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Introduction and Background.:

» Information sciences : Data Mining, Data Analysis, Machine Learn-

ing, Classification, .... are a huge source of interesting matrix prob-

lems

» Effective linear algebra methods are just starting to be deployed

1. Information retrieval

» In this talk 3 sample problems: | 2. Face recognotion

3. Clustering
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Information Retrieval: Vector Space Model

Given: 1) set of docu-
ments (columns of a matrix
A); 2) a query vector gq.
Entry a;; of A = frequency
of term : in document ; +

weighting.

Terms

Documents

» Queries (‘pseudo-documents’) g represented similarly to columns

Problem: find columns of A that best match ¢
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Vector Space Model and the Truncated SVD

» Similarity metric: angle between column A;. and query g

TA. .
Use Cosines: I g A. |
| A.;ll2lqll2

» To rank all documents compute the similarity vector:
s = ATqg

» ‘Litteral’ matching — not very effective. Problems : polysemy,
synonymy, ...
» LSI: replace matrix A by low rank approximation
A=USVT — A =UXVI — s,=A4lq
» U, : term space, V.: document space.
» Called TSVD - Expensive, hard to update, ..
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IR: Use of approximation theory

» Use of polynomial filters * Joint work with E. Kokiopoulou
Idea: Replace A, by A¢p(AT A) where ¢ = a filter function

?

» Consider the step-function:

o, <x<o

el V)

0, 0< z < o? i
d(x) = |
1, '

2 2
Gk o

» This would yield the same result as with TSVD but...
» ... Not easy to use this function directly

» Solution : use a polynomial approximation to ¢

» Note: |sT = g A¢p(AT A)|, requires only Mat-Vec’s
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How to get the polynomial filter?

Idea: I First select an “ideal fiter”

> e.g. a piecewise

polynomial function

» For example ¢ = Hermite interpolating pol. in[0,a],and ¢ = 1 In
[a, b]
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» Then approximate this filter by an ‘optimal’ (least-squares) poly-

nomial

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ¢, which approximate
the ideal PP filter ¢, in the L, sense.
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» If {P,} is a basis of polynomials that are orthogomal w.r.t. some

L, inner-product, then
k
de(t) = D (¢, P;)P;(t),
j=1

» Can use Stieljes procedure to compute orthogonal polynomials
[Erhel, Guyomarch, YS’99]

» Or can use a Conjugate residual-type algorithm in polynomial
space [YS’05, Bekas-Kokiopoulou-YS’05]

» Accuracy close to that of TSVD — But no SVD required

» Experiments and details skipped.
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IR: Use of the Lanczos algorithm

* Joint work with Jie Chen — in progress

» Lanczos is good at catching large (and small) eigenvalues: can

compute singular vectors with Lanczos, & use them in LSI

» Can do better: Use the Lanczos vectors directly for the projec-

tion..

» First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].

Use Lanczos bidiagonalization.

» Use a similar approach — But directly with AAT or AT A.
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IR: Use of the Lanczos algorithm (1)

» Let A € R™*", Apply the Lanczos procedure to M = AAT,
Result:

Q. AATQ, =Ty,

with QQ, orthogonal, T} tridiagonal.

» Define s; = orth. projection of Ab on subspace span{Q;}

» s; can be easily updated from s;_;:

S; = S;i—1 + qiq;.FAb.
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IR: Use of the Lanczos algorithm (2)

» If n < m it may be more economial to apply Lanczos to M —=
AT A which is n x n. Result:

QL ATAQ, =T
» Define:
t; == AQz’QZTba

» Project b first before applying A to result.
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Why does this work? |

» First, recall a result on Lanczos algorithm [YS 83]
Let {\;, u;} = j-th eigen-pair of M (label |)
I = QrQp)usll _  K; I = Q@)

1QrQrusll  — Teei(v)  11Q1QTuyl|
where
)
’Yj=1+2>j _'7;:, K; = < s ,
Jj+1 n \ngl )\;:)\? 7 #£1

and T;(x) = Chebyshev polynomial of 1st kind of degree .

This has the form

1(I — QuQp)ujll < ¢j/Tru—j(7;),

where c; = constant independent of k
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> Result: Distance between unit eigenvector u; and Krylov sub-
space span(Qy) decays fast (for small 3)

» Consider component of difference between Ab — s, along left
singular directions of A. If A = UXV?, then u;’s (columns of U)

are eigenvectors of M = AA'. So:

(I — QrQy)u;, Ab)
(I — QrQy,)u;ll]| Ab

c; | Ab|| T, (v;)

IN

IA

» {s;} converges rapidly to Ab in directions of the major left sin-

gular vectors of A.
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» Similar result for left projection sequence ¢;

» Here is a typical distribution of eigenvalues of M : [Matrix of size
1398 x 1398]

A5 As

T |
4 T .

)\4 )\2 /\1

» Convergence toward first few singular vectors very fast —
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Advantages of Lanczos over polynomial filters:
(1) No need for eigenvalue estimates

(2) Mat-vecs performed only in preprocessing

Disadvantages:
(1) Need to store Lanczos vectors;

(2) Preprocessing must be redone when A changes.

(3) Need for reorthogonalization — expensive for large k.
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Information # Terms # Docs # queries sparsity
retrieval MED 7,014 1,033 30 0.735
datasets CRAN 3,763 1,398 225 1.412
Med dataset. Cran datasedt.
Med Cran
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Average query times

average query time

Med dataset
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Average retrieval precision

average precision

Med dataset

Cran dataset
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Problem 2: Face Recognition — background

Problem: We are given a database of images: [arrays of pixel val-

ues]. And a test (new) image.

(.. (.. (.. (.. (.. (..

§ § § § § ¢#

Question: Does this new image correspond to one of those in the

database?
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Difficulty |

» Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces — Principal Component Analysis tech-

nique
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Example: Occlusion.

Test Images Training Images

See recent paper by
John Wright et al.

Top test image:
deliberate disguise.
Bottom: 50% pixels

randomly changed

Source: http://perception.csl.uiuc.edu/

recognition/Robust face.html

» See also: Recent real-life example — international man-hunt
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— Consider each picture as a one-dimensional colum of all pixels

— Put together into an array A of size # _pixels X # _i1mages.

— Do an SVD of A and perform comparison with any
low-dim. space
— Similar to LSI in spirit — but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)

M2A-07, Oct-2007

22

in



Tests: Face Recognition

Tests with 2 well-known data sets:

ORL 40 subjects 10 sample i |mages each example:

# of pixels : 112 x 92 TOT. # images : 400

AR set 126 subjects — 4 facial expressions selected for each [natu-

ral, smiling, angry, screaming] — example:

W

# of pixels : 112 x 92 # TOT. # images : 504
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Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset AR dataset

ORL AR
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Vertical axis shows average error rate. Horizontal = Subspace di-
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Problem 3: Clustering

* Joint work with Haw-Ren Fang — in progress

Problem: I A set X of n objects in some space. Find subsets of
X that each contain objects that are most ’alike’
>» ‘Bread-and-butter problem’ — arises in *many* applications
» Variation of the problem: Graph partitioning [need closeness +
few edge cuts]
» Supervised clustering: Subsets are known — problem is to opti-

mally ‘classify’ a new item into one of the subsets

Questions: I ‘alike’ in what sense? How many subsets?
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Clustering: using farthest centroids

» Given X = [wl Lo - wn] € RmXn
» CentroidofasetY = [y, ,y,]is

cy = 3% yi=,Ye e=[1,1,---,1]"

» Clustering into 2 even sets. Idea: find partition vector c:

Maximize | X c||2
_ =+1,i=1,---,n
subject to
c'e =0
» Subset X =set with ¢; = 1, Subset X_ =set with¢; = —1

» cTe = 0is a balance constraint between the 2 sets
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» Hard problem to solve [integer programming — NP-hard]

» But: can be solved approximately [~ graph partitioning]

» (Can also relax constraints.
© ‘center’ X, i.e,,use X = X — ~Xe' for X

® Replace c; = £1 by clec=n

Maximize || Xc||»
clls = 1
subject to el ’
cle =0

Solution = dominant singular vector.
» Exploited by Boley 97 in PDDP - [See also Juhasz '81]

» Similar idea exploited in graph partitioning
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Even-sets clustering by exchange

>
>
>
>
>

Go back to constraint ¢; = +1 —i.e., use actual centroids
Need to improve a given partition

Similar to Kernigan and Lin in graph partitioning

LetY = [y1,: + yYns2]- Z = [21,°*+ 5 Zn)2]

Scaled squared distance between the centroids is

d=|Ye— Ze||2= (Ye— Ze)'(Ye — Ze)

What happens ifweswap y* € Yandz* € Z2?
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» Calld = y* — =z*

» New distance:

dnew — (Ye_y*+Z*)_(Ze_Z*+y*)|lg
= [[(Ye —9d) — (Ze+9)I;

= |[(Ye — Ze) — 26||2
= d+ 495 — 4((Ye — Ze), 9)

» Distance gains if :

~(Ye — Ze)75 + 1|52 > 0
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Idea: I

» Begin with the Lanczos algorithm for X7 X to get s.v.v;
» Get a marginal set among components of v, for refining

» Repeat: exchange marginal points (only) — until no further gains

are made
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Clustering: example
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Initialization of two sets of n = 1, 000 random points on two-dimensional
plane. Green points are margin set (100). Left: uniform distribution;

right: normal distribution.
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Clustering : K-means + improvement

ALGORITHM : 1. K-means clustering algorithm

Given: K initial centroids p+,--- ,pk
Do:
SetS;:=0forj=1,...,K.
Fori =1,2...,n
Find k = argmin,||x; — p;||
Set Sy, := S U {x;}.
EndFor
Forjy =1,2,...,K
Set p; == mean of points in S.
EndFor

While { p.,...,px } have not converged.
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In words: Find closest centroid p; to each x;. Add this z; to S;.. Get
new centroids. Repeat.
» Excellent algorithm — but very slow. Depends on initial set.

» Common practice: start with something else — [cheaper]

Ideas:I

© Start with PDDP [Lanczos] then refine with K-means

® Start with FCDP [Lanczos] then refine with K-means
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Clustering : test with ORL —get 40 clusters

total entropy

40-clusters for face image clustering

0.9

0.8

o
~l

o
fe))

0.5€

—+— PDDP

FCDP
— + — PDDP+Kmeans
— © — FCDP+Kmeans
— % — Kmeans

6 7 8 9 10
# samples per subject

M2A-07, Oct-2007



Result of clustering displayed on a 2-D plane:

Left: clustering by PCA. Right: clustering by FCDC.
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Conclusion

» Many interesting linear algebra problems in data mining.

» Current methods mix 1) statistics, 2) Linear algebra 3) Differential

geometry (manifold learning) 4) (Basic) graph theory
» Have shown some simple techniques put to work..
» Work on clustering still challenging..

» Modern dimension reduction techniques (LLE, Eigenmaps, Isomap,
...) exploit nearest neighbor graph. Resulting methods quite power-
ful
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