SPECTRAL DENSITIES I



Spectral Densities - Introduction

» Spectral density == function that provides a global representation of the
spectrum of a Hermitian matrix

» Known in solid state physics as ‘Density of States’ (DOS)
» \ery useful in physics

» Almost unknown (as a tool) in numerical linear algebra




Density of States

» Formally, the Density Of States (DOS) of a matrix A is

Bt) = 3 8(t — ),

where: e ¢ is the Dirac d-function or Dirac distribution
o )\ < A <...< ), arethe eigenvalues of A

» DOS is also referred to as the spectral density
» Note: number of eigenvalues in an interval [a, b] is
b b
Py = / D s(t—Aj)dt= / ne(t)dt .
a ] a
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Issue: How to deal with distributions?

» Highly ‘discontinuous’, not easy to handle numerically

» Solution for practical and theoretical 1
purposes: replace ¢ by a regularized =~ Po(t) = — > ho(t— ),
(‘blurred’) version ¢, =1

h_(t),c=0.1

+2

Where, for example: h,(t) = (;e_ﬁ.

2mo2)1/2

» Smoothed ¢(t) can be viewed as a prob-
ability distribution function for the spectrum
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» How to select smoothing parameter o? Example for Si,

« = 1.75,0  0.35 <= 1.30,0 = 0.52 <= L15,0 = 0.71
0.05} | | | | oos) | | | | " | | | |
0.04} 0.041 o

=003 = 00 ="

) 0.02} . 0.02} ° 0.02¢
ool oo1] ool

0 0 0

» Higher & — smoother curve wf TN

» But loss of detall ..

» Compromise: o = 2\/2’1’07’@,

» h = resolution, x = parameter > 1
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t
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Computing the DOS: The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and Roder'94
Wang ‘94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimator to get traces needed in calculations » Assume
change of variable done so eigenvalues lie in [—1, 1].

» To avoid weight function 5 1
t) =1 —12 x — o(t — ;).
expand V1 — t2¢p — () n ; ( 3)

» Then, (full) expansion is: ¢(t) = > 5° i Tw(t). Question: py, =77
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» Expansion coefficients u; are formally defined by:
2 — o

e = —— p ﬁTk(t)QAﬁ(t)dt
2 — o >
= . mTk(t)\/ 1 — t2¢(t)dt

2 — Opo —
— Ti.(\;).
n ; k( .7)

» Here 2 — d,0 == 1 when k£ = 0 and == 2 otherwise.

» Note: > Tp(\;) = lrace[T,(A)] —— Estimate this, e.g., via stochastic
estimator

» Generate random vectors v(M), v, ... | p(nve)
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» Each vector is normalized so that [[v®|| = 1,1 = 1,..., Nyec.

» Estimate the trace of Tj,(A) 1 e

~ )" (1
with stochastisc estimator: Trace(Ti(A)) = Moo Z (v")" Ti(A)o".
=1
. . 92— 5 Nvec -
> | Will lead to the desired L, 2 kOZ (v©) T (A)0 0.
estimate: NI Mvec 4

» To compute scalars of the form vI'T,(A)v, exploit 3-term recurrence of
the Chebyshev polynomial: T.1(A)v = 2AT,(A)v — T 1(A)v

» |f we let vy, = T (A)v, we have

Vi1 = 2A0, — V1
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An example: The Benzene matrix

>> TestKpmDos

Matrix Benzene n =8219 nnz = 242669

Degree = 40 # sample vectors =
Elapsed time 1s 0.235189 seconds.
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Use of the Lanczos Algorithm

» Recall: The Lanczos algorithm generates an orthonormal basis V,, =
[v1,v2,- -+ , v, fOr the Krylov subspace:

Span{'vl, A’Ul, coo g Am_l’l)l}

/01 B \
B2 a2 (3

» ... such that: B3 az (34

VHAV,, = T,, - with T =

e




» Lanczos process builds orthogonal polynomials wrt to dot product:

/ p(t)q(t)dt = (p(A)v, g(A)vr)

LetO;, : =1--.,m be the eigenvalues of T, [Ritz values]
y; S associated eigenvectors; Ritz vectors: {V,,y; }i—1.m
Ritz values approximate eigenvalues

Could compute 6;’s then get approximate DOS from these

Y Y Y Y Y

Problem: 6; not good enough approximations — especially inside the
spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthogonal polyno-
mials and related Gaussian quadrature:

/ p(t)dt = Zaip(é’i) a; = [eTy;]”

» See, e.g., Golub & Meurant '93, and also Gautschi’81, Golub and Welsch
'69.

» Formula exact when p is a polynomial of degree < 2m + 1
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» Consider now [ p(t)dt =< p,1 >= (Stieljes) integral =

(p(A)v,v) =D BIp(\i) =< ¢v,p >

» Then (¢,,p) = > a;p(0;) = > a;{dy,,p) —

¢’U ~ Z a'z'(se,;

» To mimick the effect of 3; = 1, V4, use several vectors v and average the
result of the above formula over them..

e Approximating spectral densities of large matrices, Lin Lin, YS, and Chao
Yang - SIAM Review '16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number p,; Of
eigenvalues of Ain [a, b].

Standard method: Sylvester inertia theorem — expensive!

First alternative: integrate m b Ty (t)
the Spectral Density in [a, b]. Hiab] = nZHk: ( mdt) =
k=0 a o

Second method: Estimate trace of the -
. P = Z u;u; .
related spectral projector P T ¢
(— w;'s = eigenvectors <> \;’s) z

» |t turns out that the 2 methods are identical.
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Application 3: Estimating the rank

» Very important problem in signal processing applications, machine learn-
Ing, etc.

» Often: a certain rank is selected ad-hoc. Dimension reduction is applica-
tion with this “guessed” rank.

» (Can be viewed as a particular case of the eigenvalue count problem - but
need a cutoff value..




Approximate rank, Numerical rank

» Notion defined in various ways. A common one:

re = min{rank(B) : B € R™*",||A — Bl||2 < €},

r. = Number of sing. values > ¢

» Two distinct problems:

1. Get a good € 2. Estimate number of sing. values > e
» We will need a cut-off value ('threshold’) e.

» Could use ‘noise level’ for €, but not always available
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Threshold selection

» How to select a good threshold?

» Answer: Obtain it from the DOS function

Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30
0.5¢ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 4 ' ' ' ' '

—©— KPM (Chebyshev) I 1.8 —©— KPM (Chebyshev) [{ —©— KPM (Chebyshev)

(A) (B) (C)
Exact DOS plots for three different types of matrices.
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» To find: point immediatly following the initial sharp drop observed.
» Simple idea: use derivative of DOS function ¢

» For an n x n matrix with eigenvalues A\, < \,_1 < --- < Aq:

e =min{t: \, <t < Ay, d'(t) = 0}.

» |n practice replace by

e =min{t : \,, <t < Ay, |¢'(¢)| > tol}

Ark. 47th Spring Lect., May 4-6, 2022



Experiment: estimated rank by Lanczos for matrix netz4504.

DOS with KPM, deg = 50 Lanczos Approximation (matrix size=1961)

1400

1350} ° °

Estimed # eigenvalues in interval

1300 — Cumulative Avg |°
o (re)g
---Exact °
_0'50 0.1 0.2 0.3 0j4 0.5 0.6 0.7 0.8 1 2500 1 IO 2I0 30
A Number of vectors (1 —> 30)
(A) (B)

(A) The DOS found by KPM. (B) Approximate rank estimation by Lanczos
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Tests with Matérn covariance matrices for grids
» Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix | # \;’s T

Size | > ¢ | KPM Lanczos
1D regular Grid (2048 x 1) 2048 | 16 |16.75 15.80
1D no structure Grid (2048 x 1) 2048 | 20 |20.10| 20.46
2D regular Grid (64 x 64) 4096 | 72 |72.71| 72.90
2D no structure Grid (64 x 64) | 4096 | 70 |69.20| 71.23
2D deformed Grid (64 x 64) 4096 69 68.11| 69.45

» For all test M (deg) = 50, n1,=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) = > ", log(A\:).

A is SPD.

» Estimating the log-determinant of a matrix equivalent to estimating the
trace of the matrix function f(A) = log(A).

» (Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.
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Numerical example: A graph Laplacian california of size 9664 x 9664,
nz =~ 10° from the Univ. of Florida collection.

Comparison nv=100

—
o
o
-

Rel. error vs degree

|
N

Relative error
=

e 3 methods: Taylor Series,
Chebyshev expansion, SLQ

Taylor
't |——=Chebyshev
——Lanczos

—_
o
I

e # starting vectors nv = 100 In

all three cases. 10 20 30 40 50
Degree (5 —> 30)
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4 Runtime comparison

10
[
ig/ 10 ¢
o)
E
é 100 : —v—Cholesky |
‘ —=—Talyor
; —e— Chebyshev
o —e—Lanczos
10 ' '
0 2 4 6
Matrix Size <10

Many more applications!
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SUPERVISED LEARNING I



Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’, ’1’, ....,’9)




Supervised learning

» We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- 'non malignant’) ; Materials (‘pho-
tovoltaic’, ’hard’, ‘conductor’, ...) ; Digit Recognition ('0’, ’1’, ....,’9)
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Digfit 1
Digit 2
Digit 9
Digit ??

» Best illustration: written

Supervised learning: classification
digits recognition example HH HHHHHHHHH TR HHHH H
Given: set of labeled sam-

| trainin t nd an | L
ples (training set), and a Training data Test data
(unlabeled) test image .

Problem: label of & =7?

——————— Digit0

uolonpal uoisuswiq

1 Digit 22

» Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

» |dea of a voting system: get
distances between test sample and
training samples

» Get the k nearest neighbors (here

k = 8)

» Predominant class among these k
items is assigned to the test sample
(“*” here)

278
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
»  Example of application:
Distinguish between SPAM PY
and non-SPAM e-mails

Linear
classifier

» Note: The world in non-linear. Often this is combined with Kernels —
amounts to changing the inner product
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A harder case: I

Spectral Bisection (PDDP)
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» Use kernels to transform
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Projection with Kernels —— 0% = 2.7463
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Transformed data with a Gaussian Kernel
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Simple linear classifiers

» Let X = [x4,---,x,] De the data matrix.

» and L = [ly,---,l,]==labels. I; = £+1
» 1st Solution: Find a vector v such that
uTx; close to I;, Vi

» Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A: ’U,Twi >0, B:’U,Twi <0

[For clarity: principal axis w drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

» Define “between scatter”. a measure of how well separated two distinct
classes are.

» Define “within scatter”: a measure of how well clustered items of the same
class are.

» Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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e 1 = mean (X)
Sp = > m(p® — p)(u® — w7, o u® = mean (Xy)
=l where:
Sw =Y Y (zi—p®)(x;—pu®)T o X; = k-th class
k=1 x; €Xg
o ny; = | Xl

B CLUSTER CENTROIDS
% GLOBAL CENTROID

X3
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a"Spa = Y mny " (u®) — p))?,

» (Consider 2nd mo- il
ments for a vector a: <
alSwa = Sj S: laT (x; — p®))|?
k=1 x; € X

» al'Spa = weighted variance of projected u;’s

» al'Swa = w. sum of variances of projected classes X;’s

» LDA projects the data so as to maximize the . a’Spa

ratio of these two numbers: a al'Swa

» Optimal a = eigenvector asso-

ciated with top eigenvalue of:
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LDA — Extension to arbitrary dimensions

» Criterion: maximize the ratio of two Trace[uTspu]
traces: Tracewrsyu

» Constraint: UTU = I (orthogonal projector).
» Reduced dimensiondata: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

» ... alternative: Solve instead the max  Trace[UTSpU]
(‘easier’) problem: UTSwU=I

» Solution: largest eigenvectors of Spu; = \;Swu; .
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In Brief: Support Vector Machines (SVM)

» Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

» If the hyperplane is: wlz +b=0

» Then the classifier is  f(z) = sign(w’z + b) : assigns y = +1 to one
class and y = —1 to other

» Normalize parameters w, b by looking for hyperplanes of the form wlx +
b > 1 to include one set and w'z 4+ b < —1 to include the other.

» With y; = +1 for one class and y; = —1 for the other, we can write the
constraints as y;(w!x; + b) > 1.
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® y
» The margin is the maximum e A
7/
distance between two such ®o o © - om
. . . Vs P
plangs. goal find w, b to maximize o o ’/ . =
margin. ® Y t
® ¥ i/ u u
/ s
» Maximize margin subject to the X // "
: Y m
constraint y;(wTz; + b) > 1. /,"\,’ . i}
// // [}
’ |
» As it turns out the margin is equal to: ~ = ||?3||2

#| Prove It.
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» Need to solve the con-
strained quadratic program-
ming problem:

min
w.b

S.t.

1

2
—[|W
~llwll:

yz’('wavi + b) > 1, V.

Modification 1: Soft margin. Consider hinge loss: max{0, 1 — y;[w’z; + b]}

» Zero if constraint satisfied for pair x;, y;. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

1 n
Mlwl® + =3 max{0,1 — y;[w"a; + b}
n =1

between z; and hyperplane |wlz; + b = +1

#| Suppose y; = +1 and let d; = 1 — y;[w’x; + b]. Show that the distance

IS d;/||w]|.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

» |deas of neural networks goes back to the 1960s - were popularized in
early 1990s — then laid dormant until recently.

» Two reasons for the come-back:

e DNN are remarkably effective in some applications

e big progress made in hardware [— affordable ‘training cost’]




» Training a neural network can be viewed as a problem of approximating
a function ¢ which is defined via sets of parameters:

£t \et® o
a*""“e\e ° J \Q&«\e w"”‘a«\e
\ () ‘Q 663 0’\ 666\0 \\‘50\0
AS o o (N
X1 O O y1
X2 O O V2
10 SO -
10 O
O O
Xn O O Ym
000) A

Problem: |find sets of parameters such that ¢(x) = y
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S
AT 58 s

™

K < b
;3‘&?@:’40'{““}\’?&

Input: =, Output: y

Set: zp ==

Fori=1:1+1 Do:
z=0(Wlzi_1+ b))

End

Set: y = ¢(z) 1= 2z

e layer # 0 = input layer
e layer # (L + 1) = output layer Q@ L

Layer Layer

» A matrix W, is associated with layers 1,2, L + 1.

» Problem: Find ¢ (i.e., matrices W}) s.t. ¢(x) = y
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DNN (continued)

Y Y Y VY Y

293

Problem is not convex, highly parameterized, ...,

.. Main method used: Stochastic gradient descent [basic]

It all looks like alchemy... but it works well for certain applications

Training is still quite expensive — GPUs can help

*Very* active area of research
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GRAPH COARSENING I



Graph coarsening

Given a graph G = (V, E), goal of graph coarsening is to find a smaller
graph G. = (V,, E.) with n. nodes and m,. edges, where n. < n, which is a
faithful approximation of G in some sense.

A
Notation: D
e A. = adjacency matrix of 3 B
Ge; G E

e L. = graph Laplacian of G,
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Graph Coarsening in scientific computing

» Goal : exploit coarse representation of problem to solve linear systems

» Success story: Multigrid, Algebraic Multi-
grid

» AMG: Define coarse / fine nodes based on
‘strength of coupling’ —

» Fewer nodes so: cheaper
» (Can be used recursively

I'm

C F
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Graph coarsening in scientific computing: (A) MG

Algebraic multigrid Main idea: generalize the interpolation and restriction
operations of standard MG.

» For each fine node select a set of nearest neighbors from the coarse set

» Then express a fine node ¢ as a linear combination of a selected number
of nearest neighbors that form a set C;:

K C
] |
. . F
Fine nodes: m. Coarse: e In coarsening:
central fine node is expressed as a combi- C
nation of its coarse neighbors. C

D
F n c
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» Classical Ruge-Stiben strategy: selection based on ‘strong connections’
of node (¢ and j are strongly connected if a;; has a large magnitude relative
to others)

» Let C == set of coarse nodes: F == set of fine nodes

» (Can define ‘interpolation operator’ P:

T; ifi € C,
Zje(;’i Dijy otherwise.

» Expand into a multilevel framework by repeating the process on the graph
of coarse set.
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» Let Gy = G (orig.) and Gy, G-, ...,G} be sequence of coarse graphs:
G, = (Vi, Ey) is obtained by coarseningon G,_; for1 < ¢ < L.

» Let A(® = A and A® = matrix associated of £-th level.
» Linear system at the ¢-th level, can be reordered as:
L L 14
wo- [ ] g [)
AFC AFF ’ F

»  AMG: exploit different levels to building approximate solution. An AMG
scheme depends entirely on defining a sequence of interpolation operators
P,for¢ =0,1,...

» Once the P,’s are defined, one can design various ‘cycles’ : processes of
going back and forth between levels
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Multilevel ILU preconditioner based on coarsening

Y VY Y Y

Method: find a good ordering for ILU preconditioner
Example: technique presented in [D. Osei-Kuffuor et al, '06]:
Ingredient: ordering based on coarsening + apply recursively

Matrix is ordered in block form - then A is in turn reordered:

0 0
EFE

0 0
Ay Ay)

Repeat with A'Y and further down for a few levels.

Do ILU factorization of the resulting reordered system.
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Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, ’15]

Goal: Form of ILU preconditioning with improved robustness

» Traverse edges (i,j) € Nz(A) in decreasing order of the weights:

. [ laiil  agg] }
w;; = min — — » where:
’ {5'r(z) 50(.7)
| A. ;|1

N A N
6:(0) = nz(A;,.) and - 6.(7) = nz(A.;)

» Select ¢+ as ‘coarse’ if o; > o, and j
otherwise, where —

|akk|
dr(k)dc(k)

O —
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> Goal: to put large entries in the blocks AL A9

» Model: very rough approximation of Gaussian Elimination.
» Next: (Matlab) Test with matrix Raefsky3

» 4 |evels of coarsening. Then reorder matrix and:

> Solve with ILUT- GMRES(50) or BSOR - GMRES(50)

Ark. 47th Spring Lect., May 4-6, 2022

SparseSuite collection. n = 21,200, nnz = 1, 5M, Turbulence model.



0 x10% ' ' ' 10° x x
0 ? - o -ML-Bsor
| i ~v--ILUT
0.4 1 lii - m -ML-order-ILUT
1
06 I g |i‘ 1
11
08 I B | il 1
N | i 2.62
E 107 A = - Y= Y-V V- -
1.2 r | © b PN
(7] ..“..
14 L o} B .-
o -] T ..
16 EL "-~...,_._O.33
18 | b il
257 &
2 ~—] \\ 105 1
0 0.5 1 15 2 0 50 100 150
nz = 1488768 «10* GMRES iterations

Left: The matrix Raefsky3 after the reordering obtained from four levels of

coarsening. Right: Performance of various coarsening based preconditioners
for solving a linear system with the matrix.
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COARSENING APPROACHES I



Coarsening by matching: Pairwise aggregation

» Strategy: coalesce (collapse) two adjacent nodes in a graph into a single
node, based on some measure of nearness or similarity.

» A matching of a graph G = (V, E) is a set of edges E, E C E, such that
no two edges in E have a node in common.

» Matching is maximal if it cant be augmented by additional edges
» Edge collapsing: usually selected using maximal matching

» Such edge matching techniques are common in AMG literature
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» For each node 4, build a set S; of nodes that are ‘strongly connected’ to
» Traverse graph nodes in a certain order of preference
» Next unmarked node in this order, say j, selected as a coarse node.

» Priority measure of traversal updated after each insertion of a coarse
node

Heavy-edge matching (HEM) : matches a node z with its largest off-diagonal
neighbor j,.ax;

|Qijrmae] = MAXjcadj(i), i | igl

» There will be left-over nodes - called ‘singletons’
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Heavy Edge Matching (HEM)

H GHO

1. Visit edges (i, 7) in decreasing value of their weight w;_;

2. It both « and 5 have no parents yet (left), create a new coarse node
(new’). Set parents of < and j to be new.

3. At completion of traversal: deal with unassigned nodes: Either (middle)
add as a coarse nodes if disconnected (“singleton”) or (right) lump as a
child to an existing coarse node
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ALGORITHM : 9. Heavy Edge Matching (HEM)

- Input: Weighted graph G = (V, E, A)

. Output: Coarse nodes; Prnt list

Init: Prnt(i) =0V € V,new =0

« for max to min edge (i, j) do

if Prnt(t) == 0, Prnt(j) == 0 then

-

M)

w

Sy

6: new = new + 1

7 Prnt(z) = Prnt(j) = new
6 end if

. end for

10: fOI’ NOde (¥ W/th P’I"nt(’U) == 0 dO
if v has no neighbor then

12 new = new + 1; Prnt(v) = new

o  else

” Prnt(v) = Prnt(y) where 5 = argmax;(a;,)
s endIf

« end for
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Coarsening by independent sets

Recall: Independent set: & C V is a set of vertices that are not adjacent
to each other: |i,7 € S = a;; = 0| Itis maximal if it can't be augmented

» (Can take V., = S as a coarse set. Need to define edges.

» Let L =reordered graph Laplacian (n. ver- I D. —F
tices of V. listed first): (note: D. is diagonal) —F' B

» Replace B by D; = F'1 and

| S.=D.— FD;'FT
define G, = graph of S, —

Property: S. = Graph Laplacian of coarse graph G.
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Coarsening by ‘algebraic distance’

» Motivated by “bootstrap algebraic multigrid” (BAMG) [Brandt’01]

» |n BAMG notion of closeness (used for coarsening) defined from a few
steps of Gauss-Seidel for solving Ax = 0

» Speed of convergence of the iterate determines an ‘algebraic distance’
between variables.

» Exploited to aggregate the unknowns and define restriction and interpo-
lation operators. Analysis in [Chen-Safro’11]
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Coarsening by ‘kron’ decomposition

» Kron reduction of networks proposed back in 1939 by Kron

» Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:
e Select a coarse set V;: Shuman-al use eigenvectors I
. 11 12
e Reorder matrix so that nodes of V; come 1st. L= IT I
22
Laplacean becomes — 1

e Kron reduction of L defined as the

L(Vh) = Ly — Ly Ly, L,
Schur complement:

Property L(V;) == graph Laplacian of V; [Dorfler-Bullo]
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[L0? * 11

Example: 1 !

3 1 1]
Independent

Kron coarsening set coarsening

Dy — I Dr |— F

Two ways of using indepen- -
. T )
dent sets for coarsening. —F B —FT| Dy
, l

L,=D;— FB'FT L.=D;—FD;'F"
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Q. 1. How to deal with ‘denser’ graph?

A Sparsify - using spectral sparsificaition

Q. 2: How to select V;?

A Use signs of largest eigenvector of original Laplacian L
» Ifuy = [£,&,---,&,]T =the largest eigenvector.

» Define V, = {i|l& > 0} and V_ = {i|¢; < 0}

» Then select one of V., V_ as V4.

» Opposite of what is done in spectral graph partitioning
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0.6 - 1 -06

08 | 1 -0.8

Left side: spectral graph partitioning. Right: Coarsening withlargest eigen-
vector

» Easy to show: (under mild condition on eigenvector) Each node of V.
(resp. V_) must have at least one nearest neighbor node from V_ (resp. V).
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Multilevel Dimension Reduction

Idea: | :a
Coarsen for a few levels. Use
resulting data set X to find a pro-
jector P from R™ to R¢. Use this P
to project data items. Projct y

Ny

» @Gain: Dimension reduction is done with a much smaller set.

» Wish: not much loss compared to using whole data
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Multilevel Dimension Reduction (for sparse data- e.g., text)

» Use Hypergraph Coarsening with column matching — similar to a common
one used in graph partitioning

» Compute the non-zero inner product (a¥, a)) between two vertices 4
and 7, i.e., the ¢th and jth columns of A.

) Note: <a(i),a(j)> — ”a(’b)””a(ﬂ)” COS Hz'j

Modif. 1: Parameter: 0 < € < 1. Match columns 2

_ o tanf;; < €
& 7 only if angle satisfies:
Modif. 2: Re-Scale. If 2 and 5 match —
and ||a®||o > |la||, replace a® and c = (1 + cos?#6;;)* a”
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» (Call C the coarsened matrix obtained from A using the approach just
described

Lemma: Let C € R™*¢ be the coarsened matrix of A obtained by one
level of coarsening of A & R™*", with columns a® and a¥) matched if

tan 0; < €. Then
[z" AA e — 2" CCM x| < 3€||All%,

for any x € R™ with ||z||>. = 1.

» Very simple bound for Rayleigh quotients for any x.

» Implies some bounds on singular values and norms - skipped.

» See details + experiments in [Ubaru-YS ’19]
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Graph coarsening for graph embeddings: HARP and MILE

» Recall Vertex embedding: Given G = (V, E) find mapping ®:

P:veV — d(v) € R? dissmal: d < n

_»d)

Hierarchical Representation Learning
for Networks (HARP): (Chen et al. '18)
coarsen for a few levels. Find embed- .
ding ®© for coarsest graph (level #). 8
Then a succession of expansions to

Coarsen

4 ' Expand

\
\ ’ !
higher level + refinement. \@/ Embedding | ()

Last Level r >

» Gain: Embedding done with a much smaller set.
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» MILE approach [Liang et al. 18] very similar (difference in refinement).

Experiment to evaluate the effectiveness of HARP.

» Baseline. Three embedding algorithms: DeepWalk [Perozzi-al'14], LINE
[Tang-al’'15] and Node2vec [Grover-Leskovec’16]

» (Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALQG) - sketched earlier
3. Leverage Score Coarsening (LESC) — variant of HEM
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Coarsening with eigenvectors

It is possible to coarsen a graph with the goal of exactly preserving a few
eigenvectors.

This has turned out not to be too useful in practice.

Instead we use eigenvectors to define ‘importance of nodes’ for the graph
traversal

Leverage Scores

» A=UXVT (ran (A) = ran (U)) _ 5
| M = [|Us:|3
» Leverage score of i-th row —

e Used to measure importance of row z in random sampling methods [e.g.
El-Aloui & Mahonney ’15]
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e Let A now be a graph Laplacianand A = UAUT with A; < X\ < ..o < A,

In Leverage-score coarsening (LESC) we r .,
g . g ( ) n’L — Zkzl(e )\kU’ik)z
dampen lower sing. vectors —

e Use n; to decide order of traversal in coarsening algorithm

Note: Consider case when r = n (or simply r is large)

n

n
N = Z(e—TAkUik)2 — Z 8_2T>‘k|Uik|2 — B?B_ZTLBi.
k=1 k=1

» n,; equals the i-th diagonal entry of the matrix H = exp(—27L)

e Next: visualization with 5 different coarsening methods on a graph with
n = 312 nodes and ne = 761 edges
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» *Many* interesting new matrix problems in areas that involve the effective
exploitation of data

» Unlike in Forsythe’s time: change happens fast - because we are better
connected

» In particular: many many resources available online.

» Huge potential for making a good impact by looking at a topic from new
perspective

» To a researcher in computational linear algebra : Tsunami of change on
types or problems, algorithms, frameworks, culture,..
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» My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so
regretfully upon the closed door that we do not see the one which has
opened for us.

» Visit my web-site at  www.cs.umn.edu/~saad

» More complete version of this material will available in course csci-8314
(S23) - notes (and more) are open to all.

Thank you ! |
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