
1

Incremental and General Evaluation of
Reverse Nearest Neighbors

James M. Kang, Student Member, IEEE, Mohamad F. Mokbel, Member, IEEE,
Shashi Shekhar, Fellow, IEEE, Tian Xia, Donghui Zhang

Abstract

This paper presents a novel algorithm for Incremental and General Evaluation of continuous Reverse Nearest
neighbor queries (IGERN, for short). The IGERN algorithm is general in that it is applicable for both continuous
monochromatic and bichromatic reverse nearest neighbor queries. This problem is faced in a number of applications
such as enhanced 911 services and in army strategic planning. A main challenge in these problems is to maintain the
most up to date query answers as the dataset frequently changes over time. Previous algorithms for monochromatic
continuous reverse nearest neighbor queries rely mainly on monitoring at the worst case of six pie regions, whereas
IGERN takes a radical approach by monitoring only a single region around the query object. The IGERN algorithm
clearly outperforms the state-of-the-art algorithms in monochromatic queries. We also propose a new optimization
for the monochromatic IGERN to reduce the number of nearest neighbor searches. Furthermore, a filter and refine
approach for IGERN (FR-IGERN) is proposed for the continuous evaluation of bichromatic reverse nearest neighbor
queries which is an optimized version of our previous approach. The computational complexity of IGERN and FR-
IGERN is presented in comparison to the state-of-the-art algorithms in the monochromatic and bichromatic cases. In
addition, the correctness of IGERN and FR-IGERN in both the monochromatic and bichromatic cases respectively
are proved. Extensive experimental analysis using synthetic and real datasets shows that IGERN and FR-IGERN is
efficient, is scalable, and outperforms previous techniques for continuous reverse nearest neighbor queries.

Index Terms

Continuous Queries, Query Optimization, and Reverse Nearest Neighbor

I. INTRODUCTION

THE past decade has seen the assimilation of sensor networks and location-based systems in real world
applications such as enhanced 911 services, army strategic planning, retail services, and mixed-reality games.

The continuous1 movement of data objects within these applications calls for new query processing techniques that
scale up with the high rates of location updates. While numerous works have addressed continuous range queries
(e.g., see [1], [2], [4], [6], [7]) and continuous nearest neighbor queries (e.g., see [3], [5], [8], [9], [11]), there is
still a lack of research in addressing the continuous reverse nearest neighbor queries.

There are two types continuous evaluation of Reverse Nearest Neighbor (RNN) queries, namely, monochromatic
RNN and bichromatic RNN [12]. In the monochromatic RNN, all moving data and query objects are of the same
type and their locations are reported at every time interval t. Thus, a data object o is considered a reverse nearest
neighbor to a query object q if there does not exist another data object o′ where dist(o, o′) < dist(o, q) and the
answer is updated at every t. Applications of the continuous monochromatic RNN include mixed reality games
(e.g., Botfighters) where the objective is to shoot only those players that are nearest to you. Thus, each player
should monitor his own reverse nearest neighbors to avoid being shot. In the bichromatic RNN, all moving objects
and queries are one of two distinct types, A and B, and their locations are reported at every t. Thus, a data object
of type B, oB , is considered a reverse nearest neighbor to a query object of type A, qA, if there does not exist
another object of type A, o′A, where dist(oB , o′A) < dist(oB , qA) and the answer is updated at every t. Applications

J.M. Kang, M.F. Mokbel, and S. Shekhar is with the Department of Computer Science and Engineering, University of Minnesota-Twin
Cities, 200 Union Street SE, Minneapolis, MN 55455. E-mail: {jkang,mokbel,shekhar}@cs.umn.edu.

T. Xia and D. Zhang is with the College of Computer and Information Science, Northeastern University, 360 Huntington Ave., Boston,
MA 02115. E-mail: {tianxia,donghui}@ccs.neu.edu.

1The term ‘continuous’ may be interpreted either in the calculus sense or to mean an approximation. In this paper, we use ‘continuous’
in the latter sense where the approximation is based on a sampling rate of some middleware system that captures the data. Many related
studies use ‘continuous’ in this sense of approximation (e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]).

Digital Object Indentifier 10.1109/TKDE.2009.133 1041-4347/$25.00 © 2009 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

2

of the continuous bichromatic RNN include army strategic planning where a medical unit A in the battlefield is
always in search of wounded soldiers of type B and A is their nearest medical unit. The continuous evaluation of
RNN queries is also crucial in data mining applications where the RNNs of a query point q are those objects on
which q has significant influence [12], [13].

Most of the previous work on reverse nearest neighbor queries focuses on snapshot queries in static environments,
i.e., the continuous movement of both the query and data objects is not taken into account (e.g., see [14], [15], [12],
[16], [17], [18], [19], [20]). To our knowledge, the CRNN algorithm [10] is the only attempt to evaluate continuous
RNN queries. However, CRNN is applicable only to monochromatic queries, and there is no direct extension for the
case of bichromatic RNN. The main idea of CRNN is to divide the whole spatial space into six pie regions, each
of which is monitored independently for potential reverse nearest neighbors. This idea has been widely employed
for most of the snapshot RNN algorithms (e.g., see [16]) as it is based on the theoretical foundation that there can
be up to six answers for any monochromatic RNN query [16].

In this paper, we present a novel algorithm for Incremental and General Evaluation of continuous Reverse
Nearest neighbor queries (IGERN, for short) and a filter and refine approach for IGERN (FR-IGERN) for both
monochromatic and bichromatic RNN queries respectively. The IGERN algorithm goes beyond the idea of six pies
in evaluating monochromatic RNN queries. Furthermore, the FR-IGERN algorithm provides an improved continuous
evaluation of bichromatic RNN queries using filter and refine concepts that outperforms our previous method [21].
The main idea of both the IGERN and FR-IGERN algorithms is to initially identify a single region r around the
query object and a set of objects S such that only r and S need to be monitored to trigger subsequent changes of
the answer. The filtering in FR-IGERN determines objects that are guaranteed to be the reverse nearest neighbors
once the region r is found and the remaining objects are refined for any additional answers. The incremental
aspect of both approaches comes from the fact that each execution instance of IGERN and FR-IGERN updates the
shape of r and the objects in S. Then, subsequent executions of IGERN will need to monitor only r and S rather
than monitoring the whole space. With its incremental nature, IGERN is a scalable algorithm that scales up for
large numbers of moving objects and queries in highly dynamic environments. In general, our contributions can be
summarized as follows:

1) We present an IGERN algorithm for monochromatic continuous RNN queries that goes beyond the traditional
method of dividing the space into six pie regions.

2) We propose an optimization to the monochromatic IGERN technique that reduces the number of nearest
neighbor searches to find the reverse nearest neigbors.

3) We propose a Filter and Refine approach for IGERN (FR-IGERN) for the continuous evaluation of bichromatic
RNNs that performs more efficiently than our previous method [21].

4) We prove the correctness of IGERN and FR-IGERN by proving their: (a) accuracy, i.e., a returned result by
IGERN is an exact RNN, and (b) completeness, i.e., IGERN returns all possible RNNs.

5) We give analytical evidence that IGERN and FR-IGERN outperform previous approaches for both monochro-
matic and bichromatic RNNs.

6) We present experimental evaluation of both IGERN and FR-IGERN using both synthetic and real datasets.
The rest of this paper is organized as follows. Section II highlights the related work. The monochromatic IGERN

and bichromatic FR-IGERN algorithms are described in Sections III and IV, respectively. We present the proof of
correctness for IGERN in Section V. Section VI gives an analytical analysis of IGERN. Experimental evidence
that the IGERN algorithm outperforms previous algorithms is given in Section VII. Finally, Section VIII concludes
the paper.

II. RELATED WORK

There is a recent interest in developing new continuous query processors to cope with the recent advances in
dynamic location-aware environments [22], [23]. As a result, new algorithms have been developed for various
types of continuous location-based queries, e.g., continuous range queries [1], [2], [4], [6], [7], continuous nearest
neighbor queries [3], [5], [8], [9], [11], and continuous aggregates [24], [25]. Although reverse nearest neighbor
queries are of the same importance as these query types, little work has been done to develop efficient algorithms
for continuous reverse nearest neighbor queries.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

3

Various algorithms have been proposed for snapshot reverse nearest neighbors (RNNs) in different environments,
e.g., in euclidian space [12], [16], [17], [26], metric space [14], [18], high-dimensional space [27], ad-hoc space [19],
and large graphs [20]. In this paper, we mainly focus on euclidian space in which it is proved that there are at
most six reverse nearest neighbors for the monochromatic case [16]. Utilizing this property, an approach has been
introduced by dividing the spatial space into six pie regions. Then, six nearest neighbor objects (one object in each
pie) are used as filters to limit the search space.

A completely different approach, denoted as TPL [17], relies mainly on recursively filtering the data by finding
perpendicular bisectors between the query point and its nearest object. TPL introduces a concept for the perpen-
dicular bisector between an object o and a query q where no objects in the half-plane containing o can be closer
to q than o. TPL uses an R-tree and then identifies minimum bounding rectangles (MBR) that can be pruned
based on the perpendicular bisectors around the query object. However, TPL only handles snapshot queries and
becomes significantly expensive for continuous problems. In this paper, we compare our proposed approaches
against TPL analytically to show this difference. Briefly, we use a grid index for TPL instead of an R-tree to
account for continuously moving objects. As in the R-tree for TPL, where portions of an MBR are trimmed based
on the perpendicular bisector, the grid cells where the bisectors intersect and bordering the query object may be
half “dead” (i.e., objects in the half-plane not containing the query object) and half “alive” (i.e., objects in the
half-plane containing the query object). Further details of this grid cell structure will be presented in Section III.

A recent technique for finding monochromatic reverse nearest neighbors for moving objects [28] is similar to our
problem except that the velocity of each object is given as part of the input and each object is assumed to move
on a plane which can then be indexed using a TPR-tree. However, in our proposed methods, we do not assume a
specific velocity and objects can move in any direction which is not constrained to a single direction.

To our knowledge, there is only one algorithm that does not assume objects move on a single plane and a velocity
is not given, termed CRNN [10], for continuous evaluation of reverse nearest neighbor queries. CRNN extends the
idea of dividing the space into six pies, originally developed for snapshot queries [16], to dynamic environments.
As a result, CRNN monitors each pie region along with six moving objects at every time interval. However, CRNN
has two main disadvantages: (1) CRNN is limited to monochromatic RNN queries and (2) CRNN always assumes
a constant worst-case scenario at every time interval where it is assumed that there are always six RNNs. These
drawbacks arise from the fact that CRNN ignores the relationship between the neighboring pies.

Our proposed algorithm, IGERN, avoids the drawbacks of CRNN by being applicable to both the monochromatic
and bichromatic RNNs. In addition, IGERN adapts itself based on the current data to monitor only one closed region
and less than six objects as opposed to CRNN, which monitors six regions and six objects.

III. CONTINUOUS EVALUATION OF MONOCHROMATIC REVERSE NEAREST NEIGHBORS

This section presents the IGERN algorithm for monochromatic reverse nearest neighbor queries. The IGERN
algorithm maintains a grid data structure G of N × N equal size cells. Each cell c ∈ G keeps track of the set of
objects that lie within the cell boundary. In general, the IGERN algorithm has two main steps, namely, the initial
and incremental steps. The initial step is executed only once at the query issuing time T0, while the incremental
step is triggered at each time unit for all time intervals T throughout the life time of the continuous query. The
main idea is that the initial step reports the first query answer along with a bounded region and a set of objects to
be monitored within the incremental step. Then, the incremental step continuously updates the query answer while
changing the monitored region and the monitored set of objects. The initial and incremental steps are described in
Sections III-A and III-B, respectively, while Section III-D gives a general discussion of IGERN.

A. Step 1: Getting the Initial Answer

The initial step of IGERN has three main objectives: (1) Obtaining a bounded region r around the query object
q and the Grid index G which will be monitored in the incremental step, (2) Identifying a set of objects RNNcand
that need to be monitored in the incremental step, and (3) Identifying the set of initial reverse nearest neighbor
objects (RNN ⊆ RNNcand) to q. Algorithm 1 gives the pseudo-code of the IGERN initial step. The input is the
query object q while the output consists of the two sets RNN and RNNcand. Initially, RNNcand is empty while all
grid cells in the grid data structure G are set as alive, i.e., every cell has the potential of containing reverse nearest
neighbors of q (Line 2 of Algorithm 1). Then, the initial step has the following two main phases:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

4

Algorithm 1 Pseudo code for the Mono Initial Step
1: Function INITMONOIGERN(Query q, Grid index G)
2: RNNcand ← ∅, Mark all grid cells ∈ G as alive

{Phase I: Bounded Region}
3: while (oj ← the nearest object to q in the alive cells) $= NULL do
4: RNNcand ← RNNcand ∪oj , bj ← The ⊥ bisector of q and oj

5: Mark grid cells in the half-plane bounded by bj and containing oj as dead
6: end while

{Phase II: Verification}
7: RNN ← RNNcand - {Objects that do not have q as the nearest object}
8: return RNN, RNNcand

Algorithm 2 Pseudo code for Mono Incremental Step
1: Function INCRMONOIGERN(Query q, set RNNcand, Grid Index G)
2: if q or any objects in RNNcand have moved then
3: Redraw the bisectors between q and all objects in RNNcand
4: Only the cells between q and the bisectors are marked as alive.
5: end if
6: if there is any object o within the alive cells then
7: Tighten the region as in Phase I of Algorithm 1 (Lines 3 to 6)
8: For any two objects oi, oj ∈ RNNcand, remove object oi from RNNcand only if dist(oi, oj) < dist(oi, q)
9: end if

10: RNN ← RNNcand - {Objects that do not have q as nearest object} // Verification Step
11: return RNN, RNNcand

Phase I: Bounded Region. This phase is concerned with the first two objectives of the initial step. The bounded
region phase starts by finding the object oj as the nearest object to the query q within all alive cells (Line 3 of
Algorithm 1). Then, object oj is considered as a candidate to be a reverse nearest neighbor, i.e., oj is added to
RNNcand. A bisector bj between oj and q indicates that all objects between bj and the furthest space boundaries
from q would be closer to oj than q. Thus, all the grid cells in the half-plane bounded by bj and containing oj are
marked as dead, i.e., there cannot be any reverse nearest neighbor to q within these cells (Lines 4-5 of Algorithm 1).
This phase continues to run until there are no objects within the alive cells. Cells having a perpendicular bisector
intersecting them and a border around the query object are still considered “alive” while only objects in the half-
plane containing the query object are considered to be “alive”. Figure 1 gives an example of the initial step with
nine objects o1 to o9 and a query object q. o2 is the nearest object to q while b2 is its corresponding bisector
(Figure 1a). Thus, all cells above b2 are shaded, i.e., marked as dead. This process continues as o6 followed by o4

are identified as the nearest objects to q within the alive cells and the bisectors b6 and b4 are drawn (Figure 1b).
Since there are no more objects within the alive cells, the candidate set becomes RNNcand = {o2, o4, o6}.

Phase II: Verification. In this phase, we go through all objects in RNNcand and only those objects that q is
their nearest are considered as RNNs (Line 7 in Algorithm 1). In Figure 1c, the dotted circles indicate the nearest
neighbor search for each object in RNNcand. Thus, RNN = {o2, o6} where o2 and o6 are the reverse nearest
neighbors to q.

B. Step 2: Incremental Maintenance

The incremental step of IGERN is repetitively executed at each time unite for all time intervals T . Algorithm 2
gives the pseudo-code of the incremental step. The input to this algorithm is the query object q, the set RNNcand
that came from either the initial step at time T0 or a previous execution of the incremental step, and the Grid index
G. Upon its execution, the incremental step checks for three different scenarios: (1) The query object q moves to a
new location (Line 2 in Algorithm 2), (2) At least one of the objects in RNNcand moves to a new location (Line 2
in Algorithm 2), and (3) A new object moves into the alive cells (Line 6 in Algorithm 2). If none of these scenarios
took place, then the incremental step will only verify the current query answer in a similar way to the verification
phase in the initial step (Line 10 in Algorithm 2) while the RNNcand set will not be changed. However, if any of
these three scenarios took place, then the IGERN incremental step needs to perform more computations in order
to efficiently maintain the query answer.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

5

!

"

#

$
%

&

'

(

)

!

(a) First NN

!

"

#

$
%

&

'

(

)

!

& "

(b) Phase I

!

"

#

$
%

&

'

(

)

!

& "

(c) Phase II
Fig. 1. Example of the monochromatic initial step

!

"

#

$
%

&

'

(

) !

& "

(a) q moves

!

"

#

$
%

&

'

(

)

!

&
"

(b) oi move

!

"

#

$

%&

'

(

)

!

%

"
&

(c) new object
Fig. 2. An example of the monochromatic Incremental step

The incremental step starts by checking the first two events, i.e., if either the query object q or any of the objects
in the candidate list have moved (Line 2 in Algorithm 2). If this is the case, then new bisectors will be drawn
from q to the objects in RNNcand. Then, only the cells between q and its bisectors are considered alive while all
other grid cells are considered dead. Figures 2a and 2b give the cases when only the query q moves and all objects
in RNNcand move, respectively. In both cases, the bisectors from q to the objects in RNNcand o2, o4, and o6 are
redrawn and the set of alive cells are adjusted.

Then, the incremental step checks the third scenario, i.e., a new object is found in an alive cell. This condition
also captures the new alive cells that result from redrawing the bisectors upon the movement of any of the monitored
objects. If there are no objects in the alive cells, then only the verification step is needed (Line 10 in Algorithm 2).
In our example, RNN = {o2, o6} in Figure 2a while RNN = {o2} in Figure 2b. However, if there are one or more
objects in the alive cells, we will tighten the bounded region by finding the nearest objects within the alive cells and
drawing the corresponding bisectors (Line 7 in Algorithm 2). Then, the list RNNcand will be cleaned by removing
any object that could not be a reverse nearest neighbor (Line 8 in Algorithm 2). Finally, the answer is verified
(Line 10 in Algorithm 2). Figure 2c depicts the case when o9 moves inside an alive cell. The object o9 is added
to RNNcand while object o4 is removed. Also, the bisector b9 is drawn and the shaded cells are adjusted. Finally,
RNN = {o2, o9}.

C. Design Decisions

A significant computational cost within the monochromatic IGERN method occurs within the verification step
in the incremental method (Line 10 of Algorithm 2). After each time interval, each of the RNN answers found in
the previous time interval must be verified by performing a NN search. To reduce the number of NN searches at
every time interval, we propose an optimization to Algorithm 2 to monitor the region around each RNN answer
with a radius of the distance to the query object. This optimization only applies to the scenario when the RNN
answer r and the query object q do not move to a new location at the next immediate time interval. In all other
scenarios (i.e., objects r and/or q moves to a new location), the original verification phase (Line 10 of Algorithm 2)
will be performed. If both r and q do not move to a new location and an object o enters the monitoring region
of r, then r is no longer a RNN of q and no NN search needs to be performed. Otherwise, if an object does not
move into the monitoring region of r, then r remains to be a RNN for q and no NN search needs to be performed
to verify r. Unlike traditional continuous NN approaches where the monitoring region shrinks when an object
enters the monitoring region, this optimization removes the monitoring region when r is no longer a RNN. Only a
monitoring region is kept for RNN answers for q. Experimental evaluation shows that when objects do not move
as often at every time interval, a significant savings may occur for the proposed optimization (Section VII-C.1 and
Section VII-D.1).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

6

D. Discussion

To summarize the difference between the IGERN incremental step and the state-of-the-art RNN algorithm,
CRNN [10], for monochromatic continuous reverse nearest neighbors. CRNN always monitors six different bounded
regions, six candidate objects, and the query object while IGERN monitors only one single bounded region, always
less than six candidate objects (experimental study shows an average of 3.3 monitored objects), and the query object.
Furthermore, the size of the monitored region in IGERN is always less than that of CRNN as CRNN is more likely
to have open-ended regions than IGERN. Thus, IGERN always monitors an area that is about one sixth of the area
monitored by CRNN. Also, IGERN always monitors about half of the objects monitored by CRNN. More details
about the difference between the two algorithms will be discussed analytically in Section VI and experimentally
in Section VII. The initial step in IGERN is similar to the static approach TPL [17] with the difference that we
embed new functionalities to produce a set of objects that will be monitored later in the incremental step.

IV. A FILTER AND REFINE APPROACH TO THE CONTINUOUS EVALUATION OF BICHROMATIC REVERSE

NEAREST NEIGHBORS

Unlike the monochromatic case, where all objects are of the same type, in bichromatic reverse nearest neighbors,
we distinguish between two types of objects A and B. For a query object of type A, the objective is to find data
objects of type B in which the query point is their nearest A object. While the number of reverse nearest neighbors
in the monochromatic reverse nearest neighbor case is limited to only six in 2D space, in the bichromaatic case,
there is no limit on the number of reverse nearest neighbors. Instead, it could be the case that for a query object
A, all data objects of type B are considered as its reverse nearest neighbors.

With these fundamental differences between monochromatic and bichromatic reverse nearest neighbors, the
IGERN algorithm still keeps the same flavor and the same framework to handle both monochromatic and the
bichromatic reverse nearest neighbor queries. This section presents the FR-IGERN algorithm using a filter and
refine-like approach for bichromatic reverse nearest neighbors; it is an improved optimization of our previous
work [21] and an adaptation of the monochromatic IGERN algorithm. In general, there are two main phases in our
previous bichromatic approach [21]: the first phase creates the bounded region similar to the monochromatic case
and is followed by the second phase, which determines the reverse nearest neigbors within the bounded region.
This second phase is the major bottleneck of computation time due to the excessive amount of nearest neighbor
calculations. The proposed filter and refine approach reduces the computation time in the second phase by the
insight that objects having a distance to the query object in the bounded region that are less than the distance to
each of the borders of the bounded region do not have to perform a nearest neighbor search. These objects are
already guaranteed to be the reverse nearest neighbors of the query object and are filtered, where all the other
objects in the bounded region are refined to determine the remaining reverse nearest neigbors.

As in the monochromatic case, a grid data structure G is maintained where each cell c ∈ G keeps track of the
moving objects within its boundaries. Also, similar to the monochromatic case, the bichromatic IGERN has two
main steps, the initial step, which is executed only once to report the first query answer and the incremental step,
which is triggered at each time unit for all time intervals T to continuously maintain the query answer.

Throughout this section, Figure 3 gives a running example of 16 moving objects of two different types: six square
objects of type A, oA1 to oA6; nine circle objects of type B, oB1 to oB9; and a query object of type A, qA. The
objective is to find objects of type B in which the query point qA of type A is their nearest A object. As a notation,
objects oA and oB are of types A and B, respectively, while sets SA and SB contain only data objects of types A

and B, respectively. The initial and incremental steps are described in Sections IV-A and IV-B, respectively, while
Section IV-C gives a general discussion of the bichromatic FR-IGERN algorithm.

A. Step 1: Getting the Initial Answer

For a query object of type A (qA), the objectives of the initial step in the bichromatic FR-IGERN algorithm
are: (1) Obtaining a bounded region r around qA to be monitored in the incremental step, (2) Identifying a set
of objects of type A (NNA) that need to be monitored later as their movement may trigger a change of answer,
and (3) Identifying the set of initial reverse nearest neighbors of type B (RNNB) to qA. Algorithm 3 gives the
pseudo-code for the initial step. The input is the query object qA and the Grid index G while the output is the two

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

7

Algorithm 3 Pseudo code for FR-IGERN Initial Step
1: Function INITFR-IGERN(Query qA, Grid index G)
2: NNA ← ∅, Mark all grid cells ∈ G as alive

Phase I: Bounded Region
3: while (oA ← the nearest A object to qA in alive cells) $= NULL do
4: NNA ← NNA ∪ oA, b ← The bisector of qA and oA

5: Mark grid cells in the half-plane bounded by bj and containing oj as dead
6: end while

Phase II: Filter Step
7: RNNB ← ∅
8: REFINEB ← ∅
9: for each object oB ∈ the alive cells do

10: if min(⊥ dist(oB , b ∈ NNA)) ≥ dist(oB , qA) then
11: RNNB ← RNNB ∪ oB

12: else
13: REFINEB ← REFINEB ∪ oB

14: end if
15: end for

Phase III: Refine Step
16: for each object oB ∈ REFINEB do
17: oA ← is the nearest object of type A to oB

18: if oA = qA then
19: RNNB ← RNNB ∪ oB

20: else
21: NNA ← NNA ∪ oA, b ← The bisector of qA and oA

22: Mark grid cells from b to the furthest boundaries of qA as dead
23: For any two objects oA, oA′ ∈ NNA, remove object oA from NNA only if dist(oA, oA′) < dist(oA, qA)
24: end if
25: end for
26: return RNNB , NNA

sets RNNB and NNA. Initially, the set NNA is empty while all grid cells in G are set to alive, i.e., all cells have
the potential of containing a reverse nearest neighbor of qA. Then, the initial step has the following three phases:

Phase I: Bounded Region. This phase starts by finding object oA that is nearest to qA in the alive cells (Line 3 in
Algorithm 3). Then, object oA is added to the list of A objects (NNA) that will be monitored later in the incremental
step. Similar to the monochromatic case, the bisector b between qA and oA is drawn while all the grid cells in the
half-plane bounded by bj and containing oj are marked as dead (Lines 4-5 in Algorithm 3). This process continues
until there are no more objects of type A in any of the alive cells. Grid cells having a perpendicular bisector
intersecting them and a border around the query object are still considered “alive” but only objects in the half-plane
containing the query object is considered to be “alive”. In Figure 3a, the nearest neighbor search in the alive cells
results in finding oA5, oA3, and oA1, respectively, and the corresponding bisectors b5, b3, and b1 are drawn until
the alive cells (non-shaded cells) do not contain any square A objects. Thus, NNA = {oA1, oA3, oA5}.

Phase II: Filter. This phase aims to filter objects that are guaranteed to be the reverse nearest neighbors for
the query object. The main idea is to filter an object oB such that the minimum perpendicular distance from oB

and each of the bisectors b found in the previous phase is greater or equal to the distance from oB and the query
object (Lines 9-10 of Algorithm 3). The filtered objects are then guaranteed to be a reverse nearest neighbor of the
query object (Line 11 of Algorithm 3). Objects in the alive cells that cannot be filtered will need further refinement
in Phase 3 (Line 13 of Algorithm 3). Figure 3b depicts the filtering concept as a region around the query object
where any object in this region is guaranteed to be the reverse nearest neighbor of the query object. In this example,
the greyed objects oB4, oB5, and oB6 are filtered (i.e., no further calculations are needed on these objects) and
added to the answer set, RNNB .

Phase III: Refine. This phase aims to refine any remaining objects within the bounded region to find additional
reverse nearest neighbors, tighten the monitored bounded region, and modify the list of objects that need to be
monitored in the incremental step. The main idea is to go through every object oB that needs further refinement for
its nearest A object, oA (Lines 16-17 in Algorithm 3). If it ends up that the nearest oA is the query object qA, then
oB is considered as a reverse nearest neighbor to qA, and thus added to the set RNNB (Line 19 in Algorithm 3).
However, if oA is not qA, then oA is considered as one of the objects to be monitored, a bisector is drawn between

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

8

Algorithm 4 Pseudo code for FR-IGERN Incremental Step
1: Function INCRFR-IGERN(Query qA, set NNA, Grid index G)
2: if qA or any objects ∈ NNA have moved then
3: Redraw the bisectors between qA and all objects in NNA

4: Only the cells between qA and the bisectors are marked as alive
5: end if
6: if there is any object oA within the alive cells then
7: Tighten the region as in Phase I of Algorithm 3 (Lines 3 to 6)
8: For any two objects oA, oA′ ∈ NNA, remove object oA from NNA only if dist(oA, oA′) < dist(oA, qA)
9: end if

10: Verify the answer as in Phase II and III of Algorithm 3 (Lines 7 to 25)
11: return RNNB , NNA

!"

#"$

#"%
#"&

#"'

#"(

#")

#*$

#*%

#*&

#*'

#*(

#*)

#*+

#*,

#*-

.$

.(

.&

(a) Phase I

!"

#"$

#"!

"#$

"%&

"%$

"%'

()

($

(!

(b) Phase II

!"

#"$

#"!

"#&

#"!

"#$
"#%

"#&

'(

'!

')

'*

(c) Phase III

!"
#"$

#"!

"#&

#"!

"#$

"#'

*$ *!

*!

(d) Incremental

Fig. 3. An example of the bichromatic FR-IGERN.

qA and oA, the corresponding grid cells are marked as dead, and the set NNA is cleaned to make sure that it
contains the minimal required objects that need to be monitored (Lines 21-23 in Algorithm 3). Figure 3c depicts
such a scenario where there are three B objects in the alive cells that need further refinement, oB2, oB7, and oB8.
Upon testing for their nearest A objects (the dotted circles in Figure 3c), it turns out that only oB2, and oB8 are
reverse nearest neighbors while oB7 has oA4 as its nearest A object. Thus, a bisector b4 is drawn between qA and
oA4 and the corresponding cells are shaded. Object oA4 is then removed from the monitored nearest neighbors NNA

because it is closer to oA5 than qA. As a result, NNA = {oA1, oA3, oA5} while RNNB = {oB2, oB8} is added to the
answer set.

B. Step 2: Incremental Maintenance

The incremental step of IGERN is repetitively executed every T time units. Algorithm 4 gives the pseudo-code
of the incremental step where the input is the query object qA, the set of monitored objects NNA that came from
either the initial step at time T0 or a previous execution of the incremental step, and the Grid index G. The output
is the current reverse nearest neighbors RNNB and a modified set of objects NNA to be monitored in the next
execution instance of the incremental step. Similar to the monochromatic case of IGERN, the incremental step of
the bichromatic case checks for three different scenarios: (1) The query object qA moves to a new location (Line 2
in Algorithm 4), (2) At least one of the objects in NNA moves to a new location (Line 2 in Algorithm 4), and
(3) A new object of type A moves into the alive cells (Line 6 in Algorithm 4). If none of these scenarios took
place, then the incremental step will only verify the current sets (RNNB and NNA) in a similar way to the filter
and refine phases in the initial step (Line 10 in Algorithm 4).

However, if it is the case that either the query object qA or one of the objects in NNA has moved, then new
bisectors will be drawn from qA to the objects in NNA. Also, only the cells between qA and the new bisectors
are considered alive (Lines 3-4 in Algorithm 4). Then, the incremental step checks if a new object of type A is
found in an alive cell. Such a check also accommodates the new bounded region formed by the movement of any
of the monitored objects. If there are no objects in any of the alive cells, then only the verification step is needed
(Line 10 in Algorithm 4). However, if there are one or more objects of type A in the alive cells, we will tighten
the alive cells in a similar way to the first phase in the initial step (Line 7 in Algorithm 4). Then, the list NNA is
cleaned by removing any object that is not participating in drawing the bisectors (Line 8 in Algorithm 4). Finally,
the sets NNA and RNNB are verified (Line 10 in Algorithm 4).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

9

Figure 3d depicts the case where two of the monitored objects have moved, namely, oA1 and oA3. Thus, new
bisectors will be drawn. Then, it turns out that object oB2 has oA3 as its nearest A object. Thus, oB2 is no longer
a reverse nearest neighbor to qA. After the filter (grey objects) and refine steps, the returned answer from the
incremental step will be NNA = {oA1, oA3, oA5} while RNNB = {oB4, oB6, oB8}.

C. Discussion

FR-IGERN is an optimization method that addresses continuous bichromatic reverse nearest neighbor queries.
One of the main attractive features of the FR-IGERN is that it is based on the monochromatic case, i.e., IGERN
provides a unified framework for continuous evaluation of both monochromatic and bichromatic reverse nearest
neighbor queries. In this sense, IGERN is more attractive to industry and system-oriented research prototypes
(e.g., [29], [30], [31]) as one framework would be enough for different cases. This is in contrast to previous
approaches for reverse nearest neighbor queries that can solve only the monochromatic case without any direct
extension to the bichromatic case. For example, monochromatic RNN algorithms that rely on the fact that there
could be only six reverse nearest neighbors (e.g., [16], [10]) cannot be extended to the bichromatic case where the
number of reverse nearest neighbors could be much greater than six. The initial step of FR-IGERN is similar to
getting only the Voronoi cell around the query object [32]; however, we embed several functionalities inside the
algorithm for finding the Voronoi cell in order to exactly maintain a minimal set of objects and a bounded region
that will be monitored in later executions of the incremental step. One of the main insights of the FR-IGERN
method is the fact that objects that are near to the query objects do not have to perform a nearest neighbor search
since no other objects can be its reverse nearest neighbor and can be filtered. Thus, the main distinction between the
bichromatic FR-IGERN and the original bichromatic IGERN [21] is that the number of nearest neighbor searches
may be reduced due to the filter and refine steps.

V. PROOF OF CORRECTNESS

In this section, we present the proof of correctness for both the monochromatic and bichromatic IGERN algorithms
by proving that: (1) IGERN is accurate, i.e., an object p returned by IGERN is an exact RNN, and (2) IGERN is
complete, i.e., IGERN returns all possible RNNs.

A. Monochromatic: Accurate and Complete

Theorem 1: For any query qT , executed at time T , an object o returned by the monochromatic IGERN algorithm
is an exact reverse nearest neighbor to q.

Proof: Assume that for the query qT , IGERN returns an object o which is not a reverse nearest neighbor to
qT . Then, there must be another object o′ where dist(o, o′) < dist(o, q). However, both the initial and incremental
steps of IGERN are concluded by a verification phase which guarantees that q is the nearest object to any returned
object o (Line 7 in Algorithm 1 and Line 10 in Algorithm 2). Thus, object o′ cannot exist either in the initial or
the incremental step. Thus, q is the nearest object to o, and hence, the object o returned by IGERN is an exact
reverse nearest neighbor to q.

Theorem 2: For any query qT , executed at time T , the monochromatic IGERN algorithm returns ALL reverse
nearest neighbors to qT .

Proof: Assume that for the query qT , IGERN did not return an object o that is a reverse nearest neighbor to
qT , i.e., qT is the nearest object to o. Then, there are exactly two cases:

Case 1: o is in an alive cell. Phase I in the initial step of IGERN continues to iterate until there are no objects
located in the alive cells (Lines 2-6 in Algorithm 1). Similarly, the incremental step makes sure that there are no
objects in the alive cells (Line 7 in Algorithm 2). Thus, object o cannot be located in any of the alive cells.

Case 2: o is in a dead cell. In the initial step, each bisector bj between oj and q divides the space into dead and
alive cells such that any object o (other than oj) in the dead cells has dist(o, oj) < dist(o, q). Thus, q cannot be
a nearest neighbor to o. If oj is an RNN to q, oj will be returned in the verification phase. Thus, object o cannot
be in a dead cell. A similar argument holds for the incremental step.

From Cases 1 and 2, object o cannot exist. Thus, IGERN produces all reverse nearest neighbors to q.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

10

B. Bichromatic: Accurate and Complete

Theorem 3: For any query qAT , of type A, executed at time T , an object oB returned by the bichromatic FR-
IGERN algorithm is an exact reverse nearest neighbor of type B to qA.

Proof: Assume that for the query qAT , the bichromatic FR-IGERN returns an object oB which is not a reverse
nearest neighbor to qA. Then, there must be another object o′A where dist(oB , o′A) < dist(oB , qA). However, both
the initial and incremental steps of the bichromatic FR-IGERN conclude with the filter and refine steps which
verify each returned oB object as the reverse nearest neighbor. If the object oB is found within the filter phase,
then no other oA object can exist because the distance from oB to the query qA will always be less than or equal to
the distance between qA and its borders. Otherwise, oB is found in the refine phase that verified that every object
oB has to have qA as the nearest A object. Thus, object o′A cannot exist, and hence, the object oB returned by the
bichromatic FR-IGERN is an exact reverse nearest neighbor to qA.

The order of the monitored objects found does not matter when finding the correct bounded region around the
query object. This is ensured in Phase III of the refine step where objects are are not ensured to be RNNs, a NN
search is performed and if the query object is not the NN of an object within the alive cells, a new bisector is
created. Thus, the actual Voronoi cell can be created using this technique.

Theorem 4: For any query qAT , of type A, executed at time T , the bichromatic FR-IGERN algorithm returns
ALL reverse nearest neighbors to qAT .

Proof: Assume that for the query qAT , the bichromatic FR-IGERN did not return an object oB that is a reverse
nearest neighbor to qA, i.e., qA is the nearest A object to oB . Similar to proof for Theorem 3, object oB is either in
an alive or a dead cell in which both cases cannot take place in the filter and refine phases of Algorithms 3 and 4.
Thus, object oB cannot exist and the bichromatic FR-IGERN produces all the reverse nearest neighbors to qA.

VI. ANALYTICAL COMPARISON OF RNN ALGORITHMS

This section presents the cost model for three monochromatic and two bichromatic algorithms. Namely for the
monochromatic case, we present the cost model for IGERN, CRNN [10], and repetitive evaluation of the static
TPL algorithm [17]. For the bichromatic case, we present the cost model for IGERN [21], the refined Filter and
Refine FR-IGERN approach, and the repetitive computations of the static creation of Voronoi cells [32]. Finally,
we compare the cost model of IGERN with its counterparts for both the monochromatic and bichromatic cases.

For each cost model, the total time T is used to determine the entire costs of the methods for the complete
duration. In general, the sampling rate of a ‘middleware’ system may change due to the speed of the object. Since
our methods sit on top of this architecture, the total number of samples is accounted for within our cost models.
The details of this middleware architecture are beyond the scope of this paper.

Monochromatic IGERN cost. Let mI be the cost function for the monochromatic IGERN algorithm. Then, for
a query q that is executed for T time units upon a grid index G, mI(q,G) = mIinit(q0, G) + ΣT

t=1mIincr(qt, G)
where mIinit and mIincr are the cost of the initial and incremental steps, respectively, while qt is the execution
of the query q at time t. Thus, mI(q,G) = r0(NNc(q0, G) + NN(q0, G)) + ΣT

t=1(NNb(qt, G) + rtNN(qt, G)),
where rt is the number of objects that are candidates to be RNNs in time step t, (rt ≤ 6). NNc(qt, G), NN(qt, G),
and NNb(qt, G) represent the cost for the constrained, unconstrained, and bounded nearest neighbor algorithms to
qt, respectively. The constrained NN search is done only within the remaining alive cells (Line 3 in Algorithm 1)
while the unconstrained NN search is performed in the whole space (Line 7 in Algorithm 1) and the bounded NN
search is performed only within a bounded region of the space (Line 7 in Algorithm 2).

CRNN cost. Let C be the cost function for CRNN. Then, C(q,G) = 6(NNc(q0, G)+NN(q0, G))+ΣT
t=16(NNb(qt, G)+

NN(qt, G)), where NNc(qi, G), NN(qi, G), and NNb(qi) are similar to those of the IGERN algorithm. Notice
that CRNN always monitors six regions and six RNN candidates regardless of the data distribution. In addition,
the bounded NN search NNb is consistently repeated six times.

TPL cost. Let L be the cost function for a repetitive evaluation of the static TPL approach. Then, L(q,G) =
ΣT

t=0rt(NNc(qt, G) + NN(qt, G)). As there is no incremental evaluation in TPL, all execution instances perform
a constrained nearest neighbor search followed by an unconstrained one for verification.

IGERN vs. CRNN. Based on our cost model, the cost ratio between the monochromatic IGERN and CRNN is:
mI(q,G)
C(q,G) = r0(NNc(q0,G)+NN(q0,G))+ ΣT

t=1
(NNb(qt,G)+rtNN(qt,G))

6(NNc(q0,G)+NN(q0,G))+ ΣT

t=1
6(NNb(qt,G)+NN(qt,G))

Lemma 1: If rt < 6, mI(q,G) < C(q,G)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

11

Proof: For any single time instance T , the ratio is r0

6 if T = 0 and NNb(qt,G)+rtNN(qt,G)
6NNb(qt,G)+6NN(qt,G) for T > 0. Notice

that for each time instance T > 0, the bounded nearest neighbor search is done only once in IGERN as opposed to
six times in CRNN. Also, the unconstrained nearest neighbor search is performed only rt times in IGERN rather
than exactly six times in CRNN. When rt < 6, IGERN always achieves better performance than CRNN.

Lemma 2: As the number of objects increases, mI(q,G) < C(q,G).
Proof: The performance of a single execution of a bounded, constrained, and unconstrained nearest neighbor

search requires the lookup of objects in a single grid cell. As the number of objects increases, more lookups in
the grid cell are required. For T > 0, CRNN requires six bounded and six unconstrained bounded nearest neighbor
searches whereas IGERN needs a single bounded and rt unconstrained searches. Thus the gap in the costs between
IGERN and CRNN will increase as more objects are placed in the grid index.

Lemma 3: As the number of time intervals T increases, mI(q,G) < C(q,G).
Proof: In the incremental step for IGERN and CRNN, the worst case of rt = 6, the performance in IGERN

will be a little less than half of the cost in CRNN. Thus, as T is increased, the savings in IGERN will significantly
improve. Further savings may occur at a degree of rt when the monitored number of objects is less than six.

Lemma 4: As the spatial area of the dataset decreases, mI(q,G) < C(q,G).
Proof: As the spatial area of the dataset decreases, so does the number of grid cells that needs to be analyzed,

thereby reducing the peformance cost of both algorithms. However, based on the cost ratio between IGERN and
CRNN, IGERN will still show better performance than its counterpart.

IGERN vs. TPL. The cost ratio between the monochromatic IGERN and the reevaluation of the static TPL is:
mI(q,G)
L(q,G) = r0(NNc(q0,G)+NN(q0,G))+ ΣT

t=1
(NNb(qt,G)+rtNN(qt,G))

ΣT

t=0
rt(NNc(qt,G)+NN(qt,G))

Lemma 5: As the number of objects increases, mI(q,G) < L(q,G).
Proof: As in Lemma 2, the cost of a nearest neighbor search will increase as more objects occur in the

grid index G. Based on our cost ratio between IGERN and TPL, TPL will always perform more nearest neighbor
searches than IGERN for all possible values of rt. Also, TPL will perform rt constrained nearest neighbor searches
whereas IGERN will perform a single bounded nearest neighbor search. Thus, IGERN will improve in performance
over TPL as more objects occur in the grid index.

Lemma 6: As the number of time intervals T increases, mI(q,G) < L(q,G).
Proof: In Lemma 6, for any single time instance T , the ratio is one if T = 0 while the ratio is NNb(qt,G)+rtNN(qt,G)

rtNNc(qt,G)+rtNN(qt,G)
for T > 0. Notice that the bounded nearest neighbor search in IGERN is much less expensive than the constrained
one in TPL as the bounded case searches only within a small bounded region. In addition, the bounded search
in IGERN is done only once while the constrained search in TPL is done rt times at each time instance. Thus,
IGERN always achieves better performance than the repetitive evaluation of TPL.

Lemma 7: As the spatial area of the dataset decreases, mI(q,G) < L(q,G).
Proof: As in Lemma 4, the effect of the size of the dataset is the same as in Lemma 7.

Bichromatic IGERN cost. Let bI be the cost function for the bichromatic IGERN algorithm. Then, for a
query of type A (qA, G) that is executed for T time units upon a grid index G, bI(qA, G) = bIinit(qA, G0) +
ΣT

t=1bIincr(qA, Gt) where bIinit and bIincr are the cost of the initial and incremental steps, respectively, while qAt is
the execution of the query qA at time t. Thus, bI(qA, G) = a0NNc(qA, G0)+b0NN(qA, G0)+ ΣT

t=1(NNb(qA, Gt)+
btNN(qA, Gt)) where at and bt are the number of A objects that need to be monitored and the number of B objects
in the monitored bounded region, at time step t, respectively. NNc(qt, G), NNb(qt, G), and NN(qt, G) are similar
to those of the monochromatic IGERN algorithm. Notice that the constrained NN search is done only once in the
initial step while the bounded NN search is done only once at each execution of the incremental step.

Bichromatic FR-IGERN cost. Let bFRI be the cost function for the bichromatic FR-IGERN algorithm. Then, for
a query of type A (qA, G) that is executed for T time units upon a grid index G, bFRI(qA, G) = bIinit(qA, G0) +
ΣT

t=1bIincr(qA, Gt), where bIinit and bIincr are the cost of the initial and incremental steps, respectively, while qAt is
the execution of the query qA at time t. Thus, bFRI(qA, G) = a0NNc(qA, G0)+(b0−c0)NN(qA, G0)+ ΣT

t=1(NNb(qA, Gt)+
(bt−ct)NN(qA, Gt)) where at, bt, and ct are the number of A objects that need to be monitored, the number of B

objects in the monitored bounded region, and the number of C objects found within the Filter step, at time step t,
respectively. The cost of finding the objects in the filter step is not included since the cost is minimal for a simple
distance calcuation rather than a NN search. NNc(qt, G), NNb(qt, G), and NN(qt, G) are similar to those of the
monochromatic IGERN algorithm. Notice that the constrained NN is done only once in the initial step while the
bounded NN is done only once at each execution of the incremental step.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

12

Voronoi cost. Let V be the cost function for the continuous re-creation of a Voronoi cell around qA. Then,
V (qA, G) = ΣT

t=0atNNc(qt, G) + btNN(qt, G). The main idea is that creating a new Voronoi cell is repeated at
each time step t.

IGERN vs. Voronoi cell. The cost ratio between the bichromatic IGERN algorithm and repetitive creation of
Voronoi cells is: bI(q,G)

V (q,G) = a0NNc(q0,G)+b0NN(q0,G)+ ΣT

t=1
(NNb(qt,G)+btNN(qt,G))

ΣT

t=0
(atNNc(qt,G)+btNN(qt,G))

Lemma 8: As the number of objects increases, bI(q,G) < V (q,G).
Proof: As in Lemmas 2 and 5, the nearest neighbor cost will be higher in Voronoi cell due to the repititive

executions of the constrained nearest neighbor search (Lemma 8). Thus, when the number of objects increases, the
cost in the Voronoi cell approach will be much higher than in IGERN.

!"#$%&$'(
)*$*+&$

,&*-.
)*$*+&$

/,0012#23
456,0

456,03
,0072#

89&:".;<=&($+

>#*-"+'+

(a) Monochromatic

!"#$%&$'()
*+$+,&$

-&+.)
*+$+,&$

/010#0')
2&..

3'4
567-8

3'4
9-4567-8

:;&1")<=>&($,

?#+.",',

(b) Bichromatic (c) Map of Hennepin
County, MN, USA.

Fig. 4. Experimental Setup

Lemma 9: As the number of time intervals T increases, bI(q,G) < V (q,G).
Proof: For any single time instance T , the ratio is one if T = 0 and (NNb(qt,G)+btNN(qt,G))

(atNNc(qt,G)+btNN(qt,G)) for T > 0.
Notice that the bounded search in IGERN is cheaper than the constrained search in the Voronoi cell. Furthermore,
the bounded search in IGERN is done only one time at each time instance while the constrained search is done at

times in the Voronoi cell construction. Thus, the bichromatic IGERN achieves better performance than repetitive
construction of Voronoi cells.

Lemma 10: As the spatial area of the dataset decreases, bI(q,G) < V (q,G)
Proof: The effect of the size of the dataset is the same as in Lemma 10.

IGERN vs. FR-IGERN. The cost ratio between the bichromatic IGERN algorithm and the bichromatic FR-
IGERN algorithm is: bI(q,G)

bF RI(q,G) =
a0NNc(q0,G)+b0NN(q0 ,G)+ΣT

t=1
(NNb(qt,G)+btNN(qt,G))

a0NNc(q0,G)+(b0−c0)NN(q0 ,G)+ΣT

t=1
(NNb(qt,G)+(bt−ct)NN(qt,G))

Lemma 11: As the number of objects increases, bFRI(q,G) < bI(q,G) when one or more objects are filtered.
Proof: As more objects are found in the filter step of FR-IGERN, fewer nearest neighbor searches are required

to verify the remaining reverse nearest neighbors. Thus, as the number of objects increases, more objects may be
filtered, reducing the execution time over IGERN.

Lemma 12: As the number of time intervals increases, bFRI(q,G) < bI(q,G) when one or more objects are
filtered.

Proof: As objects are filtered within FR-IGERN, the number of nearest neigbor searches as the time intervals
increase will be significantly lower than in IGERN, where all objects within the bounded region must be verified.

Lemma 13: As the spatial area of the dataset decreases, bFRI(q,G) < bI(q,G) when one or more objects are
filtered.

Proof: The effect of the size of the dataset is the same as in Lemma 10.

VII. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the performance of IGERN for both monochromatic (Section VII-
B.1) and bichromatic (Section VII-B.2) reverse nearest neighbors. In the monochromatic case, we compare our
proposed optimization for IGERN (denoted as IGERN-RNNmon) against IGERN and the state-of-the-art algorithm
for continuous monochromatic reverse nearest neighbor queries CRNN [10]. In the bichromatic case, our proposed
FR-IGERN is compared with our previous approach [21] and a static approach of repetitive computation of Voronoi

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

13

cells [32]. To ensure consistency and fairness among different approaches, we use the algorithm in [11] as the
underlying nearest neighbor search for all approaches of reverse nearest neighbor queries (See Section VII-A.4 for
details).

1) Setup:

A. Experimental Design

Figure 4 gives the experimental setup to evaluate our approaches. The input to both the Monochromatic and
Bichromatic IGERN is a synthetic and a real dataset which are described in Sections VII-A.1 and VII-A.2
respectively. We experimentally compare our proposed monochromatic optimization (denoted as IGERN-RNNmon)
against continuous query processing methods IGERN and CRNN. The bichromatic approach is compared to our
previous approach and the repititive creation of a Voronoi cell. Analysis is performed on the synthetic dataset by
observing the effect on the number of objects and the number of time intervals. Real dataset analysis is performed
to measure the practicality of each of the methods. All experiments were performed on an Intel Pentium IV
CPU 2.0GHz with 512MB RAM.

1) Synthetic Dataset Generator: We use the Network-Based Generator of Moving Objects [33] to generate a
set of moving objects and moving queries. The input to this generator is the road map of Hennepin County in
Minneapolis (Figure 4c). The output of the generator is a set of moving objects that move on the road network of
the given city.

In our synthetic experiments, we used two different sets of experiments: (1) Number of Objects and (2)Number
of Time intervals. The first synthetic dataset was generated using the generator based on the following settings: (1)
Maximum time of 100, (2) Maximum number of objects as 100,000, (3) a report probability of 1000 (i.e., objects
are reported at every timestamp), (4) the number of objects generated at the beginning of 100,000, (5) the number
of moving objects generated at every time stamp of 1000 to account for objects being deleted, and (6) 1 class
for monochromatic and 2 classes for bichromatic (each class had approximately the same number of objects). The
external objects were ignored. For experiments requiring less than 100,000 objects or less than 100 time intervals,
subsets of this generated dataset were used. The second synthetic dataset was based on the number of time intervals.
Since only 30 objects were used and a maximum of 30,000 time intervals, 30 objects were taken from the prior
dataset. The time intervals were then interpolated based on a a constant rate to create 30,000 time intervals. Due
to this interpolation, objects may not move as often as the original dataset. Again, subsets of the second dataset
were taken for experiments with less than 30,000 time intervals.

2) Real Dataset: The real dataset used for our experiments is a courier dataset from a delivery company called
eCourier [34]. This company is located in the United Kingdom and delivers packages throughout London. The public
dataset consists of a set of GPS tracks of delivery vehicles where each vehicle reports its location approximately
every ten seconds. We used the following five attributes from the courier dataset: (1) a timestamp containing the
day and time of the reported location, (2) a unique courier identification number, (3) the type of delivery vehicle
(e.g., van, motorbike, pushbike, etc.), (4) longtitude, and (5) latitude.

For our experiments, approximately 24 hours worth of data was extracted from eCourier, more specifically on
May 12, 2007 (we assumed a high volume of delivery activity on this day because it was the day before Mother’s
Day). This dataset consisted of approximately 30 unique delivery vehicles having 30,000 time intervals. This dataset
had two distinct object types: Van and Motorbike. For the monochromatic experiments, all vehicles were considered
of the same type, whereas the bichromatic dataset considered both distinct object types. Figure 5 gives an example of
the spatial distribution taken at 6K time intervals of the two object types: (1) Van (shown in red), and (2) Motorbike
(shown in blue). Figure 5f gives an example of the spatio-temporal distribution of a single object taken at 15 minute
samples. The object starts at approximately 7:15 AM on May 12, 2007 at the farthest east point near Newham Way
and ends at approximately 5:50 PM on the same day near the original starting location at the intersection A102.
This object remains at the ending location for the remainder of the extracted dataset. Unfortunately, this dataset
does not have any information on why the object stops moving for a time period and then begins again, and we
assume the vehicle has finished its deliveries and is waiting for another package to deliver.

The raw dataset contained two main issues that needed to be addressed before any experiments could be executed.
First, the dataset contained several pieces of missing information. Each object is reported at every ten seconds,
but not all objects are started at the same time. Thus, there may be some time intervals that may not report all

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

14

(a) T = 6K (b) T = 12K (c) T = 18K

(d) T = 24K (e) T = 30K (f) Distribution of a single
object

Fig. 5. Spatial Distribution of the Real Dataset (Best Viewed in Color) [Source: Generated using Google Maps]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

5122561286416

#

o
f

C
e
l
l

C
h
a
n
g
e
s

(
K
)

Grid Size

IGERN

(a) Number of Cell Changes

 0

 100

 200

 300

 400

 500

 600

5122561286416

C
P
U

T
i
m
e

(
s
e
c
)

Grid Size

IGERN

(b) CPU Time

Fig. 6. Grid Size Costs

objects. This issue was addressed by taking the latest occurrence of the object if it was not reported at a certain
time interval. Other methods such as interpolation using the speed of the object or pruning the dataset may be used
for future work. Second, the dataset contained several duplicate occurrences of an object at the same time interval.
These duplicate objects contained different locations but reported at the same time interval. To address this issue,
only a single occurrence of the object was taken.

3) Grid Data Structure: To account for the continuously moving objects in our proposed approaches, we use
a grid data structure to index the locations of each object. The grid data structure G of N × N equal size cells.
Each cell c ∈ G keeps track of the set of cells that lies within the cell boundary and whether the cell is considered
“alive” or “dead”. For cases where the bisector intersects with the cell and borders the query object, the cell itself
is considered “alive” but only objects in the half-plane containing the query object are considered “alive”.

Figure 6 gives the effect of increasing the grid size from 16×16 to 512×512 based on the synthetic experiments for
the number of objects. Although this experiment was performed for the monochromatic IGERN, similar performance
was found for the bichromatic case. We did not perform a similar study in the second set of experiments based
on the number of time intervals and the real dataset because it contained only 30 objects. Figure 6a gives the
number of cell changes for all objects as the grid size increases. The number of cell changes is an indicator of
the overhead needed to maintain the grid structure. As more grid cells are maintained, more updates need to take
place. By contrast, Figure 6b gives the CPU time which includes the update costs (i.e., objects moving to a new
cell) and query costs when executing the IGERN algorithm for different grid sizes. For small grid sizes, IGERN
encounters higher costs as each grid cell contains large numbers of objects, hence, the underlying nearest neighbor
search would search within a lot of unnecessary objects. The performance improves when the grid size increases
to 64-128 as the nearest neighbor search is performed within limited numbers of objects. However, greater increase

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

15

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10080604020

A
v
e
.

C
P
U

T
i
m
e

(
s
e
c
)

Objects (K)

IGERN-RNNmon
IGERN
CRNN

(a) Processing Time

 0

 1

 2

 3

 4

 5

 6

 7

 8

10080604020A
v
e
.

#

o
f

M
o
n
i
t
o
r
e
d

O
b
j
e
c
t
s

Objects (K)

IGERN
CRNN

(b) Monitored Objects

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

C
P
U

T
i
m
e

(
s
e
c
)

Time Intervals

IGERN-RNNmon
IGERN
CRNN

(c) Time Intervals

 0

 50

 100

 150

 200

 250

 300

 350

10080604020

A
c
c
u
m
.

C
P
U

T
i
m
e

(
s
e
c
)

Number of Time Slots

IGERN-RNNmon
IGERN
CRNN

(d) Time Slots

Fig. 7. Monochromatic Costs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10080604020

A
v
e
.

C
P
U

T
i
m
e

(
s
e
c
)

Objects (K)

IGERN-init
IGERN

IGERN-RNNmon

(a) Processing Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

C
P
U

T
i
m
e

(
s
e
c
)

Time Intervals

IGERN-init
IGERN

IGERN-RNNmon

(b) Time Intervals

 0

 20

 40

 60

 80

 100

 120

1110987

A
c
c
u
m
.

C
P
U

T
i
m
e

(
s
e
c
)

unit distance (k) per second

IGERN-init
IGERN

IGERN-RNNmon

(c) Monochromatic: Speed

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

131211109

A
c
c
u
m
.

C
P
U

T
i
m
e

(
s
e
c
)

unit distance (k) per second

Voronoi
IGERN

FR-IGERN

(d) Bichromatic: Speed

Fig. 8. Monochromatic Self Evaluation and Effect on the Speed of the Objects

in the grid size badly affects IGERN due to the cost of data updates for objects that change their cells as shown
in Figure 6a. As a compromise, in the rest of our experiments, we used a grid structure of size 64.

4) Nearest Neighbor Algorithms: In all of the reverse nearest neighbor methods presented in the experimental
section, our underlying nearest neighbor search is [11] (denoted as YPK). These authors proposed a k-nearest
neighbor approach for moving objects and all of our methods use this simplest form of a 1-nearest neighbor. Using
a grid data structure to track the moving objects, YPK expands a set of two rectangles around the query object
to find the first nearest neighbor. The first or inner rectangle is centered around the query object and the second
or outer rectangle surrounds the approximated circle around the query object using the first rectangle. All objects
within the grid cells of the outer rectangle are examined to determine the nearest object to the query. If there are
no objects found, this process continues and the rectangles are expanded until the 1-NN is found.

B. Synthetic Dataset Experiments Based on Number of Objects

1) Monochromatic RNNs: This section analyzes the effect on the number of objects by comparing the monochro-
matic IGERN-RNNmon to IGERN and CRNN.

Figure 7a gives the effect of increasing the number of moving objects from 20K to 100K on IGERN-RNNmon,
IGERN, and CRNN. The average CPU time is taken over 100 time units. The IGERN consistently performs better
than CRNN. As the number of objects increases, IGERN takes advantage of the fact that it monitors only one
region and a smaller number of objects. By contrast, CRNN consistently monitors six regions and six moving
objects. Furthermore, the single area monitored by IGERN is bounded while some of the areas of CRNN may
be open-ended based on the data distribution. As a result, the average CPU cost of IGERN is much less than
that of CRNN. This experiment validates Lemma 2 and Lemma 5 based on the effect on the number of objects.
IGERN-RNNmon performs less than IGERN by reducing the number of NN searches in the verification phase.
Only a slight decrease occurs due to only a few number of objects not moving at every time interval.

Figure 7b gives the average number of monitored objects in both IGERN and CRNN for different data sizes.
While CRNN monitors exactly six objects, IGERN, on average, monitors about 3.3 objects. These results are in
line with the results of Figure 7a, which shows that IGERN has much less CPU time than CRNN. This experiment
validates Lemma 1 by showing that the CPU costs are lower when the monitored number of objects is less than
in CRNN. Since IGERN and IGERN-RNNmon are essentially the same except for the number of NN searches in
the verification phase for a specific scenario (i.e., RNN answer and query object do not move to a new location),
both have the same number of monitored objects.

Figure 7c gives the execution time of IGERN-RNNmon, IGERN, and CRNN for the first 100 time units of
100K moving objects. As all three algorithms are designed for continuous evaluation, the first time evaluation
at time T = 0 is more expensive than later time instances that only maintain only the current answer. CRNN

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

16

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80 90 100

C
P
U

T
i
m
e

(
s
e
c
)

Objects (K)

FR-IGERN
IGERN

Voronoi

(a) Processing Time

 0

 1

 2

 3

 4

 5

 6

10080604020A
v
e
.

#

o
f

M
o
n
i
t
o
r
e
d

O
b
j
e
c
t
s

Objects (K)

IGERN (Mono)
IGERN (Bi)

(b) Monitored Objects

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

C
P
U

T
i
m
e

(
s
e
c
)

Time Intervals

FR-IGERN
IGERN

Voronoi

(c) Time Intervals

 0

 50

 100

 150

 200

10080604020

A
c
c
u
m
.

C
P
U

T
i
m
e

(
s
e
c
)

Number of Time Slots

FR-IGERN
IGERN

Voronoi

(d) Time Slots

Fig. 9. Bichromatic Costs

is more expensive than IGERN because of the creation of six regions as opposed to one in IGERN. IGERN is
slightly more expensive than IGERN-RNNmon due to several more NN searches in the verification phase. The
stable performance of IGERN-RNNmon for all time units T > 0 indicates that the performance of the incremental
step does not deteriorate over time. This experiment validates Lemma 2 and Lemma 5 for 100K moving objects
throughout 100 time intervals. The decline in CPU costs of all methods is due to an artifact in the synthetic generator
discussed in Section VII-A.1.

Figure 7d gives the total accumulated time spent on one execution of the initial step followed by a sequence of
executions of the incremental step for IGERN-RNNmon, IGERN, and CRNN for up to 100 time units. It is clear
that when the query runs for longer time periods, the amount of saving we achieve with IGERN becomes much
greater. Thus, IGERN consistently gives a stable increase of performance over CRNN and validates both Lemmas 2
and 5.

Figure 8a gives the monochromatic self evaluation of the average time for the repititive executions of the initial
step of IGERN and the other two proposed approaches IGERN and IGERN-RNNmon on 20K to 100K moving
objects. It is clear that the repititive executions of the initial step of IGERN performs more poorly than the proposed
incremental approaches because the bounded region needs to be recomputed at every time interval. Figure 8b gives
the self evaluation of the execution time at each time interval for the first 100 time units of 100K moving objects.
At T = 0, both continuous approaches is more expensive than the later time instances. Whereas, the static approach
of the initial step of IGERN is much more expensive at all time intervals due to its repititive computations of the
bounded region.

Figure 8c gives the monochormatic self evaluation on the effect of the speed of the objects. The speed of
the objects is based on the average unit distance traveled per second for 20 time intervals. Figure 8c gives the
accumulated execution time based on the speed of the object from 7K to 11k unit distances per second. In general,
the speed of the object may affect the computation time of the proposed continuous approaches, IGERN and
IGERN-RNNmon, due to the size of the monitoring region increasing. As expected, the static approach of the
initial step of IGERN is much more expensive than the continuous approaches due to its recomputation of the
bounded region. Likewise, the computation costs of both continuous approaches also increase as the speed of the
objects increase.

2) Bichromatic: This section analyzes the effect on the number of objects by comparing the bichromatic FR-
IGERN algorithm to our previous bichromatic IGERN algorithm and the repetitive computation of static Voronoi
cells.

Figure 9a gives the effect of increasing the number of moving objects from 20K to 100K on FR-IGERN, IGERN
and the creation of a Voronoi cell where each object type has 10K to 50K objects. The FR-IGERN algorithm
consistently gives better performance than Voronoi as FR-IGERN only needs to maintain the answer. The increase
in CPU time of FR-IGERN with the increase of the number of objects is much less than that of Voronoi. Basically,
FR-IGERN takes advantage of the fact that it monitors only one region and a small number of objects rather
than reconstructing the answer at each time instance. FR-IGERN also performs better than our previous IGERN
method due to the filtered objects in FR-IGERN, which reduces the number of nearest neigbor searches compared to
IGERN. Thus, FR-IGERN can scale well to a large number of moving objects in comparison to previous algorithms
and validates Lemma 8 and 11.

Figure 9b gives the number of monitored objects over the course of execution for both the monochromatic and
bichromatic approaches. IGERN performs very similarly for both cases and even though the case of bichromatic
reverse nearest neighbors is more complicated, IGERN can still achieve similar performance for both cases. Also,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

17

 0

 20

 40

 60

 80

 100

302418126

C
P
U

T
i
m
e

(
s
e
c
)

Time Slots (K)

IGERN-RNNmon
IGERN
CRNN

(a) Monochromatic Processing Time

 0

 100

 200

 300

 400

 500

 600

302418126

C
P
U

T
i
m
e

(
s
e
c
)

Time Slots (K)

FR-IGERN
IGERN

Voronoi

(b) Bichromatic Processing Time

 0

 1

 2

 3

 4

 5

 6

302418126A
v
e
.

#

o
f

M
o
n
i
t
o
r
e
d

O
b
j
e
c
t
s

Time Slots (K)

IGERN (Mono)
IGERN (Bi)

(c) Monitored Objects

Fig. 10. Synthetic Data: Number of Time Intervals

the number of monitored objects will be the same in both bichromatic IGERN and FR-IGERN because the main
difference occurs within the verification and not in the bounded region phase.

Figure 9c gives the execution of FR-IGERN, our previous method IGERN, and repetitive Voronoi cell creation
for the first 100 time units. Only at the first time instance (T = 0) does Voronoi perform better. This is basically
because both FR-IGERN and IGERN use a modified version of Voronoi cells to be able to reduce the amount of
work that will be needed later in the incremental step. Thus, for all time instances T > 0, both FR-IGERN and
IGERN consistently give much higher performance than Voronoi. Also, FR-IGERN gives slightly better performance
than IGERN due to the reduction in nearest neighbor searches. The reduction in computation time over the time
intervals for all three approaches is due to an artifact in the synthetic data generator discussed in Section VII-A.1.

Figure 9d gives the total accumulated time spent on one execution of the initial step followed by a sequence of
executions of the incremental step for FR-IGERN, IGERN, and the repetitive construction of Voronoi cells. It is
clear that as time continues, both FR-IGERN and IGERN save a great amount of CPU time as their incremental
approach avoids the intensive computations of Voronoi cells. FR-IGERN also shows better performance over IGERN
due to fewer nearest neighbor searches. Both experiments in Figures 9c and 9d validates Lemma 8 and 11.

Figure 8d gives the bichromatic accumulative execution time when the average speed of the objects increases
from 9K to 13K unit distance per second for 100K moving objects on the first 20 time intervals. In general, as the
speed of the objects increases, the monitored region may also increase. Thus, as the speed of the objects increases,
the computation costs also increases for all bichromatic approaches.

C. Synthetic Dataset Experiments Based on Number of Time Intervals

1) Monochromatic RNNs: This section analyzes the effect on the number of time intervals by comparing the
monochromatic IGERN-RNNmon algorithm to IGERN and CRNN.

Figure 10a gives the total accumulated CPU time of one initial and a sequence of incremental steps for IGERN-
RNNmon, IGERN and CRNN. The CPU costs of each time slot are not illustrated because the incremental costs
for both continuous methods having a small number of objects (30) in the dataset may not be significant; thus,
only the total accumulated time is shown. IGERN performs better than CRNN due to its monitoring of a single
region versus six regions in CRNN. This experiment validates Lemma 3 and Lemma 6 by showing that IGERN
scales better than CRNN as the number of time intervals increase. Due to the fact that objects may not move as
often, IGERN-RNNmon performs significantly better than IGERN by reducing the number of NN searches needed
in the verification phase.

Figure 10c gives the average number of objects monitored by the monochromatic IGERN and bichromatic FR-
IGERN approach. For 30K time intervals and 30 moving objects, the average number of monitored objects is less
than 3 objects. This experiment and the CPU costs in Figure 10a validates the Lemma 1 that IGERN will perform
better than CRNN when the number of monitored objects is less than six. Also, there may be less than three
monitored objects when the number of objects in the dataset is low or due to the edge effect in the spatial region.
Since IGERN-RNNmon is essentially the same as IGERN in terms of how the monitored objects are found, both
will have the same number of monitored objects.

2) Bichromatic RNNs: This section analyzes the effect on the number of time intervals by comparing the
bichromatic IGERN algorithm to the repetitive creation of Voronoi Cells.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

18

 0

 5

 10

 15

 20

 25

 30

 35

302418126

C
P
U

T
i
m
e

(
s
e
c
)

Time Slots (K)

IGERN-RNNmon
IGERN
CRNN

(a) Monochromatic

 0

 20

 40

 60

 80

 100

 120

302418126

C
P
U

T
i
m
e

(
s
e
c
)

Time Slots (K)

FR-IGERN
IGERN

(b) Bichromatic: FR-
IGERN vs. IGERN

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

302418126

C
P
U

T
i
m
e

(
s
e
c
)

Time Slots (K)

Voronoi

(c) Bichromatic: Voronoi

 0

 1

 2

 3

 4

 5

 6

302418126A
v
e
.

#

o
f

M
o
n
i
t
o
r
e
d

O
b
j
e
c
t
s

Time Slots (K)

IGERN (Mono)
IGERN (Bi)

(d) Monitored Objects

Fig. 11. Number of Time Intervals

Figure 10b gives the total accumulated CPU time of one initial and a sequence of incremental steps for FR-
IGERN, IGERN, and the repetition of Voronoi cells. The individual time slot costs are not illustrated because
the CPU costs to process a small set of objects (30) for both the continuous and static methods may not be
significant and thus only the total accumulated time is illustrated. The costs for repetitively creating Voronoi cells
are significantly greater because of the re-creation of the bounded region at every time slot. By contrast, both
FR-IGERN and IGERN maintain a single monitored region which reduces the costs. FR-IGERN shows slightly
better performance due to the reduction in the number of nearest neighbor search executions than in IGERN and
validates Lemma 9 and 12.

Figure 10c illustrates the behavior of both the monochromatic and bichromatic methods in terms of the number
of monitored objects. The bichromatic method has an average of 3.3 monitored objects, whereas the monochromatic
method has 2.9 objects. As in the monochromatic approach, it is quite possible to have less than 3 monitored objects
due to the size of the dataset or to the edge effect on the given spatial region. Both FR-IGERN and IGERN show
the same behavior in terms of monitored objects since the main distinction is in the verification phase.

D. Real Dataset Experiments

1) Monochromatic RNNs: This section compares the monochromatic IGERN-RNNmon algorithm to IGERN and
CRNN using the real dataset from eCourier [34].

Figure 11a gives the total accumulated CPU time of one initial and a sequence of incremental steps for IGERN-
RNNmon, IGERN, and CRNN. As in the overlapping synthetic experiment in Figure 10a, IGERN performs
significantly better than CRNN due to its single monitored region. The difference in CPU costs in Figure 10a
and in Figure 11a is because of the given spatial region of each dataset. The spatial region in the synthetic
experiments is approximately three times larger than the region in the real dataset. The purpose of this comparison
is to show that having a smaller spatial region and with resulting fewer grid cells leads to faster computations
for all methods. Thus, this experiment validates Lemma 4 and Lemma 7 by showing that IGERN lower costs for
smaller spatial regions while still performing better than CRNN. Also, IGERN-RNNmon shows signicant reduction
in computational time over IGERN by reducing the number of NN searches needed in the verification phase.

Figure 11d gives the average number of monitored objects (≈ 2.9) over 30K time intervals and 30 objects. The
behavior of monochromatic IGERN is very similar to the overlapping synthetic experiment in Figure 10c. Thus, this
experiment shows the practicality of the monochromatic approach using real datasets. Since IGERN and IGERN-
RNNmon is essentially the same in the way the monitored objects are found, both will have the same number of
monitored objects.

2) Bichromatic RNNs: This section compares the bichromatic IGERN algorithm to the repetitive creation of
Voronoi cells using the real dataset from eCourier [34].

Figure 11b and 11c gives the total accumulated CPU time of one initial and a sequence of incremental steps for
FR-IGERN, IGERN, and the repetition of Voronoi cells. As in the overlapping synthetic experiment in Figure 10a,
both FR-IGERN and IGERN perform significantly better than Voronoi cell due to their incremental nature and
the monitoring of a single region. The difference in CPU costs in Figure 10b and in Figure 11b is due to the
given spatial region of each dataset. The spatial region in the synthetic experiments is approximately three times
larger than the region in the real dataset. The purpose of this comparison is to show that having a smaller spatial
region and resulting fewer grid cells results in faster computations for all methods. Thus, this experiment validates
Lemma 10 and 13 by showing IGERN has lower costs for smaller spatial regions while performing better than

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

19

Voronoi cell. Also, FR-IGERN shows only a slight improvement over IGERN because only a small number of
objects were filtered in this dataset.

Figure 11d gives the average number of objects for both monochromatic and bichromatic IGERN approaches.
Both methods show similar behavior having three monitored objects. Also, the bichromatic approach shows similar
behavior to that in the overlapping synthetic experiment in Figure 10c. This shows the practicality of the bichromatic
approach using real datasets.

VIII. CONCLUSIONS

In this paper, we have presented a novel algorithm for Incremental and General Evaluation of continuous Reverse
Nearest neighbor queries (IGERN, for short). IGERN is general in that it provides a unified framework for both
monochromatic and bichromatic reverse nearest neighbors. In addition, IGERN is incremental as it limits the
attention to only a single bounded region and a small set of moving objects rather than focusing on the whole
space. IGERN clearly shows enhanced performance over the state-of-the-art algorithms in continuous monchromatic
reverse neighbor queries. We also propose a new optimization for the monochromatic IGERN to reduce the
number of nearest neighbor searches in the validation phase which shows significant improvement over the IGERN
approach. Furthermore, our previous IGERN is the first algorithm that deals with continuous bichromatic reverse
nearest neighbors. An improved bichromatic FR-IGERN approach is proposed here using filter and refine steps.
The correctness of both the monochromatic and bichromatic FR-IGERN is proved by showing that IGERN is
accurate, i.e., any object returned by IGERN is a reverse nearest neighbor, and is complete, i.e., IGERN returns all
reverse nearest neighbors. Analytical comparison of IGERN with previous approaches for reverse nearest neighbors
is provided. Experimental evidence that supports the analytical comparison is given where IGERN outperforms
previous approaches for both monochromatic and bichromatic reverse nearest neighbor queries.

IX. ACKNOWLEDGEMENTS

This work has been supported by NSF IGERT, NSF SEI Award 431141, and partially supported by NSF CAREER
Award IIS-0347600. We are grateful to Kim Koffolt for improving the readability of this paper.

REFERENCES

[1] B. Gedik and L. Liu, “MobiEyes: Distributed Processing of Continuously Moving Queries on Moving Objects in a Mobile System,”
in EDBT, 2004.

[2] H. Hu, J. Xu, and D. L. Lee, “A Generic Framework for Monitoring Continuous Spatial Queries over Moving Objects,” in SIGMOD,
2005.

[3] G. S. Iwerks, H. Samet, and K. Smith, “Continuous K-Nearest Neighbor Queries for Continuously Moving Points with Updates,” in
VLDB, 2003.

[4] I. Lazaridis, K. Porkaew, and S. Mehrotra, “Dynamic Queries over Mobile Objects,” in EDBT, 2002.
[5] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, “Conceptual Partitioning: An Efficient Method for Continuous Nearest Neighbor

Monitoring,” in SIGMOD, 2005.
[6] M. F. Mokbel, X. Xiong, and W. G. Aref, “SINA: Scalable Incremental Processing of Continuous Queries in Spatio-temporal Databases,”

in SIGMOD, 2004.
[7] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch, “Query Indexing and Velocity Constrained Indexing:

Scalable Techniques for Continuous Queries on Moving Objects,” IEEE Transactions on Computers, vol. 51, no. 10, pp. 1124–1140,
2002.

[8] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest Neighbor Search,” in VLDB, 2002.
[9] X. Xiong, M. F. Mokbel, and W. G. Aref, “SEA-CNN: Scalable Processing of Continuous K-Nearest Neighbor Queries in Spatio-

temporal Databases,” in ICDE, 2005.
[10] T. Xia and D. Zhang, “Continuous Reverse Nearest Neighbor Monitoring,” in ICDE, 2006.
[11] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring K-Nearest Neighbor Queries Over Moving Objects,” in ICDE, 2005.
[12] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse Nearest Neighbor Queries,” in SIGMOD, 2000.
[13] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, “C2P: Clustering based on Closest Pairs,” in VLDB, 2001.
[14] E. Achtert, C. Bahm, P. Krager, P. Kunath, A. Pryakhin, and M. Renz, “Efficient Reverse k-Nearest Neighbor Search in Arbitrary

Metric Spaces,” in SIGMOD, 2006.
[15] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest Neighbor and Reverse Nearest Neighbor Queries for Moving

Objects,” in IDEAS, 2002.
[16] I. Stanoi, D. Agrawal, and A. ElAbbadi, “Reverse Nearest Neighbor Queries for Dynamic Databases,” in ACM SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery, 2000.
[17] Y. Tao, D. Papadias, and X. Lian, “Reverse kNN Search in Arbitrary Dimensionality,” in VLDB, 2004.
[18] Y. Tao, M. L. Yiu, and N. Mamoulis, “Reverse Nearest Neighbor Search in Metric Spaces,” TKDE, vol. 18, no. 8, 2006.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

20

[19] M. L. Yiu and N. Mamoulis, “Reverse Nearest Neighbors Search in Ad-hoc Subspaces,” in ICDE, 2006.
[20] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao, “Reverse Nearest Neighbors in Large Graphs,” TKDE, vol. 18, no. 4, pp. 540–553,

2006.
[21] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang, “Continuous Evaluation of Monochromatic and Bichromatic Reverse

Nearest Neighbors,” in ICDE, 2007, pp. 806–815.
[22] C. S. Jensen, Location-Based Services. Morgan Kaufmann, 2004, ch. Database Aspects of Location-Based Services, pp. 115–148.
[23] M. F. Mokbel and W. G. Aref, “PLACE: A Scalable Location-aware Database Server for Spatio-temporal Data Streams,” IEEE Data

Engineering Bulletin, vol. 28, no. 3, pp. 3–10, 2005.
[24] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V. J. Tsotras, “On-Line Discovery of Dense Areas in Spatio-temporal Databases,”

in SSTD, 2003.
[25] C. S. Jensen, D. Lin, B. C. Ooi, and R. Zhang, “Effective Density Queries on ContinuouslyMoving Objects,” in ICDE, 2006.
[26] C. Yang and K.-I. Lin, “An Index Structure for Efficient Reverse Nearest Neighbor Queries,” in ICDE, 2001.
[27] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun, “High Dimensional Reverse Nearest Neighbor Queries,” in CIKM, 2003.
[28] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest and reverse nearest neighbor queries for moving objects ,” The

VLDB Journal, vol. 15, no. 3, pp. 229–249, 2006.
[29] R. H. Güting, V. T. de Almeida, D. Ansorge, T. Behr, Z. Ding, T. Hose, F. Hoffmann, M. Spiekermann, and U. Telle, “SECONDO:

An Extensible DBMS Platform for Research Prototyping and Teaching,” in ICDE, 2005.
[30] M. F. Mokbel, X. Xiong, W. G. Aref, S. Hambrusch, S. Prabhakar, and M. Hammad, “PLACE: A Query Processor for Handling

Real-time Spatio-temporal Data Streams (Demo),” in VLDB, 2004.
[31] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, and S. Chamberlain, “DOMINO: Databases fOr MovINg Objects tracking (Demo),” in

SIGMOD, 1999.
[32] F. Aurenhammer, “Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure,” ACM Computing Surveys, vol. 23, no. 3,

pp. 345–405, 1991.
[33] T. Brinkhoff, “A Framework for Generating Network-Based Moving Objects,” GeoInformatica, vol. 6, no. 2, pp. 153–180, 2002.
[34] “eCourier,” 2007. [Online]. Available: http://www.ecourier.co.uk

James M. Kang received his Bachelor’s degree at Purdue University, IN, USA in 2000, and his Master’s degree at
the Rochester Institute of Technology, NY, USA in 2004, all in computer science. He worked as a system analyst at
Eastman Kodak Company from 2000 to 2004. He is currently working towards the Ph.D. degree in Computer Science
at the University of Minnesota, USA. His research interests include spatial and spatio-temporal data mining, spatial
and spatio-temporal databases, and continuous query processing.

Mohamed F. Mokbel (Ph.D., Purdue University, 2005, MS, B.Sc., Alexandria University, 1999, 1996) is an assistant
professor in the Department of Computer Science and Engineering, University of Minnesota. His main research interests
focus on advancing the state of the art in the design and implementation of database engines to cope with the
requirements of emerging applications (e.g., location-aware applications and sensor networks). Mohamed was the co-
chair of the first and second workshops on privacy-aware location-based mobile services, PALMS, 2007 (Mannheim,
Germany) and 2008 (Beijing, China). He is also the PC co-chair for the ACM SIGSPATIAL GIS 2008 and 2009
conferences. Mokbel has spent the summers of 2006 and 2008 as a visiting researcher at Hong Kong Polytechnic
University and Microsoft Research, respectively. He is a member of ACM and IEEE.

Shashi Shekhar is a McKnight Distinguished University Professor at the University of Minnesota. For contributions
to spatial databases, spatial data mining, and geographic information systems(GIS), he received IEEE-CS Technical
Achievement Award and was elected an AAAS Fellow and an IEEE fellow. He co-authored a textbook on Spatial
Databases, co-edited an Encyclopedia of GIS and served on the Mapping Science Committee of the National Research
Council (National Academies). He is serving as a co-Editor-in-Chief of Geo-Informatica: An International Journal on
Advances in Computer Sc. for GIS; and steering committee member of the ACM Intl. Conference on GIS.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

21

Tian Xia is a senior member of technical staff at Oracle Corporation. Before joining Oracle, he received the B.S. degree
from University of Science and Technology of China in 2001, and the Ph.D. degree from Northeastern University,
Boston in 2007, both in computer science. His research interests include spatial and spatio-temporal data management,
database indexing and query optimization, and data privacy.

Donghui Zhang received his Ph.D. in 2002 from the University of California – Riverside. Since then, he has been
working as an Assistant Professor in the College of Computer & Information Science, Northeastern University. Professor
Zhang’s primary research area is databases. In particular, indexing and query optimization in spatial, temporal, and
spatiotemporal databases. Many real application data have spatial and/or temporal dimensions. For instance, the
locations of apartment buildings, cars, mobile-phone users which may or may not change over time. The concern
is how to index such objects and how to efficiently compute the result of interesting queries. Professor Zhang received
the NSF CAREER Award: Fast Query Support for Emerging Spatial Database Applications. He has written five book
chapters and published over thirty peer-refereed research papers. He has served on the panels of two NSF programs,
on the Program Committees of various international conferences including VLDB’09, ICDE’07, VLDB’05, ICDE’04

and EDBT’04, and as referee for over 10 journals such as TODS and VLDBJ.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: University of Minnesota. Downloaded on December 30, 2009 at 15:50 from IEEE Xplore. Restrictions apply.

