical user would be interested in only
the first few results. Thus, the distribution of data and the
join selectivity does not affect the experimental results since
we are not interested in the whole result. Instead, we are
interested only in the first few results.

6.1. Flushing Policy

In this set of experiments, we study two aspects related
to the flushing policy implementation inside HMJ. First, we
study the impact of the number of hashing buckets used in
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Figure 9. The impact of flushing size.

the hashing phase. Second, we study the impact of different
flushing policies. The results are shown for the experiments
performed in the case of fast and reliable networks. How-
ever, similar results are obtained when applying the same
experiments to slow and bursty networks.

6.1.1 Number of Hash Buckets

In these experiments, we aim to specify the best value for
the parameter p; the percentage of the number of flushed
buckets to the total number of hash buckets. (refer to Sec-
tion 3.3). Experiments are performed using the Adaptive
Flushing policy. Similar performance is achieved when us-
ing other flushing policies. Figure 9a gives the effect of
varying p from 1% to 100% on the number of produced re-
sults from the hashing phase. As discussed in Section 4, as
more in-memory buckets are flushed, there is a less chance
of producing join results from the hashing phase, basically,
because new incoming tuples have less chance to be joined
with existing in-memory tuples. However, as given by Fig-
ure 9b, flushing more memory results in much less I/O over-
head. As a compromise, setting p to about 5% achieves a
trade-off between producing in-memory results in the hash-
ing phase and less I/O in the merging phase. For the follow-
ing experiments, we set p to 5%.

6.1.2 Different Flushing Policies

The experiment in Figure 10 is designed to test the impact
of different flushing policies on the performance of HMJ.
Mainly, we compare the Flush All, Flush Smallest, and
Adaptive Flushing policies with respect to the time and I/O
needed to produce the kth result. For the Adaptive Flushing
policy, we set the acceptable bucket size a to be the aver-
age bucket size (i.e., M/h), where M is the memory size,
and h is the number of hash buckets. The balancing factor
b is set to be M/5. These values for a and b give the best
performance for the Adaptive Flushing policy. Notice that
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Figure 10. Performance of different flushing policies.

we do not include the Flush Largest policy in our compar-
ison, since the Flush Largest policy is a special case of the
Adaptive Flushing policy by setting a = 0, b = M .

In Figure 10, we notice that all policies result in a plot-
ting with almost two segments. The segment with higher
slope indicates the join results that are produced in the hash-
ing phase. The second segment with lower slope indicates
the join results produced in the merging phase. For exam-
ple, the Adaptive Flushing policy produces 100K tuples in
the hashing phase. Figure 10a gives the time required to
produce the kth result of HMJ. The Adaptive Flushing pol-
icy always outperforms the other policies. The Flush All
policy produces less results during the hashing phase due to
the fact that newly incoming tuples have less chance to be
joined with in-memory tuples. Figure 10b gives the number
of I/O’s required to produce the kth result. For early join
results (e.g., up to 100K results), the Adaptive Flushing pol-
icy has the best performance. However, during the merging
phase, the Flush All policy slightly outperforms the Adap-
tive Flushing policy due to the fact that having large size
buckets on disk would reduce the number of I/O’s. For the
rest of experiments, we use HMJ with the Adaptive Flush-
ing policy.

6.2. Fast and Reliable Networks

In this section, we consider input data from distributed
sources with similar arrival rates via a fast and reliable net-
work. Thus, there is no blocking behavior. In the exper-
iments, we join two sources with 1M data items for each.
The output result is around 550K tuples. However, we fo-
cus only in the first 200K results. Figure 11a gives the time
required to produce the kth tuple. HMJ consistently outper-

forms XJoin and PMJ for up to 200K results. Both HMJ
and XJoin produce 100K results during the hashing phases,
while PMJ produces 50K results in the first phase (sorting
phase). However, it takes around 90 seconds from XJoin
to finish the hashing phase, while the hashing phase in HMJ
takes around 60 seconds. The main reason for the efficiency
of the hashing phase in HMJ is due to the flushing policy,
where the flushed buckets are smartly chosen to keep room
for having more in-memory join results.

Figure 11b gives the number of I/Os required to produce
the kth output tuple. For up to 100K, both HMJ and XJoin
have less I/O than PMJ. This behavior is mainly because
both HMJ and XJoin flush small buckets in their hashing
phase rather than flushing the whole memory as in PMJ.
Once the sorting phase of PMJ is done, large buckets are
organized on disk. Thus, the number of I/Os in the merging
phase of PMJ is less than the number of I/Os in the merging
phase of HMJ. If we consider only producing early results
up to 100K, then HMJ is clearly superior in terms of both
time and I/O.

Figure 12 considers the case when the input data arrives
from two sources with different arrival rates. The arrival
rate of input data from source A is five times the arrival rate
of data from source B. The results in the merging phase
almost have the same behavior as in Figure 11. However,
in the hashing phase, both HMJ and XJoin are more sta-
ble to the variations in arrival rates than PMJ. Also, unlike
Figure 11, the hashing phase of HMJ is finished before the
hashing phase of XJoin. The main reason is that using the
Adaptive Flushing policy in HMJ always keeps the memory
balanced even if the data arrival is not.

Figure 13 gives the time required to produce the first
1000 results. In this experiment, we vary the memory size
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Figure 11. Fast and Reliable Networks.

from 2% to 50% of the input data. We plot only HMJ
against PMJ. XJoin has performance similar to that of HMJ
as both algorithms rely on the original symmetric hashing
join for producing the first few results. For very small mem-
ory sizes (less than 5%), PMJ needs to flush the whole mem-
ory more than once to get the first 1000 results. With the
increase in memory size, the number of flushes decreases,
thus better time is achieved. However, with the increase in
memory, PMJ does not produce any results till the memory
is exhausted. Thus, the time to fill the memory is increased
with the increase of memory size. For HMJ, increasing the
memory size does not affect the performance. In-memory
join results are produced without the need to fill the mem-
ory.

6.3. Slow and Bursty Networks

In this section, we consider the case of slow and bursty
networks. We assume that data arrives from the two sources
A and B with Pareto distribution; a distribution that is
widely used in case of slow and bursty networks [5]. A
data source is considered to be blocked if no tuple arrives
within a certain time threshold T . Figure 14a gives the
time for producing the kth result. Both HMJ and PMJ have
a step-like performance due to the switching between the
first phase (i.e., the hashing phase in HMJ and the sorting
phase in PMJ) and the merging phase. XJoin does not have
such behavior because XJoin operates on three stages. The
first stage is the hashing, while the second stage is joining
between memory partitions with disk partitions. The third
stage is a cleaning stage (starts after 200K tuple) that joins
in-disk partitions. The third stage of XJoin takes control
when the input data is finished.

The overall performance of HMJ outperforms XJoin and
PMJ. The main reason is the efficiency of the hashing phase
in HMJ. This can be noticed from the slope of each segment
in Figure 14a. Comparing PMJ with HMJ, the slope of seg-
ments that correspond to the first phase is lower for HMJ
indicating that more results are produced. On the other side,
for the segments that represent the merging phase, the slope
of PMJ segments is lower than those of HMJ.

Although XJoin has the same hashing phase as that of
HMJ, HMJ outperforms XJoin during the hashing phase.
The main reason is that the Adaptive Flushing policy em-
ployed by HMJ keeps the memory balanced and makes use
of the properties of the hashing phase. On the other side, the
flushing policy employed by XJoin (flush the largest bucket
from only one source) results in an unbalanced memory.
Thus, the hashing phase of XJoin may not produce many
results as in HMJ.

Figure 14b gives the number of I/Os needed to produce
the kth result. HMJ has similar I/O performance as that
of PMJ for the first 200K results. The main reason for the
I/O performance of PMJ is that PMJ flushes large buckets
into disk. XJoin clearly has the worst performance of I/O,
mainly becuase of flushing small memory blocks into disk.
Generally, when the interest is only in the earlier results,
HMJ is better than XJoin and PMJ in both time and I/O
performance.

7. Conclusion

This paper proposes the Hash-merge join algorithm
(HMJ, for short); a non-blocking join algorithm for produc-
ing fast and early join results. HMJ works on environments
where the data are coming from different sources via a slow
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Figure 12. Different arriving rates in fast and reliable networks.

and bursty network. HMJ can produce join results even if
one or both sources are blocked. HMJ has two phases: The
first phase (the hashing phase) is responsible for produc-
ing fast and early join results by employing a hash-based
in-memory join algorithm. The second phase (the merg-
ing phase) is responsible for producing join results when
the two input sources are blocked by employing a refine-
ment version of the traditional in-disk sort-merge join al-
gorithm. An elegant flushing policy (termed the Adaptive
Flushing policy) is employed in HMJ to link both the hash-
ing and merging phases. The Adaptive Flushing policy is
responsible for flushing memory partitions into disk. The
correctness of HMJ with respect to completeness (i.e., all
output tuples are produced) and uniqueness (i.e., no dupli-
cate results are produced) is proved. Comprehensive ex-
perimental results show that the performance of HMJ out-
performs two state-of-the-art non-blocking join algorithms,
XJoin [20, 21] and the progressive merge join (PMJ) [7, 8],
in terms of the I/O and time needed to produce early join
results.
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