
SPECTRAL DENSITIES



Spectral Densities - Introduction

ä Spectral density == function that provides a global representation of the
spectrum of a Hermitian matrix

ä Known in solid state physics as ‘Density of States’ (DOS)

ä Very useful in physics

ä Almost unknown (as a tool) in numerical linear algebra

252 Ark. 47th Spring Lect., May 4-6, 2022



Density of States

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where: • δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä DOS is also referred to as the spectral density

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt .
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Issue: How to deal with distributions?

ä Highly ‘discontinuous’, not easy to handle numerically

ä Solution for practical and theoretical
purposes: replace φ by a regularized
(‘blurred’) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

Where, for example: hσ(t) = 1
(2πσ2)1/2

e−
t2

2σ2 .

ä Smoothed φ(t) can be viewed as a prob-
ability distribution function for the spectrum
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ä How to select smoothing parameter σ? Example for Si2
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ä Higher σ → smoother curve
ä But loss of detail ..
ä Compromise: σ = h
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ä h = resolution, κ = parameter > 1
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Computing the DOS: The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and Röder’94 ,
Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimator to get traces needed in calculations ä Assume
change of variable done so eigenvalues lie in [−1, 1].

ä To avoid weight function
expand

√
1− t2φ→

φ̂(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

ä Then, (full) expansion is: φ̂(t) =
∑∞

k=0 µkTk(t). Question: µk =??
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj).

ä Here 2− δk0 == 1 when k = 0 and == 2 otherwise.

ä Note:
∑
Tk(λi) = Trace[Tk(A)] −→ Estimate this, e.g., via stochastic

estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec)
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ä Each vector is normalized so that ‖v(l)‖ = 1, l = 1, . . . , nvec.

ä Estimate the trace of Tk(A)

with stochastisc estimator: Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä Will lead to the desired
estimate:

µk ≈
2− δk0

nπnvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä To compute scalars of the form vTTk(A)v, exploit 3-term recurrence of
the Chebyshev polynomial: Tk+1(A)v = 2ATk(A)v − Tk−1(A)v

ä If we let vk ≡ Tk(A)v, we have

vk+1 = 2Avk − vk−1
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An example: The Benzene matrix

>> TestKpmDos
Matrix Benzene n =8219 nnz = 242669

Degree = 40 # sample vectors = 10
Elapsed time is 0.235189 seconds.
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Use of the Lanczos Algorithm

ä Recall: The Lanczos algorithm generates an orthonormal basis Vm =

[v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .

. . .

βm αm


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ä Lanczos process builds orthogonal polynomials wrt to dot product:∫
p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially inside the
spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthogonal polyno-
mials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub and Welsch
’69.

ä Formula exact when p is a polynomial of degree ≤ 2m+ 1
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ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral ≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v and average the
result of the above formula over them..

• Approximating spectral densities of large matrices, Lin Lin, YS, and Chao
Yang - SIAM Review ’16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number µ[a,b] of
eigenvalues of A in [a, b].

Standard method: Sylvester inertia theorem→ expensive!

First alternative: integrate
the Spectral Density in [a, b]. µ[a,b] ≈ n

m∑
k=0

µk

(∫ b

a

Tk(t)√
1− t2

dt

)
= ...

Second method: Estimate trace of the
related spectral projector P
(→ ui’s = eigenvectors↔ λi’s)

P =
∑

λi ∈ [a b]

uiu
T
i .

ä It turns out that the 2 methods are identical.
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Application 3: Estimating the rank

ä Very important problem in signal processing applications, machine learn-
ing, etc.

ä Often: a certain rank is selected ad-hoc. Dimension reduction is applica-
tion with this “guessed” rank.

ä Can be viewed as a particular case of the eigenvalue count problem - but
need a cutoff value..

265 Ark. 47th Spring Lect., May 4-6, 2022



Approximate rank, Numerical rank

ä Notion defined in various ways. A common one:

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

rε = Number of sing. values ≥ ε

ä Two distinct problems:

1. Get a good ε 2. Estimate number of sing. values ≥ ε

ä We will need a cut-off value (’threshold’) ε.

ä Could use ‘noise level’ for ε, but not always available
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Threshold selection

ä How to select a good threshold?

ä Answer: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop observed.

ä Simple idea: use derivative of DOS function φ

ä For an n× n matrix with eigenvalues λn ≤ λn−1 ≤ · · · ≤ λ1:

ε = min{t : λn ≤ t ≤ λ1, φ
′(t) = 0}.

ä In practice replace by

ε = min{t : λn ≤ t ≤ λ1, |φ′(t)| ≥ tol}
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Experiment: estimated rank by Lanczos for matrix netz4504.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3
DOS with KPM, deg = 50

λ

φ
(λ

)

(A)

0 10 20 30
1250

1300

1350

1400
Lanczos Approximation (matrix size=1961)

Number of vectors (1 −> 30)
E
st
im
ed

#
ei
ge
nv
al
ue
s
in
in
te
rv
al

CumulativeAvg

Exact
(rε)ℓ

(B)

(A) The DOS found by KPM. (B) Approximate rank estimation by Lanczos

269 Ark. 47th Spring Lect., May 4-6, 2022



Tests with Matérn covariance matrices for grids

ä Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # λi’s rε

Size ≥ ε KPM Lanczos
1D regular Grid (2048× 1) 2048 16 16.75 15.80

1D no structure Grid (2048× 1) 2048 20 20.10 20.46

2D regular Grid (64× 64) 4096 72 72.71 72.90

2D no structure Grid (64× 64) 4096 70 69.20 71.23

2D deformed Grid (64× 64) 4096 69 68.11 69.45

ä For all test M(deg) = 50, nv=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) =
∑n

i=1 log(λi).

A is SPD.

ä Estimating the log-determinant of a matrix equivalent to estimating the
trace of the matrix function f(A) = log(A).

ä Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.
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Numerical example: A graph Laplacian california of size 9664 × 9664,
nz ≈ 105 from the Univ. of Florida collection.

Rel. error vs degree

• 3 methods: Taylor Series,
Chebyshev expansion, SLQ

• # starting vectors nv = 100 in
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ä Many more applications!
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SUPERVISED LEARNING



Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)

c

e

f

d

a b g
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Supervised learning

ä We now have data that is ‘labeled’

Examples: Health Sciences (‘malignant’- ’non malignant’) ; Materials (’pho-
tovoltaic’, ’hard’, ’conductor’, ...) ; Digit Recognition (’0’, ’1’, ...., ’9’)
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Supervised learning: classification

ä Best illustration: written
digits recognition example

Given: set of labeled sam-
ples (training set), and an
(unlabeled) test image x.
Problem: label of x =?
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ä Roughly speaking: we seek dimension reduction so that recognition is
‘more effective’ in low-dim. space
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Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample and
training samples

ä Get the k nearest neighbors (here
k = 8)

ä Predominant class among these k
items is assigned to the test sample
(“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find a hy-
perplane which best separates
the data in classes A and B.
ä Example of application:
Distinguish between SPAM
and non-SPAM e-mails

Linear

classifier

ä Note: The world in non-linear. Often this is combined with Kernels –
amounts to changing the inner product
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A harder case:
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ä Use kernels to transform
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Simple linear classifiers

ä Let X = [x1, · · · , xn] be the data matrix.

ä and L = [l1, · · · , ln]== labels. li = ±1

ä 1st Solution: Find a vector u such that
uTxi close to li, ∀i

ä Common solution: SVD to reduce
dimension of data [e.g. 2-D] then do com-
parison in this space. e.g.

A: uTxi ≥ 0 , B: uTxi < 0

v

[For clarity: principal axis u drawn below where it should be]
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Fisher’s Linear Discriminant Analysis (LDA)

Principle: Use label information to build a good projector, i.e., one that can
‘discriminate’ well between classes

ä Define “between scatter”: a measure of how well separated two distinct
classes are.

ä Define “within scatter”: a measure of how well clustered items of the same
class are.

ä Objective: make “between scatter” measure large and “within scatter”
small.

Idea: Find projector that maximizes the ratio of the “between scatter”
measure over “within scatter” measure
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SB =

c∑
k=1

nk(µ
(k) − µ)(µ(k) − µ)T ,

SW =

c∑
k=1

∑
xi ∈Xk

(xi − µ(k))(xi − µ(k))T
where:

• µ = mean (X)

• µ(k) = mean (Xk)

• Xk = k-th class

• nk = |Xk|

H

GLOBAL CENTROID 

CLUSTER CENTROIDS

H

X
3

1
X

µ

X
2
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ä Consider 2nd mo-
ments for a vector a:

aTSBa =

c∑
i=1

nk |aT (µ(k) − µ)|2,

aTSWa =

c∑
k=1

∑
xi ∈ Xk

|aT (xi − µ(k))|2

ä aTSBa ≡ weighted variance of projected µj’s

ä aTSWa ≡ w. sum of variances of projected classes Xj’s

ä LDA projects the data so as to maximize the
ratio of these two numbers:

max
a

aTSBa

aTSWa

ä Optimal a = eigenvector asso-
ciated with top eigenvalue of:

SBui = λiSWui .
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LDA – Extension to arbitrary dimensions

ä Criterion: maximize the ratio of two
traces:

Trace[UTSBU ]

Trace[UTSWU ]

ä Constraint: UTU = I (orthogonal projector).

ä Reduced dimension data: Y = UTX.

Common viewpoint: hard to maximize, therefore ...

ä ... alternative: Solve instead the
(‘easier’) problem:

max
UTSWU=I

Trace[UTSBU ]

ä Solution: largest eigenvectors of SBui = λiSWui .
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In Brief: Support Vector Machines (SVM)

ä Similar in spirit to LDA. Formally, SVM finds a hyperplane that best
separates two training sets belonging to two classes.

ä If the hyperplane is: wTx+ b = 0

ä Then the classifier is f(x) = sign(wTx+ b) : assigns y = +1 to one
class and y = −1 to other

ä Normalize parameters w, b by looking for hyperplanes of the form wTx+

b ≥ 1 to include one set and wTx+ b ≤ −1 to include the other.

ä With yi = +1 for one class and yi = −1 for the other, we can write the
constraints as yi(wTxi + b) ≥ 1.
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ä The margin is the maximum
distance between two such
planes: goal find w, b to maximize
margin.

ä Maximize margin subject to the
constraint yi(wTxi + b) ≥ 1. γ

ä As it turns out the margin is equal to: γ = 2
‖w‖2

- Prove it.
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ä Need to solve the con-
strained quadratic program-
ming problem:

min
w.b

1

2
‖w‖2

2

s.t. yi(w
Txi + b) ≥ 1, ∀xi.

Modification 1: Soft margin. Consider hinge loss: max{0, 1−yi[wTxi+b]}

ä Zero if constraint satisfied for pair xi, yi. Otherwise proportional to dis-
tance from corresponding hyperplane. Hence we can minimize

λ‖w‖2 +
1

n

n∑
i=1

max{0, 1− yi[wTxi + b]}

- Suppose yi = +1 and let di = 1− yi[wTxi + b]. Show that the distance
between xi and hyperplane wTxi + b = +1 is di/‖w‖.

Modification 2 : Use in combination with a Kernel to improve separability
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A few words on Deep Neural Networks (DNNs)

ä Ideas of neural networks goes back to the 1960s - were popularized in
early 1990s – then laid dormant until recently.

ä Two reasons for the come-back:

• DNN are remarkably effective in some applications

• big progress made in hardware [→ affordable ‘training cost’]
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ä Training a neural network can be viewed as a problem of approximating
a function φ which is defined via sets of parameters:

φ(  )x

1st s
et o

f p
arameters

2nd set o
f p

arameters

4th set o
f p
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f p
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x
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.

.

my

.

.

.

Problem: find sets of parameters such that φ(x) ≈ y
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Input: x, Output: y
Set: z0 = x

For l = 1 : L+1 Do:
zl = σ(W T

l zl−1 + bl)

End
Set: y = φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+ 1) = output layer Layer

Input

Layer

OutputHidden

Layer

ä A matrix Wl is associated with layers 1,2, L+ 1.

ä Problem: Find φ (i.e., matrices Wl) s.t. φ(x) ≈ y
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DNN (continued)

ä Problem is not convex, highly parameterized, ...,

ä .. Main method used: Stochastic gradient descent [basic]

ä It all looks like alchemy... but it works well for certain applications

ä Training is still quite expensive – GPUs can help

ä *Very* active area of research
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GRAPH COARSENING



Graph coarsening

Given a graph G = (V,E), goal of graph coarsening is to find a smaller
graph Gc = (Vc, Ec) with nc nodes and mc edges, where nc < n, which is a
faithful approximation of G in some sense.

Notation:
• Ac = adjacency matrix of
Gc;
• Lc = graph Laplacian ofGc
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Graph Coarsening in scientific computing

ä Goal : exploit coarse representation of problem to solve linear systems

ä Fewer nodes so: cheaper
ä Can be used recursively

ä Success story: Multigrid, Algebraic Multi-
grid
ä AMG: Define coarse / fine nodes based on
‘strength of coupling’→
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Graph coarsening in scientific computing: (A) MG

Algebraic multigrid Main idea: generalize the interpolation and restriction
operations of standard MG.

ä For each fine node select a set of nearest neighbors from the coarse set

ä Then express a fine node i as a linear combination of a selected number
of nearest neighbors that form a set Ci:

Fine nodes: . Coarse: • In coarsening:
central fine node is expressed as a combi-
nation of its coarse neighbors.
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ä Classical Ruge-Stüben strategy: selection based on ‘strong connections’
of node (i and j are strongly connected if aij has a large magnitude relative
to others)

ä Let C == set of coarse nodes; F == set of fine nodes

ä Can define ‘interpolation operator’ P :

[Px]i =

{
xi if i ∈ C,∑

j∈Ci pijxj otherwise.

ä Expand into a multilevel framework by repeating the process on the graph
of coarse set.
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ä Let G0 ≡ G (orig.) and G1, G2, . . . , Gh be sequence of coarse graphs:
G` = (V`, E`) is obtained by coarsening on G`−1 for 1 ≤ ` < L.

ä Let A(0) ≡ A and A(`) ≡ matrix associated of `-th level.

ä Linear system at the `-th level, can be reordered as:

A(`) =

[
A

(`)
CC A

(`)
CF

A
(`)
FC A

(`)
FF

]
, f (`) =

[
f

(`)
C

f
(`)
F

]
.

ä AMG: exploit different levels to building approximate solution. An AMG
scheme depends entirely on defining a sequence of interpolation operators
P` for ` = 0, 1, . . .

ä Once the P`’s are defined, one can design various ‘cycles’ : processes of
going back and forth between levels
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Multilevel ILU preconditioner based on coarsening

ä Method: find a good ordering for ILU preconditioner

ä Example: technique presented in [D. Osei-Kuffuor et al, ’06]:

ä Ingredient: ordering based on coarsening + apply recursively

ä Matrix is ordered in block form - then A(0)
22 is in turn reordered:[

A
(0)
11 A

(0)
12

A
(0)
21 A

(0)
22

]
→

A
(0)
11 A

(0)
12

A
(0)
21

A
(1)
11 A

(1)
12

A
(1)
21 A

(1)
22

 .
ä Repeat with A(1)

22 and further down for a few levels.

ä Do ILU factorization of the resulting reordered system.
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Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, ’15]

Goal: Form of ILU preconditioning with improved robustness

ä Traverse edges (i, j) ∈ Nz(A) in decreasing order of the weights:

wij = min

{
|aij|
δr(i)

,
|aij|
δc(j)

}
where:

δr(i) =
‖Ai,:‖1

nz(Ai,:)
and δc(j) =

‖A:,j‖1

nz(A:,j) i

j

w ij

ä Select i as ‘coarse’ if σi > σj and j

otherwise, where→
σk = |akk|

δr(k)δc(k)
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ä Goal: to put large entries in the blocks
(A(`)

CF ) and (A(`)
FC)

[
A

(`)
CC A

(`)
CF

A
(`)
FC A

(`)
FF

]
ä Model: very rough approximation of Gaussian Elimination.

ä Next: (Matlab) Test with matrix Raefsky3 1

ä 4 levels of coarsening. Then reorder matrix and:

ä Solve with ILUT- GMRES(50) or BSOR - GMRES(50)
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1SparseSuite collection. n = 21, 200, nnz ≈ 1, 5M , Turbulence model.
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Left: The matrix Raefsky3 after the reordering obtained from four levels of
coarsening. Right: Performance of various coarsening based preconditioners
for solving a linear system with the matrix.
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COARSENING APPROACHES



Coarsening by matching: Pairwise aggregation

ä Strategy: coalesce (collapse) two adjacent nodes in a graph into a single
node, based on some measure of nearness or similarity.

ä A matching of a graph G = (V,E) is a set of edges Ẽ, Ẽ ⊆ E, such that
no two edges in Ẽ have a node in common.

ä Matching is maximal if it cant be augmented by additional edges

ä Edge collapsing: usually selected using maximal matching

ä Such edge matching techniques are common in AMG literature
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ä For each node i, build a set Si of nodes that are ‘strongly connected’ to i

ä Traverse graph nodes in a certain order of preference

ä Next unmarked node in this order, say j, selected as a coarse node.

ä Priority measure of traversal updated after each insertion of a coarse
node

Heavy-edge matching (HEM) : matches a node iwith its largest off-diagonal
neighbor jmax;

|aijmax| = maxj∈adj(i),j 6=i |aij|

ä There will be left-over nodes - called ‘singletons’
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Heavy Edge Matching (HEM)

1. Visit edges (i, j) in decreasing value of their weight wi,j
2. If both i and j have no parents yet (left), create a new coarse node

(’new’). Set parents of i and j to be new.
3. At completion of traversal: deal with unassigned nodes: Either (middle)

add as a coarse nodes if disconnected (“singleton”) or (right) lump as a
child to an existing coarse node
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ALGORITHM : 9 Heavy Edge Matching (HEM)
1: Input: Weighted graph G = (V,E,A)
2: Output: Coarse nodes; Prnt list
3: Init: Prnt(i) = 0 ∀i ∈ V ; new = 0
4: for max to min edge (i, j) do
5: if Prnt(i) == 0, Prnt(j) == 0 then
6: new = new + 1
7: Prnt(i) = Prnt(j) = new
8: end if
9: end for

10: for Node v with Prnt(v) == 0 do
11: if v has no neighbor then
12: new = new + 1; Prnt(v) = new
13: else
14: Prnt(v) = Prnt(j) where j = argmaxi(aiv)
15: end if
16: end for
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Coarsening by independent sets

Recall: Independent set: S ⊆ V is a set of vertices that are not adjacent
to each other: i, j ∈ S =⇒ aij = 0 . It is maximal if it can’t be augmented

ä Can take Vc = S as a coarse set. Need to define edges.

ä Let L = reordered graph Laplacian (nc ver-
tices of Vc listed first): (note: Dc is diagonal)

L =

(
Dc −F
−F T B

)

ä Replace B by Df = F T 1 and
define Gc = graph of Sc→

Sc = Dc − FD−1
f F

T

Property: Sc = Graph Laplacian of coarse graph Gc
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Coarsening by ‘algebraic distance’

ä Motivated by “bootstrap algebraic multigrid” (BAMG) [Brandt’01]

ä In BAMG notion of closeness (used for coarsening) defined from a few
steps of Gauss-Seidel for solving Ax = 0

ä Speed of convergence of the iterate determines an ‘algebraic distance’
between variables.

ä Exploited to aggregate the unknowns and define restriction and interpo-
lation operators. Analysis in [Chen-Safro’11]
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Coarsening by ‘kron’ decomposition

ä Kron reduction of networks proposed back in 1939 by Kron

ä Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:

• Select a coarse set V1: Shuman-al use eigenvectors
• Reorder matrix so that nodes of V1 come 1st.
Laplacean becomes→

L =

[
L11 L12

LT12 L22

]

• Kron reduction of L defined as the
Schur complement:

L(V1) = L11 − L12L
−1
22 L

T
12

Property L(V1) == graph Laplacian of V1 [Dorfler-Bullo]
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Example:

Two ways of using indepen-
dent sets for coarsening.
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Q. 1: How to deal with ‘denser’ graph?

A Sparsify - using spectral sparsificaition

Q. 2: How to select V1?

A Use signs of largest eigenvector of original Laplacian L

ä If u1 = [ξ1, ξ2, · · · , ξn]T = the largest eigenvector.

ä Define V+ = {i|ξi ≥ 0} and V− = {i|ξi < 0}

ä Then select one of V+, V− as V1.

ä Opposite of what is done in spectral graph partitioning
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Left side: spectral graph partitioning. Right: Coarsening withlargest eigen-
vector

ä Easy to show: (under mild condition on eigenvector) Each node of V+

(resp. V−) must have at least one nearest neighbor node from V− (resp. V+).
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GRAPH COARSENING IN MACHINE LEARNING



Multilevel Dimension Reduction

Idea:

Coarsen for a few levels. Use
resulting data set X̂ to find a pro-
jector P from Rm to Rd. Use this P
to project data items.
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ä Gain: Dimension reduction is done with a much smaller set.

ä Wish: not much loss compared to using whole data
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Multilevel Dimension Reduction (for sparse data- e.g., text)

ä Use Hypergraph Coarsening with column matching – similar to a common
one used in graph partitioning

ä Compute the non-zero inner product 〈a(i), a(j)〉 between two vertices i
and j, i.e., the ith and jth columns of A.

ä Note: 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij

Modif. 1: Parameter: 0 < ε < 1. Match columns i
& j only if angle satisfies:

tan θij ≤ ε

Modif. 2: Re-Scale. If i and j match
and ‖a(i)‖0 ≥ ‖a(j)‖0 replace a(i) and
a(j) by

c(`) =
(
1 + cos2 θij

)1
2 a(i)
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ä Call C the coarsened matrix obtained from A using the approach just
described

Lemma: Let C ∈ Rm×c be the coarsened matrix of A obtained by one
level of coarsening of A ∈ Rm×n, with columns a(i) and a(j) matched if
tan θi ≤ ε. Then

|xTAATx− xTCCTx| ≤ 3ε‖A‖2
F ,

for any x ∈ Rm with ‖x‖2 = 1.

ä Very simple bound for Rayleigh quotients for any x.

ä Implies some bounds on singular values and norms - skipped.

ä See details + experiments in [Ubaru-YS ’19]
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Graph coarsening for graph embeddings: HARP and MILE

ä Recall Vertex embedding: Given G = (V,E) find mapping Φ:

Φ : v ∈ V −→ Φ(v) ∈ Rd d is small: d� n

Hierarchical Representation Learning
for Networks (HARP): (Chen et al. ’18)
coarsen for a few levels. Find embed-
ding Φ(`) for coarsest graph (level `).
Then a succession of expansions to
higher level + refinement.
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ä Gain: Embedding done with a much smaller set.
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ä MILE approach [Liang et al. ’18] very similar (difference in refinement).

Experiment to evaluate the effectiveness of HARP.

ä Baseline. Three embedding algorithms: DeepWalk [Perozzi-al’14], LINE
[Tang-al’15] and Node2vec [Grover-Leskovec’16]

ä Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) – variant of HEM
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Coarsening with eigenvectors

It is possible to coarsen a graph with the goal of exactly preserving a few
eigenvectors.

This has turned out not to be too useful in practice.

Instead we use eigenvectors to define ‘importance of nodes’ for the graph
traversal

Leverage Scores

ä A = UΣV T (ran (A) = ran (U))
ä Leverage score of i-th row→

ηi = ‖Ui,:‖2
2

• Used to measure importance of row i in random sampling methods [e.g.
El-Aloui & Mahonney ’15]
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• Let A now be a graph Laplacian and A = UΛUT with λ1 ≤ λ2 ≤ · · · ≤ λn

In Leverage-score coarsening (LESC) we
dampen lower sing. vectors→

ηi =
∑r

k=1(e
−τλkUik)

2

• Use ηi to decide order of traversal in coarsening algorithm

Note: Consider case when r = n (or simply r is large)

ηi =

n∑
k=1

(e−τλkUik)
2 =

n∑
k=1

e−2τλk|Uik|2 = eTi e
−2τLei.

ä ηi equals the i-th diagonal entry of the matrix H ≡ exp(−2τL)

• Next: visualization with 5 different coarsening methods on a graph with
n = 312 nodes and ne = 761 edges
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Final words

ä *Many* interesting new matrix problems in areas that involve the effective
exploitation of data

ä Unlike in Forsythe’s time: change happens fast - because we are better
connected

ä In particular: many many resources available online.

ä Huge potential for making a good impact by looking at a topic from new
perspective

ä To a researcher in computational linear algebra : Tsunami of change on
types or problems, algorithms, frameworks, culture,..
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ä My favorite quote. Alexander Graham Bell (1847-1922) said:

When one door closes, another opens; but we often look so long and so
regretfully upon the closed door that we do not see the one which has
opened for us.

ä Visit my web-site at www.cs.umn.edu/∼saad

ä More complete version of this material will available in course csci-8314
(S23) - notes (and more) are open to all.

Thank you !
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