
DOMAIN-DECOMPOSITION-TYPE METHODS

FOR COMPUTING THE DIAGONAL OF A MATRIX INVERSE ∗

JOK M. TANG † AND YOUSEF SAAD †

Abstract. This paper presents two methods based on domain decomposition concepts for determining
the diagonal of the inverse of a sparse matrix. The first uses a divide-and-conquer principle and the Sherman-
Morrison-Woodbury formula, and assumes that the matrix can be decomposed into a 2 × 2 block-diagonal
matrix and a low-rank matrix. The second method is a standard domain decomposition approach in which
local solves are combined with a global correction. Both methods can be succesfully combined with iterative
solvers and sparse approximation techniques. Results of numerical experiments are reported to illustrate the
performance of the proposed methods.

Key words. Matrix diagonal extraction, domain decomposition methods, divide-and-conquer method,
Sherman-Morrison-Woodbury formula, Schur complement, iterative methods, sparse approximate inverse.

AMS subject classifications. 65F05, 65F10, 65F50, 65N55.

1. Introduction. Extracting diagonal entries of a matrix inverse is important in many
practical applications. Examples include examining inverse covariance matrices in Uncer-
tainty Quantification [3], finding a rational approximation for Fermi-Dirac functions in the
Density Functional Theory [18], and evaluating Green’s functions in the Dynamic Mean-Field
Theory (DMFT) [4]. The main purpose of this paper is to present domain-decomposition-
type methods for computing the diagonal entries of a matrix inverse.

We consider a large and sparse matrix, A ∈ Cn×n, and assume that A is nonsingular.
In the main applications of our interest, A is also complex symmetric. In this paper, we are
interested in finding the diagonal matrix whose diagonal entries are the same as those of A−1.
This matrix is denoted by D(A−1).

Extracting D(A−1) is considered as a challenging task, in part because it cannot be
expressed easily in the form of a system of equations. The problem is usually harder to
solve than a linear system with the same matrix A. Several methods have been proposed to
compute D(A−1), see, for example, [19, Sect. 2], [9, Sect. 2], and [12, Sect. 1.2] for a literature
overview. The major methods proposed in [9, 12, 19] are briefly sketched next.

If A is diagonally dominant and/or positive definite, A−1 may consist of many small
entries. In this case, a probing method can be used to find D(A−1) efficiently [19]. In this
method, A−1 is sparsified by neglecting the small entries, then the sparsity pattern of the
sparsified A−1 is determined followed by a process to find appropriate probing vectors using
graph coloring arguments, and, finally, linear systems are solved by a direct or iterative
method. For more general matrices, the method named Fast Inverse using Nested Dissection
(FIND) has been advocated by Li et al. [9]. It is based on nested dissection, where an
elimination process is modeled by a graph that is decomposed into a tree structure. An
upward and downward traversal of the tree is used to find D(A−1) efficiently. Related to this
approach is the hierarchical Schur complement method of Lin et al. [12]. Here, a hierarchical
decomposition of the computational domain is adopted. It first constructs hierarchical Schur
complements of the interior points for the blocks of the domain in a bottom-up pass, and

∗Work supported in part by DOE under grant DE-FG 08ER 25841, by NSF under grant OCI-0904587,
and by the Minnesota Supercomputing Institute.

∗Department of Computer Science and Engineering, University of Minnesota, 200 Union Street S.E,
Minneapolis, MN 55455, USA. Email: {jtang, saad}@cs.umn.edu.

1



then extracts the diagonal entries of D(A−1) efficiently in a top-down pass by exploiting the
hierarchical local dependence of inverse matrices.

This paper describes two methods based on domain decomposition concepts to compute
D(A−1). The first method is based on a recursive application of the following formula:

(

Y − ZZT
)−1

= Y −1 + Y −1Z
(

Ik − ZTY −1Z
)−1

ZTY −1, (1.1)

where Y ∈ C
n×n, Z ∈ C

n×k with k ≤ n, Ik is the k × k identity matrix, and both Y and
Ik − ZTY −1Z are assumed to be nonsingular. Eq. (1.1) is a special case of the well-known
Sherman-Morrison-Woodbury formula, see, e.g., [5, Sect. 2.1.3] and [6, 7]. The formula
implies that a rank-k correction to a matrix results in a rank-k correction to its inverse.
Formula (1.1) will be applied recursively resulting in a divide-and-conquer approach. The
second method we describe is related to the first method, and is based on standard domain
decomposition ideas. By dividing the computational domain into subdomains, and ordering
the grid points first by the subdomains and then by the interface points, D(A−1) can be found
by solving the local problems on each subdomain and updating them by a global correction.
Although we focus on finding D(A−1) in this paper, we note that the two methods we propose
can also be used to extract other entries of a matrix inverse.

One can view the methods proposed in [9, 12] as belonging to the class of domain decom-
position methods as well. However, there are major differences between our approaches and
theirs. The methods in [9, 12] are essentially direct methods based on a sort of multi-frontal
technique to obtain the desired entries of the inverse. The methods proposed in this paper
are more classical domain decomposition techniques and do not emphasize exactness.

Recently, Amestoy et al. [2] have proposed another method for computing D(A−1). Given
an LU or LDLT factorization of A held in out-of-core storage, they have shown how to
compute D(A−1) efficiently by accessing one part of the factors. The method is tested by
using the MUMPS software package [1], and it has shown promising results. Related to this
approach is the SelInv method of Lin et al. [11], which is also recently proposed. Similar
to [2], the SelInv method employs a given LDLT factorization of A to compute selected
elements of the inverse of a symmetric A, where the use of supernodes and block algorithms
are key to achieve high performance. The methods we propose in this paper differ from [2, 11]
in the sense that we do not need an explicit matrix factorization of A and we allow the use
of iterative methods and sparse approximation techniques as components of the methods.

The outline of this paper is as follows. Section 2 is devoted to the description of the divide-
and-conquer method. Section 3 describes the domain decomposition method. A further
discussion of the methods is provided in Section 4. Results from numerical experiments are
presented in Section 5. Tentative conclusions are stated in Section 6.

2. Divide-and-Conquer Method. In this section, we present a divide-and-conquer
(D&C) method for finding D(A−1). The main idea of the method is described in §2.1.
We discuss its implementation in §2.2, and its application to discretized partial differential
equations (PDEs) in §2.3. Finally, we consider how the method can be further improved in
§2.4.

2.1. The main idea. Suppose that a nonsingular and complex symmetric matrix, A ∈
Cn×n, is given and can be decomposed into a 2× 2 block-diagonal matrix, C, and a low-rank
matrix, −L. If the dimension of the first block of C is denoted by m and the rank of L is
denoted by q, we can write

A = C − L, C :=

(

C1

C2

)

, L := EET , (2.1)

2



where C1 ∈ Cm×m, C2 ∈ C(n−m)×(n−m), and E ∈ Cn×q satisfying 0 < q < m < n.
The inverse of A can now be extracted by substituting Y := C and Z := E into the

Sherman-Morrison-Woodbury formula (1.1). This yields

A−1 = C−1 + UR−1UT , (2.2)

with U ∈ Cn×q and R ∈ Cq×q defined as

U := C−1E, R := Iq − ETU,

where we assume that C and R are nonsingular. Therefore, D(A−1) can be found via

D(A−1) = D(C−1) +D(UR−1UT ). (2.3)

2.2. Implementation. For the implementation of the D&C method, it is useful to
write

E =

(

E1

E2

)

,

where E1 ∈ Cm×q and E2 ∈ C(n−m)×q.
By solving a sequence of q linear systems, CU = E, we can obtain the matrix U . Since C

is a block-diagonal matrix, CU = E can be decoupled into two sequences of smaller linear
systems,

C1U1 = E1, C2U2 = E2, (2.4)

where UT = (UT
1 , U

T
2 ). Depending on the rank q and the matrix properties of C1 and C2, the

two sequences of linear systems (2.4) can be solved best by a direct or an iterative method,
see [5, 14] and Section 5 for an illustration.

Subsequently, R can be rewritten as

R = Iq − ET
1 U1 − ET

2 U2, (2.5)

and can be readily obtained if both E1 and E2 are sparse. Additionally, if q is relatively
small, R−1 ∈ Cq×q, can be computed easily. For a large q, the explicit inverse can be avoided
by (factoring R and) solving RW = UT , which is a sequence of n linear systems with a
coefficient matrix of dimension q, i.e.,

RW1 = UT
1 , RW2 = UT

2 , (2.6)

where WT = (WT
1 ,W

T
2 ) ∈ C

n×q. The same solution strategy as for Eq. (2.4) can be adopted
here, although R is smaller and may have a different sparsity pattern compared with C1

or C2.
The matrix-matrix product of U and W is usually expensive to compute (i.e., it scales

with O(qn2), as both matrices are dense). Fortunately, we are only interested in D(UW ),
which can be found by regarding it as it were n inner products of vectors of length q. More
specifically, if we write UT = (u1, . . . , un) and W = (w1, . . . , wn) with uj, wj ∈ Cq, and
denote the j-th diagonal entry of UW by Dj(UW ), then we have

Dj(UW ) = Dj(

(

U1W1

U2W2

)

) = ujR
−1uTj = ujwj , j = 1, . . . , n. (2.7)

3



It can be noticed from (2.7) that, if uj is sparse, just a few entries of wj are required to
compute Dj(UW ). This observation may be used to solve (2.6) approximately, while D(UW )
remains accurate.

Next, finding D(C−1) is equivalent to finding D(C−1
1 ) andD(C−1

2 ). These latter problems
are similar to the original problem of finding D(A−1), but they are of smaller dimensions.
If direct inversion of C1 and C2 is too expensive, we can apply the above described solution
procedure for computing D(A−1) also to finding D(C−1

1 ) and D(C−1
2 ). To do so, we assume

that both C1 and C2 can be decomposed into a 2× 2 block-diagonal matrix and a low-rank
matrix (cf. Eq. (2.1)). The procedure can be further repeated for computing diagonals of
smaller matrix inverses, so that we eventually end up with a recursive application of Eq. (2.3).
The recursion ends when it is efficient to invert the smallest matrices explicitly.

Because of the recursive way of applying Eq. (2.3) to find D(A−1), the resulting method
can be interpreted as a divide-and-conquer (D&C) method. The corresponding algorithm is
presented in Algorithm 1.

Algorithm 1: A Divide-and-Conquer (D&C) method for computing D(A−1)

input : A ∈ Cn×n

output: D(A−1) ∈ Cn×n

1 if n < ρ for a small ρ ∈ N or A does not satisfy (2.1) then
2 Compute A−1 explicitly, and determine D(A−1)

3 else

4 Choose m ∈ N such that m < n
5 Partition A as in Eq. (2.1)

6 Determine C =

(

C1

C2

)

and E

7 Compute U := C−1E and R := Iq − ETU

8 Compute W := R−1UT and M1 := D(UW )

9 Find M
(1)
2 := D(C−1

1 ) by applying Algorithm 1 to C1

10 Find M
(2)
2 := D(C−1

2 ) by applying Algorithm 1 to C2

11 Set M2 := D(C−1) =

(

M
(1)
2

M
(2)
2

)

12 Set D(A−1) :=M1 +M2

A few remarks on Algorithm 1 can be made. In Line 2, A−1 is computed explicitly,
but more efficient alternatives might be used to find D(A−1) for a small n. Furthermore,
we suppose that the decomposition (2.1) exists for any choice of m. In this case, there
is indeed some freedom to choose m in Line 4. The problem can be divided recursively
into approximately equal sizes (i.e, m ≈ n

2 ), but this is not essential for the D&C method.
Another possibility is to choose m as small as possible during the whole procedure, so that
the recursion proceeds only in the direction of D(C−1

2 ). However, some effort is required to
end up with an efficient approach, as the linear system C2U2 = E2 is often expensive to solve.
Finally, it should be checked at all recursion levels of the algorithm whether the matrices R
and C are nonsingular. In practice, it is rare that those matrices are singular, but if they
were, it is often possible to force them to be nonsingular. This can be accomplished by taking
other choices for the corresponding E1 and E2, since the decomposition (2.1) is usually not

4



unique.

2.3. Application to discretized PDEs. It is not difficult to show that, in general,
any banded matrix can be decomposed into (2.1), where q depends on the bandwidth of
that matrix. Below, we show that this particularly holds for specific discretization matrices
derived from PDEs. In this case, the D&C method is suitable to find the diagonal of the
inverse of those discretization matrices.

2.3.1. 2-D problems. When a 5-point centered discretization scheme is employed to
discretize a 2-D elliptic PDEs with nx grid points in the x-direction and ny grid points in
the y-direction, the resulting matrix A often takes the following form:

A =















A1 D1

D1 A2 D2

. . .
. . .

. . .

Dny−2 Any−1 Dny−1

Dny−1 Any















, (2.8)

where {Aj} and {Dj} are sets of ny tridiagonal and ny − 1 diagonal matrices of dimension
nx, respectively, so that the size of the matrix is n = nxny. The matrix A can be written as

A =

(

A11 A12

A21 A22

)

=

(

A11

A22

)

+

(

A12

A21

)

, (2.9)

with A11 ∈ Cm×m and A22 ∈ C(n−m)×(n−m), where we assume that m is a multiple of nx,
i.e., m = φnx where φ is an integer such that 0 < φ < ny. An observation is that the
submatrix A12 = AT

21 ∈ Cm×(n−m) has rank nx. This is because

A12 = AT
21 =





Q



 = −E1E
T
2 , (2.10)

with E1 ∈ Cm×nx and E2 ∈ C(n−m)×nx defined as

E1 :=





Q1



 , E2 :=





Q2



 , (2.11)

where Q,Q1, Q2 ∈ Cnx×nx are diagonal matrices obeying Q1Q2 = −Q. In the experiments
of Section 5, we take Q1 = −Q and Q2 = Inx

. Eq. (2.9) can now be rewritten as

A =

(

A11 + E1E
T
1

A22 + E2E
T
2

)

−
(

E1E
T
1 E1E

T
2

E2E
T
1 E2E

T
2

)

, (2.12)

which is exactly in the form of Eq. (2.1), where we have q := nx, and C1 and C2 are given by

C1 := A11 + E1E
T
1 , C2 := A22 + E2E

T
2 .

Notice that the diagonal matrix E1E
T
1 perturbs the last nx diagonal entries of A11, while the

diagonal matrix E2E
T
2 perturbs the first nx diagonal entries of A22. Consequently, C1 and C2

may be better conditioned than A11 and A22, which is usually a favorable property if iterative

5



methods are exploited to solve (2.4). By recalling that U := C−1E and UT = (UT
1 , U

T
2 ),

we also notice that U1 ∈ Cm×nx corresponds to the scaled last nx columns of C−1
1 , whereas

U2 ∈ C(n−m)×nx corresponds to the scaled first nx columns of C−1
2 .

The next example shows how the matrices at different recursion levels of the D&C ap-
proach look like for a specific problem.

Example 2.1. Suppose that we have the following discretization matrix:

A =













A1 D1

D1 A2 D2

D2 A3 D3

D3 A4 D4

D4 A5













.

D(A−1) can be found by Algorithm 1, where we need to decompose A into (2.1). This can be
done by choosing ρ := q = nx, and m := ⌈n

2 ⌉. This leads to

C1 =





A1 D1

D1 A2 D2

D2 A3 +D2
3



 , C2 =

(

A4 + Inx
D4

D4 A5

)

, E1 =





−D3



 , E2 =





Inx



 .

Finding D(C−1) is equivalent to computing the two expressions D(C−1
1 ) and D(C−1

2 ) by
Algorithm 1. We next show how this can be done for D(C−1

1 ). The case with D(C−1
2 ) can

be treated in an analogous way. For the sake of clarity, we will put a bar on matrices when
they act on the second recursion level. Likewise, a double bar will be used when matrices act
on the third recursion level.

We set Ā := C1 in Eq. (2.1), and derive

C̄1 =

(

A1 D1

D1 A2 +D2
2

)

, C̄2 = A3 +D2
3 + Inx

, Ē1 =





−D2



 , Ē2 =





Inx



 .

Next, direct inversion can be used to determine D(C̄−1
2 ), while one more recursion level

of the D&C approach is required to find D(C̄−1
1 ). For this third recursion level, we obtain

¯̄C1 = A1 +D2
1,

¯̄C2 = A2 +D2
2 + Inx

, ¯̄E1 = −D1,
¯̄E2 = Inx

.

Both D( ¯̄C−1
1 ) and D( ¯̄C−1

2 ) can now be found by direct inversion.

2.3.2. 3-D problems. The D&C method can also be used to solve specific 3-D PDE
problems. In this case, we assume that matrix A is derived from a 7-point stencil discretiza-
tion, so that it can still be written in a similar way as Eq. (2.8), i.e.,

A =















A1 D1

DT
1 A2 D2

. . .
. . .

. . .

DT
nynz−2 Anynz−1 Dnynz−1

DT
nynz−1 Anynz















. (2.13)

In Eq. (2.13), {Aj} is a set of nynz tridiagonal matrices of dimension nx, and {Dj} is a set
of nynz − 1 rectangular matrices with dimensions nx by at most nxny of the following form:

Dj =







(

D̃j 0ny−2 D̂j

)

, if j = 1, . . . , nynz − ny;
(

D̃j 0nynz−j−1

)

, if j = nynz − ny + 1, . . . , nynz − 2;

D̃j , if j = nynz − 1,

6



where D̃j , D̂j ∈ Cnx×nx are diagonal matrices, and 0l is the nx-by-lnx zero matrix.
The same procedure as presented in §2.3.1 can now be adopted to find D(A−1) based

on Eq. (2.13). The most noticeable difference compared with the 2-D problem is the fact
that A12 = AT

21 now has rank nxny, yielding E,U ∈ Cn×(nxny) and R ∈ C(nxny)×(nxny).
This usually requires a larger computational effort to solve the sequence of nxny linear
systems (2.4) and to compute D(UR−1UT ) as in (2.7). Hence, the cost of finding D(A−1)
for the 3-D problem can be significantly higher than in the 2-D case.

2.4. Possible improvements. The most time-consuming tasks of the D&C method
are usually solving CjUj = Ej and RWj = UT

j . Below, we show how those computations can
be carried out more efficiently.

Because Uj is mostly a dense matrix, it is not straightforward to improve the solution
procedure ofRWj = UT

j and the computation ofD(UjWj). However, if just an approximation

of D(A−1) suffices, we may employ a dropping strategy when computing Uj to reduce the

computational cost of obtaining UjWj . The matrix Uj is replaced by Ũj , which is identical
to Uj except for the entries that are smaller than a relative tolerance 0 < ǫ≪ 1 in modulus.

These small entries of Uj are discarded. More specifically, by writing Uj = [ukl] and Ũj =

[ũkl], we define each entry of Ũj as follows:

ũkl =

{

ukl, if |ukl| < ǫ||U ||2;
0, otherwise.

(2.14)

If R−1 consists of entries with values around O(1), then the error of computing D(UjWj) is
O(ǫ2), while the cost can be significantly reduced.

The procedure for solving the sequence CjUj = Ej can be avoided explicitly by noting
that Ej is sparse, and, therefore, Uj = C−1

j Ej just involves the nx nonzero columns of C−1
j

associated with the nonzero rows of Ej . These nonzero columns of C−1
j can be computed via

a recursive application of Eq. (2.2). To be more specific, suppose that the rj -th to rj+nx
-th

rows of Ej are nonzero. Then, we define P(C−1
j ) as a matrix with the same dimension as

C−1
j , where the rj -th to the rj+nx

-th columns of P(C−1
j ) and C−1

j are identical, and the

remaining columns of P(C−1
j ) are zero. The nonzero entries of P(C−1

j ) can be found at the

next recursion level when D(C−1
j ) is computed, i.e., from Eq. (2.2), we obtain

P(C−1
j ) = P(C̄−1

j ) + P(ŪjW̄j), (2.15)

where a bar is put on the matrices to stress that those are from a higher recursion level
(cf. Example 2.1). If P(C̄−1) is found by applying Eq. (2.15) again, we eventually end up
with a recursive procedure. Note that solving Uj = C−1

j Ej based on Eq. (2.15) may not be

practical, because Ūj is dense, and, therefore, the computation of P(ŪjW̄j) can be expensive.
However, if we combine the above strategy with an additional dropping procedure to Ūj, we
may end up with a successful and improved variant of the original D&C method. This is
further examined in §5.1.2.

3. Domain decomposition method. By taking a closer look at the matrix split-
ting (2.1) and the inverse expression (2.2), we observe that the physical domain in the D&C
approach is divided artificially into two subdomains, Ω1 and Ω2. The block-diagonal matrix
C−1 can be interpreted as a result of a discretization of the problem in which the interaction
between Ω1 and Ω2 is neglected. A correction based on the interaction of these subdomains is
characterized by the term D(UR−1UT ), which is added to D(C−1) in order to form D(A−1).
This idea of decoupling subdomains is then used at all recursion levels.

7



The approach of finding D(A−1) by decoupling the problem and correcting the solution
by the interaction of subdomains can also be viewed from a domain decomposition point of
view. In fact, we can derive another approach to compute D(A−1), which is more general
than the D&C approach seen earlier. This domain decomposition (DD) method for finding
D(A−1) is presented in this section. The main idea is described in §3.1. Some implementation
issues are discussed in §3.2. Subsequently, the method is applied to problems derived from
PDEs in §3.3, and some possible improvements of the DD method are provided in §3.4.

3.1. The main idea. We assume that, after possible row and column permutations,
the nonsingular and complex symmetric matrix A has the following form:

A =















B1 F1

B2 F2

. . .
...

Bp Fp

FT
1 FT

2 · · · FT
p G















=:

(

B F
FT G

)

, (3.1)

where Bj ∈ Cnj×nj , Fj ∈ Cnj×nG , G ∈ CnG×nG , and nG + nB = n with nB :=
∑p

j=1 nj .
Taking the inverse of Eq. (3.1) yields (cf. [14, Eq. (14.7)])

A−1 =

(

B−1 +B−1FS−1FTB−1 −B−1FS−1

−S−1FTB−1 S−1

)

, S := G− FTB−1F, (3.2)

where both B and S are assumed to be nonsingular. Notice that the upper-diagonal block
of Eq. (3.2) corresponds to the original Sherman-Morrison-Woodbury formula, and is in the
form of Eq. (1.1) when G = InG

. Now, D(A−1) can be obtained via

D(A−1) =

(

D(B−1) +D(HS−1HT )
D(S−1)

)

, H := B−1F. (3.3)

3.2. Implementation. Since B is a block-diagonal matrix, H ∈ CnB×nG can be com-
puted by solving p sequences of nG linear systems (cf. Eq. (2.4)), i.e.,

BjHj = Fj , j = 1, 2, . . . , p, (3.4)

where HT = (HT
1 , H

T
2 , . . . , H

T
p ) and Hj ∈ Cnj×nG .

The global Schur complement, S, can be computed via (cf. Eq. (2.5))

S = G−
p
∑

j=1

FT
j Hj , (3.5)

where each term of the sum can be regarded as a local contribution, and the sparsity of Fj

can be further exploited.
If nG is relatively small, S−1 can be formed explicitly from which D

(

S−1
)

easily follows.

For large values of nG, alternative methods are required to determine D
(

S−1
)

. It is known
that the Schur complement, S, is generally well-approximated by a sparse matrix, and, in
this situation, its diagonal can be obtained recursively. Ideas of this type are common when
linear systems are solved by domain-decomposition-type methods, see, e.g., [16].

Subsequently, the term D(HS−1HT ), which appears in the upper-diagonal block of
Eq. (3.3), can be obtained in two stages. First, we solve a sequence of nB linear systems

8



of the form SX = HT with X ∈ CnG×nB . This computation can be carried out locally by
distributing S to each subdomain and solving (cf. Eq. (2.6))

SXj = HT
j , j = 1, 2, . . . , p, (3.6)

by a direct method (using, e.g., a matrix factorization of S) or an iterative method, and
setting XT = (XT

1 , X
T
2 , . . . , X

T
p ) where Xj ∈ CnG×nj . Second, D(HX) can be formed

similarly to Eq. (2.7). This means that each block of D(HX) can be computed locally by
D(HjXj), in which each diagonal component is determined by

Dk(HjXj) = hkS
−1hTk = hkxk, k = 1, 2, . . . , nj , j = 1, 2, . . . , p, (3.7)

where HT
j = (h1, . . . , hnj

) and Xj = (x1, . . . , xnj
) with hj , xj ∈ CnG .

Finding D(B−1) is equivalent to finding all D(B−1
j ) for j = 1, 2, . . . , p. Each of D(B−1

j ) ∈
Cnj×nj can be computed locally, and the best method to use depends on the exact value of nj

and the sparsity of Bj. The above analysis for D
(

S−1
)

is also applicable here: if nj is small,
Bj can be directly inverted, otherwise an alternative method, such as a recursive application
of the domain decomposition approach, can be used to determine D(B−1

j ).

Finally, we can combine the above results to determine D(B−1) + D(HS−1HT ), which
is the upper-diagonal block of Eq. (3.3). Each sub-block can be found locally via D(B−1

j ) +
D(HjXj) for j = 1, 2, . . . , p. This yields

D(A−1) =











D(B−1
1 ) +D(H1X1)

. . .

D(B−1
p ) +D(HpXp)

D
(

S−1
)











. (3.8)

The resulting DD method for extracting D(A−1) is sketched in Algorithm 2.
Of course, if the matrix A is already based on a domain decomposition ordering, the first

part of Line 1 (permute A) and Line 13 (repermute A) of Algorithm 3 are not needed. More-
over, we note that the algorithm is originally not a recursive one like Algorithm 1, although
it can be made recursive by employing Algorithm 3. This recursive procedure of the DD
method is used in the experiments of Section 5. Finally, we note that, in specific situations,
the implementation of the DD method can be made more efficient by, e.g., exploiting the
sparsity pattern of A, see §3.3.

3.3. Application to discretized PDEs. For a coefficient matrix derived from dis-
cretized PDEs, it is well-known that Eq. (3.1) can be obtained by rearranging grid points in
the original physical domain, Ω. This Ω can be partitioned into p subdomains, {Ωj}, where
interface points are defined explicitly. This is in contrast to the D&C approach, where it is
implicitly assumed that the interface is between grid points, see Figure 3.1 for an illustration.

Next, suppose that there is no interaction between the open subdomains (i.e., subdo-
mains excluding their interfaces). Then, under the usual ordering of interior points of the
subdomains followed by the interface points, we obtain a matrix A of the form (3.1). A
typical example of such a matrix based on an original and a domain decomposition ordering
is presented in Figure 3.2.

Each Fj represents a set of edges from the interior points of subdomain Ωj to its interface
points. The number of nonzero columns of Fj , denoted by nFj

, is equal to the number of
these interface points that are adjacent to Ωj . Therefore, for a relatively large p, we have

9



Algorithm 2: A Domain Decomposition (DD) method for computing D(A−1)

input : A ∈ C
n×n

output: D(A−1) ∈ Cn×n

1 Permute variables such that A is in the form of Eq. (3.1)
2 Determine {Bj}, {Fj} and G
3 Set S := G
4 for j = 1, 2, . . . , p do

5 Compute M
(j)
1 := D(B−1

j )

6 Compute Hj := B−1
j Fj

7 Update S := S − FT
j Hj

8 for j = 1, 2, . . . , p do

9 Compute Xj := S−1HT
j

10 Update M
(j)
1 :=M

(j)
1 +D(HjXj)

11 Find M2 := D
(

S−1
)

12 Set D(A−1) :=











M
(1)
1

. . .

M
(p)
1

M2











13 Repermute variables in D(A−1)

Algorithm 3: A recursive procedure for computing D(B−1
j )

input : Bj ∈ Cnj×nj from Algorithm 2
output: D(B−1

j ) ∈ C
nj×nj

1 if nj < ψ for a small ψ ∈ N then

2 Compute B−1
j explicitly, and determine D(B−1

j )

3 else

4 Find D(B−1
j ) by the domain decomposition method (Algorithm 2)

∑

j nFj
≪ nG. This can be exploited in the implementation of the DD method, which is

explained next.
We first note that each Hj can interpret each Hj as a ‘trace’ of the local inverse on the

interface points, and has at least nFj
nonzero columns. Accordingly, the number of linear

systems to be solved in Eq. (3.4) can be reduced from nG to nFj
for each j. Additionally,

the sparsity of the right-hand side of each of these linear systems can also be exploited in the
corresponding solver. Next, we note that the matrix Xj is usually a dense matrix, in contrast
to Hj . In other words, the number of linear systems in the sequence of (3.6) cannot be easily
reduced, which is different from the case of Eq. (3.4). Subsequently, by exploiting the zero
columns in Eq. (3.7), the number of inner products for each j can be reduced from nj to nFj

.
In addition, it can be noticed from the sparsity pattern of Hj that, for the computation of
D(HjXj), it is not necessary to form Xj explicitly, since not all but at most n2

Fj
entries of

S−1 are required for each j. These entries correspond to the interface points of Ωj . In an

10



�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

Γ12

Ω2

Ω1

(a) D&C method with m =
1

2
nxny.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Γ12

Ω2

Ω1

(b) DD method with p = 2,
nG = n1 = 1

2
n2 = nx.

Fig. 3.1. Illustration of the geometry (of the first recursion level) of the DD and D&C method based
on a discretization matrix derived from PDEs. The underlying domain, Ω, with nx = ny = 4 grid points
is divided into two subdomains, Ω1 and Ω2. Black and white dots represent interior and interface points,
respectively.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

(a) Standard ordering.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

(b) Domain decomposition ordering with
p = 4 subdomains.

Fig. 3.2. Illustration of the sparsity pattern of a matrix A with two different types of ordering of grid
points. The matrix is derived from a five-point finite-difference discretization of a standard 2-D Laplacian
equation with nx = ny = 10.

efficient implementation, this might be further exploited.

Note that, except for the assumption that the open subdomains do not interact, the
DD method does not make further assumptions on the underlying physical problem or its
dimensions, so the method is generally applicable. Furthermore, the parallel implementation
of Algorithm 2 can be done in a natural way. One or more subdomains are assigned to a
processor and the computations of the Schur complements are similar to those encountered
when solving linear systems of equations [16]. Increasing the number of subdomains, p, leads
to smaller dimensions of each Bj , but also to a larger G. As is well-known, the dimensions
of G may be quite large in the 3-D case, since interfaces between subdomains become surfaces
in this case. As a consequence, the cost of Algorithm 2 is usually significantly larger for 3-D
problems relative to 2-D problems.

3.4. Possible improvements. The DD approach can be improved in a way similar to
the D&C method: a dropping procedure can be added to create a sparser matrix Hj , while
both the computation of BjHj = Fj and SXj = HT

j can be carried out more efficiently
by using information from higher recursion levels. The latter issue is not as straightforward
as for the D&C approach, since a different domain decomposition ordering of variables is

11



usually used at every recursion level. Careful book keeping is required to retrieve the relevant
information from higher recursion levels, see also §4.3.

Note that there is some freedom in choosing the parameters of the DD method. For in-
stance, the choice of interface points in the computational domain can be varied if the matrix
is derived from PDEs. As depicted in Figure 3.2, we assume that subdomains may share the
same interface, while this is not essential for the method. For a fixed number of subdomains,
the number of interface points in the domain decomposition setting can be increased such
that each interface is connected to only one subdomain, and, therefore, the subdomains are
fully disjoint. Although the dimension of the Schur complement matrix, S, becomes larger in
this case, it may yield better properties of this matrix, so that corresponding computations
can be carried out more efficiently, see, e.g., [10] for more details. Furthermore, the number
of subdomains, p, can also be varied, each requiring a different efficient implementation. For
example, when p is small, attention should be paid to reducing the cost of BjHj = Fj rather
than SXj = HT

j , while the opposite is true for a large value of p.

4. Further discussion. The D&C and DD methods are strongly related to each other.
As can be seen in their derivation and implementation, similar expressions are used to find
D(A−1). The cost of the related computations are, however, rather different. We examine
this issue in §4.1. Subsequently, we explain in §4.2 which considerations should be made to
decide which method to select. Finally, §4.3 discusses some relations with existing methods
in the literature.

4.1. Comparison of computational efforts. Here, we explain that the major com-
putations in the D&C and DD approaches are similar but have different costs. For this, we
assume that the methods are applied to solve problems derived from 2-D PDEs. Additionally,
suppose first that p is small, so that R and S have comparable dimensions.

One of the major expenses in the D&C method is when solving CjUj = Ej for j = 1, 2
(see Eq. (2.4)) on each recursion level. The number of columns of Uj is fixed to nx for
each level, and corresponds to the interface connection of the underlying subdomain. On the
initial recursion level, the dimension of Cj may be relatively large, say m ≈ n

2 . On the other
hand, we have to solve the DD equivalence BjHj = Fj for j = 1, . . . , p (see Eq. (3.4)). The
number of columns of Hj is usually larger than that of Uj (i.e., nG ≫ nx), but, as noticed in
§3.3, Hj has only nFj

nonzero columns, which are associated with the interface connection
of the underlying subdomain like in the D&C method. If a recursive procedure of the DD
approach is applied, the number of nonzero columns of Hj usually becomes smaller at each
lower recursion level, which is in contrast to the D&C method. In addition, it can be noticed
that the size of Bj is usually smaller than that of Cj , especially if p ≫ 1. Hence, the total
computations with BjHj = Fj are often cheaper to perform than those with CjUj = Ej .

The other major expense in the D&C method is when solving RWj = UT
j for j = 1, 2 (see

Eq. (2.6)), or, equivalently, when computing Wj = R−1UT
j if R−1 is available. In both cases,

the corresponding cost is around O(n2
xn), since U is a dense matrix. The DD equivalent is

SXj = HT
j (see Eq. (3.6)), which is solved for j = 1, . . . , p. Although S has a larger dimension

than R, the sequence of linear systems SXj = HT
j is easier to evaluate than RWj = UT

j for
a small p. This is because Hj may have a significant number of zero rows while Uj is dense.
In addition, if S−1 is available, Xj = S−1HT

j can be formed with just a selected number of

entries of S−1. In either case, the cost of computing each Xj is around O(n2
GnFj

), which is
usually smaller than O(n2

xn) in 2-D problems. The cost can be even further reduced for the
DD case, when the sparsity pattern of Hj is fully exploited. As mentioned in §3.3, we can
often compute D(HjXj) by just using a selected number of entries of Xj .

12



If we apply the DD method with p = 2 and a recursive way of solving local problems, the
resulting approach would be close to the D&C method. By using a similar implementation of
their components, both methods would have a comparable cost. However, even though both
methods belong to the same broad class of domain decomposition techniques, they are not
mathematically equivalent, not even after permuting rows and columns. If the problem is
derived from a discretization of PDEs, one difference becomes clearly apparent by considering
the underlying geometry. In the DD approach, explicit interface points are created, while
this is not the case in the D&C approach, see also Figure 3.1. We prefer to choose p > 2
in the DD method in order to alleviate aforementioned computational problems associated
with the D&C method. This is further illustrated in Section 5.

If p is relatively large, solving SXj = HT
j and especially computing D

(

S−1
)

dominate
the cost in the DD method. The implementation of the resulting approach is further discussed
in §4.3.

4.2. Choice of the method. One advantage of the D&C approach is that its imple-
mentation is straightforward for a matrix A that is based on a standard ordering of grid
points. In addition, the D&C method is a black-box approach, where obvious choices for m,
E1 and E2 can be taken. The main drawbacks of the D&C method, as it is formulated here,
is that it is only restricted to matrices that can be decomposed into the form of (2.1), its
parallel implementation is not straightforward, and the computational cost may be higher
than that of the DD method.

The advantage of the DD method is that it is independent of the matrix structure of A,
and can be applied to basically any sparse matrix A that has the form (3.1) after permuta-
tions. In other words, it is not necessary to assume that A can be decomposed into a 2× 2
block-diagonal matrix and a low-rank matrix as shown in Eq. (2.1), so that Algorithm 2 is
more generally applicable. In addition, the DD method is straightforward to parallelize by
associating one or more subdomains with each available processor. Parallel efficiency can be
quite good, since we can perform most computations locally. Finally, as mentioned above,
the computational effort for the DD method seems to be lower than the D&C method for
specific choices of the parameters. On the other hand, the DD method is often a nested
method, because it usually requires another method to solve D(B−1

j ) and D
(

S−1
)

efficiently.
The best choice of this inner method depends on the exact value of n and p, so that some
fine-tuning of parameters in the DD method is often required to obtain the best implemen-
tation in each practical situation. Furthermore, for p ≫ 1, the number of interface points
in the DD approach is much larger than for the D&C approach at the first recursion level.
Consequently, when sparsity is not fully exploited, computations with S and S−1 might be
more expensive than those with their D&C counterparts R and R−1.

4.3. Related work. As mentioned in the introduction, the D&C and DD methods are
somewhat related to the methods that are proposed in [9, 12]. The starting point of the DD
method is quite similar to that of the hierarchical Schur complements (HSC) method [12]
and the Fast Inverse using Nested Dissection (FIND) method [9]. The DD method can be
viewed as a general method in which it is allowed to optimize various components in order
to obtain an efficient implementation for specific problems.

The HSC method [12] starts with a hierarchical Schur complements of the interior points
for the subdomains, and then extracts D(A−1) efficiently by exploiting the hierarchical local
dependence of inverse matrices. The first level in the hierarchical domain decomposition of
the HSC method is basically the first recursion level in the DD method, where p is chosen as
large as possible, so that the number of interior points of each subdomain is small. In this case,

13



each B−1
j can be computed with a low cost, so that D(B−1

j ) and Hj = B−1
j F can be readily

obtained. The major challenge here is to compute D(S−1) and D(HS−1HT ) in an efficient
way. This is achieved by applying the DD method recursively to find D(S−1), where, at each
recursion level, the relevant entries of S−1 that are required for D(HS−1HT ) are computed.
We note that this latter procedure is not straightforward, and requires careful book keeping
in the implementation. The principle of the FIND method [9] is essentially the same as the
HSC method. The method can be regarded as an approach in which many LU factorizations
on A are performed to compute D(A−1). By a proper reordering of A, the fill-in of the
factorizations can be minimized, while every entry of D(A−1) can be found relatively easily.
The cost to compute new LU factorizations is limited, since many intermediate results of the
factorizations are identical. As in the case of the HSC method, the practical implementation
is based on hierarchical Schur complements and hierarchical local dependences of inverses.

In the D&C and DD methods, exactness of the computations is not necessary, so that
iterative methods and sparse approximation techniques can be exploited to accelerate the
methods. In addition, we recall that there is some freedom to implement the different com-
ponents especially in the DD method, so that it is flexible to use.

5. Numerical experiments. This section presents the results of some numerical exper-
iments to illustrate the divide-and-conquer (D&C) and domain decomposition (DD) method
for computing D(A−1). Three test problems are considered in the experiments: a toy problem
based on a complex-shifted Laplacian, and a small instance of the more realistic applications
of the Uncertainty Quantification and Dynamic Mean-Field Theory mentioned in the intro-
duction. The computations are performed in MATLAB 7.4.0 on a sequential LINUX machine
(Dell Precision T5500 with a Quad-core Intel Xeon 5500 series processor and 4 GB memory).

The D&C method is based on Algorithm 1, where we have q = nx and take Q1 := −Q,
Q2 := I, ρ := γq with γ := 3, m = φq with φ := round(

ny

2 ) (i.e., m is the nearest integer
of

ny

2 multiplied by q) at all recursion levels, unless stated otherwise. Here, nx and ny

denote the grid sizes in the x- and y-direction of the specific 2-D problem, respectively. At
the highest recursion level, A−1 is directly inverted by the MATLAB command inv(A).
Moreover, the computations U := C−1E and W := R−1UT are done via the MATLAB
commands U = C \ E and W = R \ U’, respectively.

The DD method is based on Algorithm 2. We take p = 4 subdomains for every recursion
level, unless stated otherwise. A recursive procedure of the DD method is applied to find
D(B−1

j ) for each j, i.e., Algorithm 3 is applied to extract D(B−1
j ). As we only consider

uniform and structured meshes in the test problems, squares and rectangles can be taken as
the subdomains {Ωj}, where nj ≈ n−nG

p
for all j. More specifically, we define (nx)j and (ny)j

as the horizontal and vertical grid sizes of a discretized subdomain Ωj , respectively. Assume
that there are px and py subdomains in each horizontal and vertical direction, respectively,
so that p = pxpy. We define the horizontal and vertical thickness of the interface as θx and
θy, see Figure 5.1 for an illustration. We usually take θx = θy = 1, but the value is increased
when it is required for the specific test problem. Then, we choose

(nx)j =

{

⌊nx−θx(px−1)
px

⌋, if j = 1, 2, . . . , px − 1;

nx −∑px−1
j=1 [(nx)j + θx] , otherwise,

and, likewise,

(ny)j =

{

⌊ny−θy(py−1)
py

⌋, if j = 1, 2, . . . , py − 1;

ny −
∑py−1

j=1 [(ny)j + θy] , otherwise.

14



An illustration of the domain decomposition setting for the first recursion level and a part
of the second recursion level is given in Figure 5.2. We note that, of course, more advanced
(automatic) domain decomposition, such as METIS [8], can be adopted, especially if the DD
method is applied to problems with an irregular and unstructured mesh.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Ω2

Ω4Ω3

Ω1

Γ12

Γ34

Γ13 Γ24

(a) θx = θy = 1.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

Ω2

Ω4Ω3

Ω1

Γ34

Γ24

Γ12

Γ13

(b) θx = θy = 2.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Ω2

Ω4Ω3

Ω1

Γ34

Γ24

Γ12

Γ13

(c) θx = θy = 3.

Fig. 5.1. Geometry of a domain decomposition setting with p = 4, nx = ny = 15, and various choices
for θx and θy. Black and white dots represent interior and interface points, respectively.

The termination criterion of the recursion procedure in the DD method is given in Line 1
of Algorithm 3. Based on the above choice of the domain decomposition setting, this criterion
can be replaced by the following expression:

(nx)j < ψ (θx(px − 1) + px) or (ny)j < ψ (θy(py − 1) + py) ,

where we choose ψ = 2 in the experiments. In addition, as p is kept small in the DD method, S
is small as well, and, hence, D(S−1) can be extracted relatively easily by using the MATLAB
command invS = inv(S). Moreover, the nonzero columns of Hj = B−1

j Fj are computed

15



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

Ω2

Ω4Ω3

Ω1

Γ12

Γ34

Γ13 Γ24

Γ13

Ω3 Ω4

Ω2Ω1

Γ12

Γ24

Γ34

Fig. 5.2. An example of the domain decomposition setting at the first and a part of the second recursion
level of the DD method. Black and white dots represent interior and interface points, respectively. The
parameters in this example are p = 4, θx = θy = 1 (so that nG = nx + ny − 1), and nx = ny = 15.

by first determining the nonzero columns of Fj via any(Fj), followed by Hsj = Bj \ Fsj,
where Fsj and Hsj represent Fj and Hj in which the zero columns are omitted. In addition,
because Hj is quite sparse in our experiments, it is not necessary to compute all entries of
the dense matrix Xj in order to obtain D(HjXj). Instead, we only compute the relevant
entries of Xj by Xrj = invS * Hrj, where Xrj and Hrj denote the matrices containing the
relevant entries of Hj and Xj with respect to D(HjXj).

We compare the performance of the D&C and DD method to that of a direct inversion
(INV) method and a probing (PROBE) method [19]. For the INV method, D(A−1) is
extracted from a direct inversion of A−1 by using inv(A). For the probing method, we
determine a probing matrix, V ∈ {0, 1}n×s, with s probing vectors, based on the pattern of a
sparsified matrix inverse (which is the same as the inverse matrix, but where entries smaller
than 10−10 in absolute sense are dropped), and coloring the corresponding adjacency graph
by a greedy algorithm. We then solve AX = V by X = A \ V, and find D(A−1) := D(XV T ),
see [19] for more details.

We emphasize that the numerical examples are chosen to highlight the proposed ap-
proaches without focusing on their optimal parameters for large and realistic problems (in a
parallel environment). The latter is left for future work. Moreover, we note that our particu-
lar implementation of the DD approach is different from those of [9, 12] in the sense that we
do not take a large p and just apply a simple procedure to determine D(S−1) and D(HjXj),
where the use of iterative methods and sparse approximation techniques can be added to
accelerate computations.

5.1. Shifted-Laplacian problem. In the first experiment, we consider the operator

−∆− τ(1 + i), τ ∈ R, i2 = −1,

which is the Laplacian with a complex shift. This shifted-Laplacian (SL) operator is dis-
cretized by a standard finite difference scheme on a uniform 2-D grid with homogeneous
Dirichlet boundary conditions and mesh size equal to h = 1. The resulting coefficient ma-

16



trix, A, is sparse and complex symmetric. We examine different choices of τ : τ = 10 (giving a
strongly diagonally dominant and negative-definite A), τ = 1 (yielding a diagonally dominant
and indefinite A), and τ = 0.1 (giving a non-diagonally dominant and indefinite A).

5.1.1. Comparison of methods for various τ and n. We compare the performance
of the INV, PROBE, D&C, and DD methods for various values of τ and n. The results of
this experiment are presented in Table 5.1.

(a) τ = 10.
√
n INV PROBE D&C DD

25 .7 .1 (52) .1 .1
50 12 .6 (53) 1.5 .6
75 66 1.7 (53) 5.5 2.1

100 n/a 3.7 (54) 16 5.9
150 n/a 11 (54) 64 23
200 n/a 30 (54) 238 64

(b) τ = 1.
√
n INV PROBE D&C DD

25 .7 .3 (165) .1 .1
50 11 1.7 (170) 1.3 .6
75 64 4.9 (171) 5.3 2.1
100 n/a 9.9 (169) 14 5.8
150 n/a 73 (171) 64 23
200 n/a n/a 173 62

(c) τ = 0.1.
√
n INV PROBE D&C DD

25 .6 n/a .1 .1
50 11 n/a 1.2 .6
75 62 n/a 5.0 2.0

100 n/a n/a 14 6.1
150 n/a n/a 66 24
200 n/a n/a 189 67

Table 5.1

Results of the SL experiment with different values of τ and n. The computational time (in seconds)
is presented for the direct inversion (INV), probing (PROBE), divide-and-conquer (D&C), and domain
decomposition (DD) methods. Here, ‘n/a’ means that the CPU time exceeds 1000 seconds, the method has
memory problems, or the found solution is inaccurate. For the PROBE method, the number of required
probing vectors is presented in brackets.

As can be observed in Table 5.1, the PROBE method outperforms the other methods
when τ is large. However, when the matrix becomes indefinite and less diagonally dominant
(by choosing a smaller τ), this method requires more probing vectors and becomes less
efficient. The choice of τ hardly affects the performance of the other methods. Hence, the
performance of the INV, D&C, and DD method does, generally, not depend directly on the
definiteness of A and the exact values of its nonzeros, but mainly on the sparsity pattern
of A. However, as we will see in the next experiments, a higher degree of indefiniteness will
clearly impact performance of the D&C and DD method, when sparse approximations and
iterative solvers are used.

Moreover, we notice that the INV method becomes impractical for n ≥ 100. For a rela-
tively large n and small τ , the D&C and DD methods are the methods of choice. Additionally,
the DD method is faster than D&C method, which confirms the analysis seen in §4.1.

We note that the solutions provided by the D&C and DD approaches are accurate, as
no iterative solvers or sparse approximations are used in the methods. Later on, we will
show that adding these additional components may increase the efficiency of the approaches
substantially, without losing much accuracy. Furthermore, no singular matrices are detected

17



in the D&C and DD methods, so the two methods are well-defined for the considered test
cases.

5.1.2. Discussion of the D&C method. We examine the D&C method by varying
the parameters in the method, and comparing several implementations of this method in the
next experiments.

Previously, we have taken ρ = γnx with γ = 3 and m = φnx with φ = round(ny/2) in the
D&C method. The parameter γ controls the number of recursion levels, while φ determines
the sizes of the blocks C1 and C2 of the matrix C. In the next experiment, we examine
whether the ‘standard’ parameters are optimal by varying them for a specific test case. The
results can be found in Table 5.2.

φ γ = 3 γ = 5 γ = 7

round(ny/2) 14 16 18
round(ny/3) 16 16 18
round(ny/4) 18 18 20

Table 5.2

Results of the SL experiment with n = 100 and τ = 0.1. The computational time (in seconds) is
presented for the original D&C method with different values of m = φnx and ρ = γnx. Similar results are
obtained for different values of n and τ .

From Table 5.2, it can be observed that increasing γ usually leads to worse results, as it is
inefficient to apply direct inversion to relatively large matrices. Moreover, φ = round(ny/2)
seems to be the optimal choice, which means that C1 and C2 should have approximately
equal dimensions. Decreasing φ yields an easier solve of C1U1 = E1, while solving C2U2 = E2

become the dominating part of the computations in the D&C method.
In the next experiment, we test two implementations of the D&C method The original

D&C method as used above (with γ = 3 and φ = round(ny/2)) is denoted by D&C1, while
D&C2 denotes the variant in which P(C−1

j ) is computed on higher recursive levels instead
of solving CjUj = Ej explicitly (see §2.4). Both methods are also extended with a dropping
procedure according to Eq. (2.14), which is applied to all recursion levels as long as nx ≥ 25.
We take ǫ = 0 (i.e., no dropping), ǫ = 10−6, and ǫ = 10−3 in the test cases. Table 5.3 gives
the results of this experiment.

From Table 5.3, we can observe that the original D&C1 implementation is faster than
the alternative D&C2 variant, when n is relatively large and no dropping is applied. On the
other hand, by applying a dropping procedure, the D&C2 method becomes more favorable
while the accuracy is still reasonable. This is in agreement with the arguments given in §2.4.
We also notice that the dropping percentage depends on the choice of τ , and it can approach
100% for τ ≥ 1. When A is less favorable (i.e., A is less diagonally dominant and more
strongly indefinite), fewer matrix entries can be dropped, so that a D&C approach with a
dropping procedure becomes less effective.

Moreover, by comparing the results in Table 5.1 and 5.3, we notice that, for almost all
n and τ , the DD method (without dropping) is still faster than all D&C implementations
tested here. The major bottleneck is solving U := C−1E, especially when n is large. An
efficient implementation of the D&C method should address this problem, for example by
adopting iterative methods and/or domain decomposition solvers.

5.1.3. Discussion of the DD method. To examine the DD method, we perform
several experiments in which different implementations of the DD method are used. First,
we test the original DD method for a different number of subdomains, p, see Table 5.4.

18



(a) τ = 10.

ǫ = 0 ǫ = 10−6 ǫ = 10−3

√
n D&C1 D&C2 D&C1 D&C2 D&C1 D&C2

50 1.3 1.1 1.4 (1E-9; 97%) 0.6 (7E-10; 93%) 1.4 (3E-3; 100%) 0.5 (2E-3; 99%)
100 14 18 15 (1E-9; 98%) 6.6 (7E-10; 96%) 14 (3E-3; 100%) 5.1 (2E-3; 99%)
200 238 601 169 (1E-9; 99%) 82 (7E-10; 98%) 165 (3E-3; 100%) 67 (2E-3; 100%)

(b) τ = 1.

ǫ = 0 ǫ = 10−6 ǫ = 10−3

√
n D&C1 D&C2 D&C1 D&C2 D&C1 D&C2

50 1.5 1.0 1.4 (3E-8; 66%) 1.0 (4E-7; 66%) 1.3 (7E-4; 96%) 0.7 (2E-3; 90%)
100 16 17 14 (3E-8; 91%) 9.9 (4E-7; 82%) 13 (7E-4; 99%) 6.4 (2E-3; 95%)
200 189 326 155 (3E-8; 98%) 105 (5E-7; 90%) 151 (7E-4; 100%) 77 (2E-3; 97%)

(c) τ = 0.1.

ǫ = 0 ǫ = 10−6 ǫ = 10−3

√
n D&C1 D&C2 D&C1 D&C2 D&C1 D&C2

50 1.2 1.1 1.8 (2E-7; 50%) 1.4 (3E-5; 50%) 1.3 (5E-3; 84%) 0.7 (9E-2; 87%)
100 15 17 20 (2E-7; 34%) 17 (3E-5; 35%) 14 (5E-3; 96%) 6.7 (9E-2; 93%)
200 173 304 202 (2E-7; 80%) 174 (4E-5; 81%) 159 (6E-3; 99%) 77 (1E-1; 97%)

Table 5.3

Results of the SL experiment for various τ , n, and implementations of the D&C method. The computa-
tional time (in seconds) is presented for the D&C1 and D&C2 methods. When ǫ > 0, the relative error and
the average dropping percentage at the lowest recursion level are presented in brackets. Denote the solution

for ǫ > 0 and ǫ = 0 by Dǫ and D0, respectively. Then, the relative error is defined by ||Dǫ−D0||2
||D0||2

. The

dropping percentage is defined as the ratio of the number of dropped entries to the number of nonzeros in
the specific matrix multiplied by 100%.

√
n p = 4 p = 9 p = 16

25 .1 .2 .2
50 .6 .6 1.9
100 5.8 5.8 15.3
200 62 48 139

Table 5.4

Results of the SL experiment with τ = 1 and various values of n. The computational time (in seconds)
is presented for the original DD method with different values of p. Similar results are obtained for different
choices of τ .

In Table 5.4, it can be seen that, with the current implementation, the DD method
performs best for p = 4 or p = 9. For a large n, the DD method with p = 9 seems to be
the optimal choice, because Hj := B−1

j Fj can be computed with a relative ease (as each Bj

is relatively small) while the effort to compute S−1 directly is relatively moderate (as the
number of interface points is not too large).

Next, we perform an experiment in which a dropping procedure is added to the DD
method, similarly to what is done in §5.1.2. When nj ≥ 252, entries of Hj that are smaller

19



than ǫ||Hj || in modulus are dropped. The results of this experiment are presented in Table 5.5
(cf. Table 5.3).

(a) τ = 10.
√
n ǫ = 0 ǫ = 10−6 ǫ = 10−3

50 .6 .6 (6E-11; 97%) .6 (6E-5; 100%)
100 5.9 4.6 (8E-11; 99%) 4.5 (8E-5, 100%)
200 64 40 (9E-11; 99%) 39 (8E-5, 100%)

(b) τ = 1.
√
n ǫ = 0 ǫ = 10−6 ǫ = 10−3

50 .6 .6 (4E-11; 35%) .6 (3E-5, 90%)
100 5.8 4.9 (8E-11; 80%) 4.4 (4E-5; 97%)
200 62 41 (1E-10; 95%) 39 (5E-5; 99%)

(c) τ = 0.1.
√
n ǫ = 0 ǫ = 10−6 ǫ = 10−3

50 .6 .6 (6E-11; 0%) .6 (2E-4; 42%)
100 6.1 7.3 (4E-10; 1%) 4.7 (2E-4; 83%)
200 67 71 (6E-10; 57%) 43 (3E-4, 95%)

Table 5.5

Results of the SL experiment for different values of τ and n. The computational time (in seconds) is
presented for the DD method with and without dropping. When ǫ > 0, the relative error and the average
dropping percentage at the lowest recursion level are presented in brackets.

Table 5.5 suggests that the addition of a dropping procedure is beneficial to the DD
method, especially when τ and n are large. The dropping percentage grows for an increas-
ing τ , and a more significant reduction of the computing time can be realized for the DD
method with dropping as we increase n. We also observe that the accuracy of the solution
scales with roughly ǫ2, which is a favorable property of the method.

Subsequently, we perform an experiment in which we fix τ but vary p and ǫ in the
DD method. We make a comparison with a standard LU factorization of A (by using the
MATLAB command lu(A)). This is done in order to give an idea on how the DD method
performs relative to other methods mentioned in Section 1 where a matrix factorization is
required.

ǫ = 10−6 ǫ = 10−3

√
n LU p = 4 p = 9 p = 4 p = 9

100 1.6 4.9 (8E-11; 80%) 5.6 (8E-11; 59%) 4.4 (4E-5; 97%) 5.0 (5E-5; 94%)
200 23 41 (1E-10; 95%) 35 (8E-11; 88%) 39 (5E-5; 99%) 32 (4E-5; 98%)
300 111 148 (1E-10; 92%) 129 (1E-10; 95%) 138 (5E-5; 100%) 117 (6E-5; 99%)

Table 5.6

Results of the SL experiment with τ = 1 and a varying n. The computational time (in seconds) is
presented for the LU factorization and the DD method, where various values for p and ǫ are taken. When
ǫ > 0, the relative error and the average dropping percentage at the lowest recursion level are presented in
brackets.

Observe in Table 5.6 that for a large n, the DD method with p = 9 is faster than

20



the same method with p = 4, although the dropping percentage is usually smaller for a
larger p. More interestingly, for an increasing n, the difference between the DD method
and the LU factorization becomes smaller. A conclusion from this observation, is that the
DD method seems to be at least competitive to methods based on matrix factorization, since
those methods usually require a factorization as a first step and then additional computations
to extract the diagonal D(A−1). This is at least as far as what an experiment with MATLAB
allows to conclude. A full-fledged experiment with a production-level language, such as C or
FORTRAN, is still needed and will be performed in the future.

We conclude the discussion on the DD method with an experiment in which we apply
iterative solvers as an tool in the DD method, with or without the use of a dropping strategy.
The Krylov-subspace method GMRES [15] is employed with a simple diagonal preconditioner
to solve each sequence of linear systems, BjHj = Fj . The iterative process is terminated
when the norm of the relative residual is smaller than a threshold, δ. The results of this
experiment are provided in Table 5.7. In contrast to the previous tables, we only present the
average number of GMRES iterations and the accuracy of the final solution, and omit the
corresponding computational time. This is because the computational advantage of using
iterative methods is small in MATLAB, and iterative methods do not provide a significant
advantage over direct methods for 2-D problems.

(a) ǫ = 0.

τ δ = 10−12 δ = 10−6 δ = 10−3

10 15 (2E-16) 7 (2E-10) 3 (7E-7)
1 72 (3E-14) 35 (2E-9) 16 (5E-6)

0.1 115 (5E-13) 69 (8E-7) 30 (8E-4)

(b) ǫ = 10−6.

τ δ = 10−12 δ = 10−6 δ = 10−3

10 15 (6E-11) 7 (1E-10) 3 (7E-7)
1 72 (4E-11) 35 (2E-9) 16 (5E-6)

0.1 115 (5E-13) 69 (8E-7) 30 (8E-4)

(c) ǫ = 10−3.

τ δ = 10−12 δ = 10−6 δ = 10−3

10 15 (6E-5) 7 (6E-5) 3 (6E-5)
1 72 (3E-5) 35 (3E-5) 16 (3E-5)

0.1 115 (2E-4) 69 (2E-4) 30 (8E-4)

Table 5.7

Results of the SL experiment with n = 502 and a various τ . The DD method is examined, where the
dropping tolerance, ǫ, and the GMRES termination tolerance, δ, are varied. The average number of GMRES
iterations on the lowest recursion level is presented. The relative error of the computed D(A−1) is given in
brackets. Similar results are obtained for different values of n.

A few interesting observations can be made from Table 5.7 A smaller τ leads to more
GMRES iterations in the DD method. In an efficient implementation, this can be alleviated
by choosing a more appropriate preconditioner. Moreover, a stringent GMRES termination
tolerance, δ, is not always necessary; an accurate D(A−1) might be found without a high
accuracy of the GMRES solver. In addition, the best choice of δ depends on the value of ǫ
and the accuracy required for the final solution. For example, when we consider the test case
with τ = 10 and ǫ = 10−6, and we require that D(A−1) has a maximum relative error of
10−6, then solving each BjHj = Fj iteratively with a GMRES tolerance δ = 10−3 is sufficient
according to Table 5.7.

5.2. Uncertainty Quantification: covariance matrices. Uncertainty Quantifica-
tion (UQ) in risk analysis has become a key issue in, e.g., geology, signal processing, and

21



portfolio management. In this setting, inverse covariance matrices hold a central role. A
crucial question in data analysis for risk management is the degree of confidence that we
can have in the quality of data. A highly useful measure of this quality is provided by the
diagonal entries of the inverse covariance matrix, see also [3] and references therein.

Here, A = [ajk] denotes a model covariance matrix with entries computed via a decaying
covariance function, see [17, Eq. (28)] and [13, Chapter 4.2]. This real and positive-definite
function is based on a uniform 2-D Cartesian grid with

√
n grid points in each direction

(i.e., nx = ny), the Euclidean distance between grid points j and k (denoted by d(j, k)), the
compact threshold α > 0, and the function smoothness β > 0, i.e.,

aj,k :=

{
(

1− d(j,k)
α

)β

, if d(j, k) ≤ α;

0, otherwise.
(5.1)

When α is not too large, the resulting matrix A is sparse, since the covariance between grid
points is zero if their distance exceeds α. Moreover, α determines the exact sparsity pattern
of A and the corresponding stencil, see Figures 5.3 and 5.4. The parameter β controls the
diagonal dominance of A.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 784

(a) α = 2.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1936

(b) α = 3.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 3168

(c) α = 4.

Fig. 5.3. Typical sparsity patterns of A for n = 102 and various α derived from Eq. (5.1).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) α = 2 (9-
point stencil).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(b) α = 3 (25-point
stencil).

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(c) α = 4 (45-point stencil).

Fig. 5.4. Stencils associated with the sparsity patterns as depicted in Figure 5.3.

Our aim is to compute D(A−1) for a matrix A with various choices of α and β. In [19], it
has already been shown that the PROBE method is efficient, especially for a relatively small
α and large β. The implementation of the D&C method as used in §5.1 can also be adopted

22



here for the UQ problem. The efficiency of this method will depend on α, as the rank of the
low-rank matrix L and, hence, the number of columns of E increase as α grows. For example,
we now have q = nx + 1, 2nx + 2, 3nx + 2 for α = 2, 3, 4, respectively. The implementation
of the DD method also remains the same as before, except the choice of the interfaces in
the domain decomposition setting. From Figure 5.4, it can be easily seen that if we choose
θx = θy = 1 for α > 2, the resulting matrix B is not block-diagonal, while that is essential
in the DD method. To preserve disjoint subdomains in the domain decomposition setting
and to guarantee an accurate solution, the thickness of the interfaces should be related to
the choice of α. In our experiments, we therefore choose θx = θy = α − 1. As the number
of interface points grows with an increasing value of α, we expect that the DD method will
become less efficient for a large α.

In the first experiment, we test the methods for a fixed n, and a varying α and β. The
results are given in Table 5.8.

(a) α = 2.

β INV PROBE D&C DD

6 18 2.0 (38) 2.9 1.6
4 16 3.2 (83) 2.5 1.6
2 17 21 (363) 2.4 1.6

(b) α = 3.

β INV PROBE D&C DD

6 26 22 (363) 6.6 4.1
4 26 53 (627) 6.8 4.2
2 26 450 (2211) 6.9 4.2

(c) α = 4.

β INV PROBE D&C DD

6 41 136 (1209) 13 8.1
4 41 399 (2232) 14 8.2
2 41 n/a 13 8.1

Table 5.8

Results of the UQ experiment with n = 1002 and various values of α and β. The computational time
(in seconds) is presented for the INV, PROBE, D&C, and DD method (without dropping). Furthermore,
‘n/a’ means that the CPU time exceeds 1000 seconds. Similar results can be found for different values of n.

Table 5.8 indicates that, with the current implementation, the PROBE method becomes
less efficient for an increasing α and/or decreasing β, which is in line with the results presented
in [19]. The performance of all methods suffers from a growing α, while the INV, D&C, and
DD methods seem to be more-or-less insensitive to β. In addition, the fastest method in all
test cases is the DD method.

In our next experiment, we focus on the DD method, where we vary the number of
subdomains, p, and apply an extra dropping procedure to sparsify the matrix H . The results
of this experiment are presented for the test case with α = 4 and a varying β, see Table 5.9.

Table 5.9 shows that the DD method performs better with p = 4 than with p = 9. This
can be explained by the fact that the computation of S−1 costs more for the case of p = 9.
In addition, the dropping procedure is highly effective for p = 4, as many entries of H can
be dropped without losing much accuracy of the solution.

5.3. Dynamic Mean-Field Theory: Green’s function. Dynamic Mean-Field The-
ory (DMFT) has recently emerged as an important tool in the investigation of lattice models
of highly correlated electrons in a quantum many-body system, see [4] and the references
therein. For the inhomogeneous DMFT method, the computation of the diagonal of the

23



ǫ = 0 ǫ = 10−6 ǫ = 10−3

β p = 4 p = 9 p = 4 p = 9 p = 4 p = 9

6 8.1 29 4.0 (7E-10; 99%) 26 (1E-9; 98%) 3.9 (3E-5; 100%) 26 (4E-5; 100%)
4 8.2 29 4.1 (6E-10; 97%) 26 (9E-10; 94%) 3.9 (2E-5; 100%) 26 (2E-5; 100%)
2 8.1 31 4.9 (8E-11; 85%) 30 (9E-11; 68%) 4.0 (3E-5; 98%) 28 (4E-5; 95%)

Table 5.9

Results of the UQ experiment for n = 1002 and α = 4. The computational time (in seconds) is presented
for the DD method with different values of p and ǫ. When ǫ > 0, the relative error and the average dropping
percentage at the lowest recursion level are presented in brackets. Similar results can be found for a different n
and α.

inverse of a large collection of sparse matrices is required. These inverses correspond to
problems associated with the real and imaginary time Green’s functions, respectively. Both
problems are related by the chemical potential, µ ∈ R, and are solved for different values of
the frequency, ω ∈ R. A typical form of the complex symmetric matrix A is

A := K +D, K ∈ {0, 1}n×n, D ∈ C
n×n. (5.2)

The matrix K is known as a 2-D hopping matrix, which has a similar sparsity pattern as
a standard 2-D Laplacian matrix. The entries of the main diagonal of K are zero, and the
entries of the four nonzero off-diagonals are equal to -1. The matrix D is a sum of various
diagonal matrices, and varies for each ω. For the imaginary time Green’s function, D is given
such that A is often diagonally dominant and positive-definite. Consequently, A−1 shows an
exponential decay property, so that many entries are small. In this case, the PROBE method
is highly efficient, see [19]. In the specific case of the real time Green’s function, the diagonal
matrix D is given as follows:

D = (µ+ ω)In − V − Σ, V ∈ R
n×n, Σ ∈ C

n×n, (5.3)

where V and Σ represent the trap potential and local self-energy, respectively. A detailed
explanation and analysis can be found in [4]. The resulting matrix A is often indefinite and
not diagonally dominant, see Figure 5.5 where a typical diagonal of A is presented for various
values of n. Consequently, the PROBE method is not efficient for this case, as it requires
too many probing vectors. Instead, we test the performance of the D&C and DD method
for this problem. The results of the experiment with A based on Figure 5.5 can be found in
Table 5.10.

100 200 300 400

−0.4

−0.2

0

0.2

0.4

0.6

Diagonal of A

 

 

Real part
Imaginary part

(a) n = 212.

500 1000 1500 2000 2500

−0.4

−0.2

0

0.2

0.4

0.6

Diagonal of A

 

 

Real part
Imaginary part

(b) n = 512.

1000 2000 3000 4000 5000 6000

−0.4

−0.2

0

0.2

0.4

0.6

Diagonal of A

 

 

Real part
Imaginary part

(c) n = 812.

Fig. 5.5. The real and imaginary parts of D(A) in the DMFT experiment for various values of n. The
sparsity pattern and the off-diagonals of A are the same as in the SL problem.

24



√
n INV D&C DD

21 .3 .1 .1
51 12 1.4 .7
81 88 7.7 2.8

Table 5.10

Results of the DMFT experiment for different values of n. The computational time (in seconds) is
presented for the INV, D&C, and DD method (without dropping). The PROBE method is not suitable in
this experiment, as it requires too many probing vectors.

The results as presented in Table 5.10 are similar to those of Table 5.1. For larger n,
the cost of direct inversion grows fast, while the D&C and DD approaches still perform
reasonably well. The fastest method in the experiment is the DD approach.

As in the experiments of the previous test problems, we can also combine the D&C and
DD method with a dropping procedure, see Table 5.11 for some results.

ǫ D&C DD

0 7.7 2.8
10−6 12 (8E-9; 26%) 3.4 (3E-11; 5%)
10−3 8.5 (1E-4; 84%) 2.6 (1E-5; 67%)

Table 5.11

Results of the DMFT experiment for n = 812, where the D&C and DD method are examined for different
values of ǫ. The computational time (in seconds) is presented. When ǫ > 0, the relative error and the average
dropping percentage at the lowest recursion level are presented in brackets.

Since the matrix A is less favorable than those seen in previous test problems, it can be
observed in Table 5.11 that the dropping procedure is less advantageous for both the D&C
and DD method, especially when a high accuracy of the solution is desired. Solving sequences
of linear systems dominates the computations in both methods. Future work will examine
how to mitigate this by incorporating more advanced and efficient direct or iterative solvers.

6. Conclusions and future work. Two methods have been presented to extract the
diagonal entries of the inverse of a matrix. The divide-and-conquer method decouples the
physical domain recursively, where a decoupled problem is solved and corrected at each re-
cursion level. The domain decomposition method relies on local subdomain solves and a
Schur complement correction, but it can also be extended such that it becomes a recursive
procedure. Both methods rely on a simple algorithm, while an efficient implementation usu-
ally requires a careful book keeping of computations and more advanced computational tools.
In the experiments, we show that a standard implementation of the divide-and-conquer and
domain decomposition methods work well for general problems. These methods also prove
to benefit from the use of sparse approximation and iterative methods when the considered
matrix is (nearly) diagonally dominant. In the specific case when the matrix is strongly di-
agonally dominant, the proposed methods are good competitors to the probing method [19].

Both the divide-and-conquer and domain decomposition methods appear to be promising
for a parallel computing environment. Future research should explore ideas to improve the
different components of the proposed methods with a focus on their parallel implementation
and their application to large and realistic 3-D problems.

Acknowledgments. The authors are indebted to Jie Chen for providing them with the
covariance matrix generator and Pierre Carrier for his help with the DMFT code. They also

25



wish to thank the referees for their constructive comments which helped improve the quality
of the paper.

REFERENCES

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2001.

[2] P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Uçar. On computing inverse entries of a sparse
matrix in an out-of-core environment. Technical Report TR/PA/10/59, CERFACS, Toulouse,
France, 2010.

[3] C. Bekas, A. Curioni, and I. Fedulova. Low cost high performance uncertainty quantification. In
WHPCF ’09: Proc. of the 2nd Workshop on High Performance Computational Finance, pages
1–8, New York, NY, USA, 2009. ACM.

[4] J. K. Freericks. Transport in Multilayered Nanostructures. The Dynamical Mean-Field Theory Ap-
proach. Imperial College, London, UK, 2006.

[5] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Univ. Press, Baltimore, MD,
1996. Third edition.

[6] W. W. Hager. Updating the inverse of a matrix. SIAM Rev., 31(2):221–239, 1989.
[7] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. SIAM Rev., 23(1):53–60,

1981.
[8] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and sparse matrix order-

ing system. Technical report, Department of Computer Science, University of Minnesota, 1998.
Available at http://www.cs.umn.edu/~metis.

[9] S. Li, S. Ahmed, G. Klimeck, and E. Darve. Computing entries of the inverse of a sparse matrix using
the FIND algorithm. J. Comput. Phys., 227(22):9408–9427, 2008.

[10] Z. Li, Y. Saad, and M. Sosonkina. pARMS: a parallel version of the algebraic recursive multilevel solver.
Num. Lin. Alg. Appl., 10:485–509, 2003.

[11] L. Lin, J. Lu, R. Car, and W. E. SelInv – an algorithm for selected inversion of a sparse symmetric
matrix. ACM Trans. Math. Software, 2010 (to appear).

[12] L. Lin, J. Lu, L. Ying, R. Car, and W. E. Fast algorithm for extracting the diagonal of the inverse
matrix with application to the electronic structure analysis of metallic systems. Commun. Math.
Sci., 7:755–777, 2009.

[13] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cam-
bridge, MA, 2006.

[14] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, USA, 2003. Second
edition.

[15] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

[16] Y. Saad and B. Suchomel. ARMS: An algebraic recursive multilevel solver for general sparse linear
systems. Num. Lin. Alg. Appl., 9, 2002.

[17] K.P. Schmitt, M. Anitescu, and D. Negrut. Efficient sampling for spatial uncertainty quantification in
multibody system dynamics applications. Int. J. Numer. Meth. Eng., 80(5):537–564, 2009.

[18] R. B. Sidje and Y. Saad. Rational approximation to the Fermi-Dirac function with applications in
density functional theory. Technical Report UMSI 2008/279, Minnesota Supercomputing Institute,
University of Minnesota, 2008.

[19] J. M. Tang and Y. Saad. A probing method for computing the diagonal of the matrix inverse. Technical
Report UMSI 2010/42, Minnesota Supercomputing Institute, University of Minnesota, 2010.

26


