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Density Function Theory - Kohn-Sham Eqns.[
− h2

2m∇2 + Vtot[ρ(r), r]
]
Ψ(r) = EΨ(r)

With

Vtot = Vion + VH + Vxc

• VH = Hartree potential local

• Vxc = Exchange & Correlation potential local (LDA)

• Vion = Ionic potential Non-local

II Electron Density:

ρ(r) =
∑occup
i |Ψi(r)|2
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Kohn-Sham as a nonlinear eigenvalue problem


1.

[
− h2

2m∇2 + Vtot[ρ(r)]
]
Ψi(r) = EiΨi(r)

2. ρ(r) =
∑occup
i |Ψi(r)|2

3. ∇2VH = −4πρ(r) → Vtot = VH + Vxc + Vion

II Both Vxc and VH, depend on ρ.

The potentials and charge densities must be self-

consistent. One can view the KS equations as (1) a

nonlinear eigenvalue problem; or (2) a system of nonlinear

equations; or (3) a nonlinear optimization problem

II Common approach: Broyden-type quasi-Newton tech-

nique. [Typically, a small number of iterations are required]
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Self-Consistent Iteration

II Most time-consuming part: diagonalization

II Difficulty: large number of wanted eigenvalues/eigenvectors

[number of occupied states].

II Consequence: orthogonalize a basis of m vectors of

length N , at cost of O(m2N) – Both m and N are

proportional to number of particles. No matter what -

cost will scale like O(Npart)
3

II BUT: prefactor can be reduced.
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Diagonalization

Specificity of problem:

1) Large number of eigenvectors.

2) Nonlinear

II Actual problem is to compute a large invariant subspace

II Needed only to compute the diagonal of the projector

onto the subspace

II Problem with general purpose software: difficult to take

into account nonlinearity.
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CHEBYSHEV FILTERING



Chebyshev Subspace iteration

II Main ingredient: Chebyshev filtering

Given a basis [v1, . . . , vm], ’filter’ each vector as

v̂i = Pk(A)vi

II pk = Low deg. polynomial. Enhances wanted eigen-

components

The filtering step is not used

to compute eigenvectors ac-

curately II
SCF & diagonalization loops

merged

Important: convergence still

good and robust −1 −0.5 0 0.5 1
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Main step:

Previous basis V = [v1, v2, · · · , vm]

↓
Filter V̂ = [p(A)v1, p(A)v2, · · · , p(A)vm]

↓
Orthogonalize [V,R] = qr(V̂ , 0)

II The basis V is used to do a Ritz step (basis rotation)

C = V TAV → [U,D] = eig(C) → V := V ∗ U

II Update charge density using this basis.

II Update Hamiltonian — repeat

8 SIAM-LA Oct. 25, 2009



II In effect: Nonlinear subspace iteration

II Main advantages: (1) very inexpensive, (2) uses minimal

storage (m is a little ≥ # states).

II Filter polynomials: if [a, b] is interval to dampen, then

pk(t) =
Ck(l(t))

Ck(l(c))
; with l(t) =

2t− b− a

b− a

• c ≈ eigenvalue farthest from (a+b)/2 – used for scaling

II 3-term recurrence of Chebyshev polynommial exploited

to compute pk(A)v. IfB = l(A), thenCk+1(t) = 2tCk(t)−
Ck−1(t) →

wk+1 = 2Bwk − wk−1
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Select initial V = Vat

Get initial basis {ψi} (diag)

Calculate new ρ(r) =
∑occ
i |ψi|2

Find new VH: −∇2VH = 4πρ(r)

Find new Vxc = f [ρ(r)]

Vnew = Vion + VH + Vxc + ‘Mixing’

If |Vnew − V | < tol stop

Filter basis {ψi} (with Hnew)+orth.

V = Vnew

?

?

?

?

?

?

?
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Reference:

Yunkai Zhou, Y.S., Murilo L. Tiago, and James R. Che-

likowsky, Parallel Self-Consistent-Field Calculations with Cheby-

shev Filtered Subspace Iteration, Phy. Rev. E, vol. 74, p.

066704 (2006).

[See http://www.cs.umn.edu/∼saad]
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Chebyshev Subspace iteration - example

Si9041H1860

nstate # A ∗ x # SCF total eV
atom 1st CPU total CPU

19015 4804488 18 -92.00412 102.12 h. 294.36 h.

# PEs = 48; nH =2,992,832. m = 17 for Chebyshev-

Davidson; m = 8 for CheFSI.

Done in 2006 –
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Iron clusters [symmetry of 12]

Fe388

nstate # A ∗ x # SCF total eV
atom 1st CPU total CPU

2328 × 2 18232215 187 -795.247 16.22 247.05 h.
Fe388

#PE= 24. nH = 3332856. m = 20 for

Chebyshev-Davidson; m = 18 for CheFSI.

Reference:

M. L. Tiago, Y. Zhou, M. M. G. Alemany, YS, and J.R.

Chelikowsky, The evolution of magnetism in iron from the

atom to the bulk, Physical Review Letters, vol. 97, pp.

147201-4, (2006).
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Plans: Spectrum slicing

II Idea: compute spectrum

by pieces.

II No orthogonalization

between pieces which are

not nearest neighbors
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Main

issues:

1) Make sure no eigenvalues are missed

2) that there are no duplicates

3) that process is cost effective
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Matlab version: RSDFT

II Goal is to provide (1) prototyping tools (2) simple codes

for teaching Real-space DFT with pseudopotentials

II Can do small systems on this laptop – [Demo later?]

II Idea: provide similar input file as PARSEC –

II Can also enter data online

II Many summer interns helped with the project:

Olivier Cots, Yuelian Jia, Sam Handler, Virginie Audin,

Long Bui, Nate Born, Amy Coddington, Nick Voshell, Adam

Jundt, ...

+ ... others who worked with a related visualization tool

(PVOX)
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Important step: First iteration of SCF

Iussue: good initial guess is needed – else convergence can

be delayed – possibly even compromized (?)

II Remedy: do a full diagonalization in first SCF step..

II Far more desirable: completely bypass diagonalization

II First alternative: use a memory efficient eigenproblem

solver. [example: (linear) subspace iteration]

II Second alternative: use continuation/ homotopy
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Use of continuation

II Perform continuation on the charge density:

ρnew = λρout + (1 − λ)ρold

II Initial λ can be set to say 1.0 or 0.5 – should converge

to unity with SCF.

II Can set λ manually ... somewhat arbitrarily

II Can also try to set λ automatically

II Criterion: Near convergence ρold ≈ ρout, use λ ≈ 1.
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II We select λ based on degree of variation between ρout
and ρold :

λ = cos2 (θ(ρout, ρold))

II So with θ ≡ θ(ρout, ρold) we have

ρnew = ρout cos
2 θ + ρold sin2 θ

II Note: this continuation is combined with standard mix-

ing which acts on potential (Broyden, secant, Anderson,

etc).
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Results

Test with simple algorithm using

λ =
(ρout, ρold)

2

||ρout||2||ρold||2

on models of 300 random atoms of Aluminum [Done within

First-principles Molecular Dynamics (MD) simulation for

determining melting properties]



Snapshot of model with

300 atoms of Alu-

minum used in a molec-

ular dynamics simula-

tion (melting of Al).



SCF Iters. Total Energy [Ry] λ

1 8371.13518513 0.500000000

2 -809.98294405 0.698983019

3 -1093.14471242 0.965543975

4 -1050.40221019 0.964408629

5 -1151.94407198 0.967302532

6 -1114.00738274 0.929312880

7 -1184.58405142 0.942015013
... ... ...

10 -1232.61311896 0.985936605
... ... ...

20 -1248.00273541 0.999296141
... ... ...

30 -1250.82621163 0.999999860
... ... ...

40 -1250.82629339 0.999999999
21 SIAM-LA Oct. 25, 2009



Nonlinear eigenvalue problems

II In numerical linear algebra a nonlinear eigenvalue prob-

lem is something like

Φ(λ)u = 0 with

Φ(λ) =
m∑
i=1

Aiλ
i

[Each Ai is n× n ]

II SCF methods involve nonlinear eigenvalue problems of

a different kind:

[A+ V (U)]U = UΛ

where U is an orthonormal set of eigenvectors ofA+V (U).

II V (U) depends only on the space spanned by U -
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Example: Hartree Fock

HΨ = −
1

2
∇2 + V0 + VH + Vx

As before:
II V0 (ionic potential)

II VH (Hartree potential)

II Vx is a 2-electron term -

Vx.ψi(r) =

∫ ∑
j ψj(r

′)∗ψj(r)ψi(r
′)

|r − r′|
dr′

DFT replaces 2-electron term by a one-electron contri-

bution Vxc
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Model problems

Question: Can we find problems of this type that are fairly

representative of SCF methods and the physics, without

the complications?

Motivation:

II can study theoretical questions [see J. Meza and C.

Yang]

II can develop and test algorithms quickly [Nonlinear eigen-

value problems, ’mixing’, O(N) methods,...]

II can help understanding nature of the SCF problem
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Example: Can look at a model problem from a material

requiring only a local Pseudo-Potential - e.g.: Sodium

• Advantage: close to the physics - simple to implement.

• Disadvantage: Just one example - not amenable to

variations
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Example: [using matlab notation]

[−
1

2
∇2 + V0 + diag(|u|2)]u = λu

Or: (Notation: ρ(U) = diag(UUH) )

[−
1

2
∇2 + V0 + L−1ρ(U)]ui = λiui

II Note: Always exists a solution to

min
UTU=I

Tr

[
UT

(
−

1

2
∇2 +D(U)

)
U

]
II Extreme simplifications of typical SCF problem → not

clear if these satisfy the requirements.

II Difficulty: find situations that reflect the issue of the

‘gap’ in SCF [hard convergence for metallic systems]
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