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Large eigenvalue problems in applications

» Some applications require the computation of a large
number of eigenvalues and vectors of very large matrices.
These are often found in quantum physics/ chemistry.

» Density Functional Theory in electronic structure calcula-
tions: ‘ground states’

» Excited states involve transitions and invariably lead to much
more complex computations. — Large matrices, *many” eigen-
pairs to compute

lllustration:

‘Hamiltonian of size n ~ 10° get 10% of bands’




Soving large eigenvalue problems: Current state-of-the art

» Eigenvalues at one end of the spectrum:
® Subspace iteration + filtering [e.g. FEAST, Cheb,...]

®m | anczos+variants (no restart, thick restart, implicit
restart, Davidson,..), e.g., ARPACK code, PRIMME.

= Block Algorithms [Block Lanczos, TraceMin,
LOBPCG, SLEPc,...]

= + Many others - more or less related to above

» ‘Interior’ eigenvalue problems (middle of spectrum):

B Combine shift-and-invert + Lanczos/block Lanczos.
Used in, e.g., NASTRAN




Issues with shift-and invert | (and related approaches)

» Issue 1: factorization may be too expensive
e (Can use iterative methods?
» Issue 2: lterative techniques often fail —

e Reason: Highly indefinite problems.

» Alternative to shift-and-invert: ‘Spectrum slicing’” with Poly-
nomial filtering




Polynomial filtering

> Apply anczo§ or Sub-  ar p(A) where p(t_) IS
space iteration to: a polynomial

» Each matvec y = Awv isreplaced by y = p(A)v.
» Eigenvalues in high part of filter will be computed first.

» Old (forgotten) idea. But new context is *very* favorable




What polynomials?

» For end-intervals: use standard Chebyshev polynomials

» For inside intervals several methods used:

® | east- Squares (LS) approximation to a simple spline.
[HR Fang and YS — FILTLAN ]

= Simpler approach: LS approximation to a step function
[G. Schofield, J. R. Chelikowsky and YS, '11], [B. Lang
et al, 2015]

= |n EVSL we use a simpler scheme yet.

» QObserve: There is no real reason to seek to approximate
the indicator function x(q.p)

» Approximate the § Dirac function instead




LS approximations to 6-Dirac functions

» Obtain the LS approxi-
mation to the d — Dirac func-
tion — Centered at some
point (TBD) inside the inter-
val. .

Pol. of degree 32 approx§(.5) in [-1 1]

» Wl express everything in the interval [—1, 1]
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The Chebyshev expansion of 9, is

N | =

J=0

Pr(t) = ZHjTj(t) with p; = {cos(j cos ' (vy)) 7 >0

3=0

» Recall: The delta Dirac function is not a function — we can't
properly approximate it in least-squares sense. However:

Proposition Let pi(t) be the polynomial that minimizes
|7(t)|l., over all polynomials = of degree < k, such that
r(v) = 1, where ||.||., represents the Chebyshev L?-norm.

Then pi(t) = pr(t)/pPr(Y)-




A few technical details. Issue # one: ‘balance the filter’

» To facilitate the selection of ‘wanted’ eigenvalues [Select A’s

such that p(A\) > bar] we need to ...
» ... find v so that p(&§) == p(n)

-

p, (1)

Procedure: Solve the equation p~(&) — p-(n) = 0 with re-
spect to ~, accurately. Use Newton or eigenvalue formulation.

9
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Issue # two: | Determine degree & polynomial (automatically)

Jackson Chebyshev on [-1, -0.95]; deg. =3:2: 15 1 Jackson Chebyshev on [0.3, 0.6]; deg. =5:5:25
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» 1) Start low (e.g. 2); 2) Increase degree until value (s) at the
boundary (ies) become small enough ...

... and px () provides ‘satisfactory’ separation
» Eventually w’ll use criterion based on derivatives at € & 1




Degree = 3; Sigma damping

Degree = 4; Sigma damping

Degree = 7; Sigma damping
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Progress of the find_pol algorithm. Interval is [0.833, 0.907..]
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A zoom on the final polynomial found
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Issue # Three : | Gibbs oscillations

» Discontinuous ‘function’ approximated — Gibbs oscillations

Three filters using different smoothing

- - -No damping
—Jackson
——|.anczos o

0.8

» Three options:

— 0.4

e No damping =
e Jackson damping |

e Lanczos o damping :

-0.2 N v/

-0.4
-1

» (Good compromise: Lanczos o damping




Polynomial filtered Lanczos

» Use the Lanczos algorithm with A replaced by pi(A), where
pr(t) = polynomial of degree k

» |dea not new (and not too popular in the past)

1. Very large problems;

What is new? | 2. (tens of) Thousands of eigenvalues;

3. Parallelism.

» Combine with spectrum slicing

» Main attraction: reduce cost of orthogonalization
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Hypothetical scenario: large A, *many* wanted eigenpairs

» Assume A has size 10M

» ... and you want to compute 50,000 eigenvalues/vectors
(huge for numerical analysits, not for physicists) ...

» ... In the lower part of the spectrum - or the middle.

» By (any) standard method you will need to orthogonalize at
least 50K vectors of size 10M. Then:

® Space needed: = 4 x 10'% b = 4TB *just for the basis*
= QOrthogonalization cost: 5 x 10'% = 50 PetaOPS.

m At step k, each orthogonalization step costs =~ 4kn

® Thisis = 200, 000 for k close to 50, 000.




Polynomial filtered Lanczos: No-Restart version

Degree = 23; Sigma damping

» Use Lanczos with full reortho-
gonalization on p(A). Eigenval-
ues of p(A): p(\;)

» Acceptif p(\;) > bar
» Ignore if p(N\;) < bar

08 1.0
| p(A)
+—0~—< ® ® *—o—@ | b—‘~‘~+ P

Unwanted eigenvalues Wanted




Polynomial filtered Lanczos: Thick-Restart version

» PolFilt Thick-Restart Lanczos in a picture:

Pol. of degree 32 approx d(.5) in [-1 1]

If accurate then lock
else add to Thick
Restart set.

- Reject

» Due to locking, no more candidates will show up in wanted
area after some point — Stop.
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TR Lanczos: The 3 types of basis vectors

Basis vectors Matrix representation
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Experiments: Hamiltonian matrices from PARSEC

19

Matrix n ~ nnz la, b] &, 7] Ve ]
GegrHrg 112,985| 7.9M | [—1.21,32.76] | [—0.64, —0.0053] | 212
GegoH1oo 112,985 | 8.5M |[—1.22,32.70] | [—0.65, —0.0096] | 250
SisGesHyo | 185,639 |15.0M | [—1.12,49.82] | [—0.64, —0.0028] | 218
Sig7Hrg 240, 369 | 10.6 M | [—1.19,43.07] | [—0.66, —0.0300] | 213
Gay AsyHry | 268,096 | 18.5M | [—1.25,1301] | [—0.64, —0.0000] | 201
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Results: (Thick-Restart Lanczos)

CPU time (sec) residual
Matrix deg| iter | matvec

matvec| total max avg
GegrHrg 26|1431| 37482 282.70| 395.91/9.40x107%|2.55x 1010
GegoH 190 26 1615| 42330| 338.76| 488.91/9.10x107%?/2.26 x 10719
Sis1GeysHry | 35/1420| 50032| 702.32| 891.98/3.80x107%8.38 x 10!
Sig7Hrg 30|1427| 43095| 468.48| 699.90|7.60x107%|3.29x 1010
Gay1Asy Hyo 2022334 (471669 [8179.519190.46 |4.20x 10712/ 4.33 x 1013

» Demo with Si10H16 [n = 17,077, nnz(A) = 446, 500]







Why use rational filters?

» (Consider a spectrum like this one:

» Polynomial filtering utterly ineffective for this case

» Second issue: situation when Matrix-vector products are
expensive

» Generalized eigenvalue problems.
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» Alternative is to H(z) = .
use rational filters:

Jz 0'3

P(A) =Y aj(A—o; )7 We now need to solve
linear systems

» Tool: Cauchy integral representations of spectral projectors

m | PEm(A-sDTds
\__/

e Numer. integr. P — 1—3
e Use Krylovor S.l.on P

»  Sakurai-Sugiura approach [Krylov]
» FEAST [Subs. iter.] (E. Polizzi)




What makes a good filter
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» Assume subspace iteration is used with above filters. Which
filter will give better convergence?

» Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Gauss viewpoint: Least-squares rational filters

» Given: poles 01,02, , 0p

» Related basis functions ¢;(z) =

1

Z—O'j

¢(z) = Y0, a;¢;(z) that minimizes
JZe w(®)|h(t) — &(t)|%dt

» h(t) = step function x_1,1)-

» w(t)= weight function.
For example a = 10,
B = 0.1

25

w(t)

(0 if  |t| > a
git |t <1

L 1 else
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» Advantages:

e (Can select poles far away from real axis — faster iterative
solvers

e \ery flexible — can be adapted to many situations
e Can repeat poles (!)

» Implemented in EVSL.. [Interfaced to SuiteSparse as a
solver]




Better rational filters: Example

» Take same example as before 43 X 53 Laplacean
» Now take 6 poles [3 X 2 midpoint rule]
» Repeat each pole [double poles.]
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Spectrum Slicing and the EVSL project

» Newly released EVSL uses polynomial and rational filters

» Each can be appealing in different situations.

Spectrum slicing: cut the overall interval containing the spec-
trum into small sub-intervals and compute eigenpairs in each
sub-interval independently.

For each subinterval: select a filter
polynomial of a certain degree so its
high part captures the wanted eigen- =~
values. In illustration, the polynomials ~ "
are of degree 20 (left), 30 (middle),
and 32 (right).




9/29/2016
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Yousef Saad -- SOFTWARE

SOFTWARE

NV
EVSL Eﬁw\é a library of (sequential) eigensolvers based on spectrum slicing. Version 1.0
released on [09/11/2016]
EVSL provides routines for computing eigenvalues located in a given interval, and their
associated eigenvectors, of real symmetric matrices. It also provides tools for spectrum
slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and
computing the eigenvalues in each subinterval independently. EVSL implements a
polynomial filtered Lanczos algorithm (thick restart, no restart) a rational filtered Lanczos
algorithm (thick restart, no restart), and a polynomial filtered subspace iteration.

ITSOL a library of (sequential) iterative solvers. Version 2 released. [11/16/2010]

ITSOL can be viewed as an extension of the ITSOL module in the SPARSKIT package. It
is written in C and aims at providing additional preconditioners for solving general sparse
linear systems of equations. Preconditioners so far in this package include (1) ILUK (ILU
preconditioner with level of fill) (2) ILUT (ILU preconditioner with threshold) (3) ILUC
(Crout version of ILUT) (4) VBILUK (variable block preconditioner with level of fill - with
automatic block detection) (5) VBILUT (variable block preconditioner with threshold -
with automatic block detection) (6) ARMS (Algebraic Recursive Multilevel Solvers --
includes actually several methods - In particular the standard ARMS and the ddPQ version
which uses nonsymmetric permutations).

ZITSOL a complex version of some of the methods in ITSOL is also available.

http://www-users.cs.umn.edu/~saad/software/

1/6



Levels of parallelism |

Slice 2 Slice 1

Slice 3

JU

Macro-task 1

Domain 1

JL

Domain 2

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL

30
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EVSL: current status

» Released version 1.0in Fall 2016

m Matrices in CSR format

» (Very) soon - version _1.1 will add:
® general matvec
" Axr = \Bx
= Fortran (03) interface.

» Near future:
= Fully parallel version [MPI + openMP]

®m Challenge application [in progress]

31
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Conclusion

» Polynomial Filtering appealing when # of eigenpairs to be
computed is large and Matvecs are cheap

» May be costly for generalized eigenvalue problems
» Wil not work well for spectra with large outliers.

» Alternative: Rational filtering

» Both approaches implemented in EVSL

» Current focus of EVSL: provide as many interfaces as pos-
sible.

» EVSL code available here:
WWW.Cs.umn.edu/~saad/software/EVSL




