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Abstract. In physics, it is sometimes desirable to compute the so-called Density Of States
(DOS), also known as the spectral density, of a Hermitian (or symmetric) matrix A. The spectral
density can be viewed as a probability density distribution that measures the likelihood of finding
eigenvalues near some point on the real line. The most straightforward way to obtain this density
is to compute all eigenvalues of A. But this approach is generally costly and wasteful, especially for
matrices of large dimension. There exist alternative methods that allow us to estimate the spectral
density function at much lower cost. The major computational cost of these methods is in multiplying
A with a number of vectors, which makes them appealing for large-scale problems where products of
the matrix A with arbitrary vectors are inexpensive. This paper defines the problem of estimating
the spectral density carefully. It then surveys a few known methods for estimating the spectral
density, and proposes some new variations of existing methods. All methods are discussed from a
numerical linear algebra point of view.
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1. Introduction. Given an n × n Hermitian (sparse real symmetric in what
follows) matrix A, scientists in various disciplines often want to compute its Density
Of States (DOS), or spectral density. Formally, the DOS is defined as

φ(t) =
1

n

n∑

j=1

δ(t− λj), (1.1)

where δ is the Dirac δ-function or Dirac distribution, and the λj ’s are the eigenvalues
of A, assumed here to be labeled increasingly. We also denote by uj the eigenvector
corresponding to λj , so A has the eigen-decomposition

A =

n∑

j=1

λjuju
T
j . (1.2)

The number of eigenvalues in an interval [a, b] can be expressed as

η[a,b] =

∫ b

a

∑

j

δ(t− λj) dt ≡
∫ b

a

nφ(t)dt . (1.3)

Therefore, one can view φ(t) as a probability distribution function which gives the
probability of finding eigenvalues of A in a given infinitesimal interval near t. Ideally,
if one has access to all the eigenvalues of A, computing the DOS would become a
trivial task. However, in many scientific applications the matrix size is too large
for eigenvalue solvers to be efficiently applied, especially when a large number of
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eigenvalues are needed. Alternative algorithms that do not require all the eigenvalues
of A are therefore of great interest in practice.

In solid state physics and electronic structure theory [3, 40], eigenvalues of a
Hamiltonian matrix usually represent single-particle energy levels. The corresponding
DOS gives the number of single-particle energy levels per unit energy. The DOS can
also be used to characterize the so-called valence band (energy levels below the chem-
ical potential) and the conduction band (energy levels beyond the chemical potential)
along the energy spectrum. The gap between the valence band and the conduction
band is called the band-gap, and the DOS inside the band-gap is zero.

In the study of excited state properties of electrons, the joint DOS associated
with both the conduction and valence bands allows one to examine the interband
transitions owing to the absorption and emission of light [40, 35].

At the molecular level, the DOS of the phonon spectrum or the normal modes of
molecules, which are related to the eigenvalues of the Hessian of the potential function
with respect to atomic coordinates, characterizes thermodynamic properties of solids
or molecules. The DOS can also be used as a spectral measure for integrating certain
quantities to yield the heat capacity and the entropy of a molecular system. For
example, the heat capacity Cv of a molecular system has the expression [58]:

Cv = kB

∫ ∞

0

(~ωc/kBT )
2e−~ωc/kBTφ(ω)

(1− e−~ωc/kBT )2
dω, (1.4)

where kB is the Boltzmann constant, c is the speed of light, ~ is Planck’s constant, T
is the temperature and ω =

√
λ is a vibration frequency.

Efficient algorithms for computing the DOS are also developed and employed for
optical absorption spectra calculations [55], the transition state theory for chemical
reactions [28], quantum transport simulations [17], dynamical correlation function
calculations [10], and many other recent applications [18, 27, 2, 1, 7, 47, 9, 4, 48].

Recall that a Dirac δ-function is not a proper function, it is a member of the
adjoint space of a Hilbert space. It is formally defined through applications to a test
function g:

〈δ(· − λ), g〉 =
∫ ∞

−∞
δ(t− λ)g(t)dt ≡ g(λ),

where g is a rapidly decreasing C∞ function with bounded support. More details on
distributions can be found, e.g., in [44]. Because the spectral density is formally
defined as the sum of Dirac distributions, it may be thought at first that it cannot
be approximated by a smooth function. Indeed, when one views this as a function, it
appears to be highly discontinuous, and so it may seem unwise to try to approximate
it by smooth functions, e.g., polynomials. However, a distribution can also be viewed
as a discretized version of some smooth function after it is sampled at a finite number
of points, and our goal is to approximate that original smooth function. Often in
quantum mechanical applications, the spectrum of the Hamiltonian defined in the
continuous space is continuous, and the function (1.1) shown above can then be viewed
as just a discrete version of a continuous function.

A rigorous approach to mitigate the issue, one that has both theoretical and
practical importance, is to consider a continuous version of the distribution φ obtained,
in essence, by “blurring” it. For example, we can consider a function of the form:

φσ(t) =
1

n

n∑

j=1

hσ(t− λj), (1.5)



SPECTRAL DENSITIES OF LARGE MATRICES 3

in which hσ(t) can be any infinitely differentiable function whose integral in (−∞,∞)
is one, and which is zero or very small outside of a narrow interval [−Cσ,Cσ] where
C > 0 is a small constant independent of σ. One example is the Gaussian function:

hσ(t) =
1

(2πσ2)1/2
e−

t
2

2σ2 . (1.6)

Such a setup may be appealing and can help establish some theory as well as develop
algorithms as will be seen later.

A related question one might have is: How can we compare the original density φ
with an approximate one φ̃? The distribution φ is obtained as the limit of a sequence
of functions φσ ∈ C∞ with compact support, in the sense that

lim
σ→0

〈φσ, g〉 = 〈φ, g〉,

for every C∞ and compactly supported function g. Since

|〈φσ − φ̃, g〉| ≤ ‖φσ − φ̃‖1‖g‖∞,
|〈φσ − φ̃, g〉| ≤ ‖φσ − φ̃‖2‖g‖2,
|〈φσ − φ̃, g〉| ≤ ‖φσ − φ̃‖∞‖g‖1,

where ‖·‖p stands for the Lp norm, we will only need to first approximate the “true”

DOS φ by a “surrogate” DOS φσ, and then measure the distance between φσ and φ̃
either in the L1, L2 or L∞ sense to quantify the error.

The goal then is to find a smooth approximation to the spectral density function
φ. Because calculating the spectral density is such an important problem in quantum
mechanics, there is an abundant literature devoted to this problem and research in this
areas was extremely active in the 1970s and 1980s. Clever and powerful methods have
been developed by physicists and chemists [15, 54, 13, 57] for this purpose and this
paper will review a few of them from a linear algebra viewpoint. What is striking about
research in this area is the wide variety of methods used as well as the mathematical
depth of the various techniques.

The Kernel Polynomial Method [50, 56] expands the spectral density in a basis of
orthogonal polynomials by resorting to the reproducing kernel property of orthogonal
polynomials. The method, which is widely used in a variety of calculations that require
the DOS [16], has continued to receive a tremendous amount of interest in the last
few years [16, 8, 32, 49]. Haydock’s method [26] exploits the Lanczos algorithm [36]
in an effort to evaluate functions of the form f(t) = vT (A− (t+ iη)I)−1v whose peaks
reveal the presence of nearby poles, i.e. approximate eigenvalues of A. Its use for
DOS calculation has recently been discussed in [5, 39, 6]. The Lanczos algorithm itself
can be used to estimate the spectrum and the spectral density associated with each
estimated eigenvalue. Lanczos also proposed a method [37], termed a “spectroscopic”
approach, which turns out to be better suited for calculating spectral densities than
actual spectra of Hermitian matrices. Lanczos’s technique also relies on detecting
peaks of a certain function, that are indicative of the presence of eigenvalues.

In this paper we wish to take a careful look at the problem of computing the
DOS and to describe a few common techniques used in the literature. One of our
goals is to expose these techniques from a numerical linear algebra viewpoint. Not
all methods described are new, but we will see a new way of developing the Kernel
Polynomial Method, which may have a few advantages. In order to directly compute
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the surrogate DOS φσ, we will also describe a new algorithm based on orthogonal
expansions of Gaussian functions, as well a method based on using the standard
Lanczos algorithm. The next section will discuss spectral density functions in some
detail.

2. Spectral densities as regular functions. One of the first questions one
might ask when studying spectral densities is: how can we evaluate accuracy? This
was briefly discussed in the introduction. A practical viewpoint is to evaluate ‖φσ−φ̃‖p
with the norm p being 1, 2 or ∞ where φσ is a certain smoothed version of φ. The
function φσ can be viewed as a surrogate of φ which can be used for practical purposes.
This viewpoint becomes useful for example for the purpose of plotting a spectral
distribution for visually comparing it with some approximation.

Let us consider this issue in some more detail. When drawing spectral density
curves, we will be interested in some approximations to the density functions shown
above. The first approximation that comes to mind is to exploit the “probabilistic”
interpretation of φ: we can just subdivide the interval [a, b] into non-overlapping
subintervals Ij = (tj −h/2, tj+h/2) and define the value of φ in Ij to be the constant
ni/n where ni is the number of eigenvalues in Ij . This “histogram” approach will give
a surrogate which is a piecewise constant function φP,h that depends on the interval
width h. A slight variation of this scheme is to replace each of the Dirac functions
δ(t − λi) in (1.3) by a piecewise constant function which has a value of 1/h in an
interval of width h centered at λi and zero elsewhere. We would have:

φ(t) ≈ φP,h(t) =
1

nh

n∑

j=1

χ

(
t− λj
h/2

)

where χ(t) represents the indicator function for the interval [−1, 1], which equals to
one if t is in the interval and zero otherwise. The integral of this function on the
whole real line is one as required. We note that piecewise constant surrogates will
tend to give us rough functions with big variations if the selected width h is small.

A better alternative is to use Gaussians, replacing again each δ(t − λi) by the
function hσ(t − λi) where hσ is defined by (1.6). The parameter σ plays the role of
h in the above case of piecewise constant surrogates. Larger values of σ will lead to
smooth curves at the expense of accuracy. Too small values of σ will again lead to
rough curves that have peaks at the eigenvalues and zeros elsewhere. This is illustrated
in Figure 2.1 where σ takes 4 different values. We can see that as σ increases, φσ
becomes smoother. When σ = 0.96, which corresponds to a very smooth spectral
density, we can still see the global profile of the eigenvalue distribution, although
local variation of the spectral density is mostly averaged out.

One of the methods to be described later will consist of seeking an approximation
of a smoothed version of φ obtained by discretizing the interval [a, b] uniformly and
placing Gaussians at each knot. In this way the function that is approximated is a
regular function.

A heuristic criterion we adopt for choosing σ in the case where uniform intervals
are used is based on starting with some width h that represents the discretization
width of the interval. To obtain a compromise between smoothness and accuracy we
select σ so that the value of each Gaussian at its peak, is κ times its value at the end
point of each sub-interval, where κ is a ratio larger than one. This means that

1 = κe−(h/2)2/(2σ2) → log(κ) =
h2

8σ2
→ σ =

h

2
√
2 log(κ)

. (2.1)
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Fig. 2.1: Various surrogate DOS φσ obtained by blurring the exact DOS (sum of δ-
functions positioned at eigenvalues) of a Hamiltonian matrix associated with a quan-
tum mechanical system.

If κ is close to one, then the overall curve, which is the sum of all the Gaussians will
be very smooth. This is illustrated in Figure 2.2.
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Fig. 2.2: The sum of Gaussians of the form nφσ(t) when hσ is given by (1.6), and σ
is selected according to (2.1) for h = 0.75, κ = 1.75, 1.50, 1.25. The eigenvalues are
located at 1, 2, · · · , 20.

The criterion given by (2.1) is motivated by the case when the distribution is
uniform, as Figure 2.2 illustrates. In this situation, we would like to have a function
that has values not too far from one in the middle of the interval and at the interval
intersections. One can decide on the level of smoothness desired in the final approx-



6 L. LIN, Y. SAAD AND C. YANG

imation and select h and κ accordingly. One can choose h = ∆E/N , where ∆E is
the width of the spectrum, and N is the intended resolution of the DOS. Values of N
between 30 and 100 and κ between 1.25 and 2.0 seem to serve as reasonable “default”
selections.

When calculating these functions for the different λi we only need to evaluate the
Gaussians at points nearby a given site λi because of the rapid decay of Gaussians.
A calculation similar to the one given above will tell us which intervals are to be kept
if we need the accuracy to be within a certain tolerance.

We remark that the optimal choice of σ, and therefore the smoothness of the
approximate DOS, is application dependent. Ideally, σ should be chosen to be as
large as possible so that the surrogate DOS φσ is easy to approximate numerically.
However, increasing σ could cause an undesirable loss of detail and yield an erroneous
result, e.g, when computing the heat capacity discussed in Section 1. It is up to the
user to select a value of σ that balances accuracy and efficiency.

3. The Kernel Polynomial Method. The Kernel Polynomial Method (KPM)
was proposed by Silver and Röder [50] and Wang [56] in the mid-1990s to calculate
the DOS. See also [51, 52, 14, 41] among others where similar approaches were also
used.

The KPM method essentially determines the exact DOS of a matrix as a sum
of Dirac δ-functions by its expansion in Chebyshev polynomials. For simplicity we
assume that the eigenvalues are in the interval [−1, 1]. As is the case for all meth-
ods which rely on Chebyshev expansions, a change of variables is first performed to
map the interval [λmin, λmax] into [−1, 1]. The goal is to estimate the spectral density
function (1.1). For this, we will approximate φ(t) by a finite expansion in a basis of
orthogonal polynomials, in this case, Chebyshev polynomials of the first kind. Follow-
ing the Silver-Röder paper [50], we include, for convenience, the inverse of the weight
function into the spectral density function, so we expand instead the distribution:

φ̂(t) =
√
1− t2φ(t) =

√
1− t2 × 1

n

n∑

j=1

δ(t− λj). (3.1)

Then, we have the (full) expansion

φ̂(t) =

∞∑

k=0

µkTk(t). (3.2)

where the expansion coefficients µk are formally defined by

µk =
2− δk0
π

∫ 1

−1

1√
1− t2

Tk(t)φ̂(t)dt

=
2− δk0
π

∫ 1

−1

1√
1− t2

Tk(t)
√

1− t2φ(t)dt

=
2− δk0
nπ

n∑

j=1

Tk(λj). (3.3)

Here δij is the Kronecker δ symbol so that 2− δk0 is equal to 1 when k = 0 and to 2
otherwise.

Thus, apart from the scaling factor (2 − δk0)/(nπ), µk is the trace of Tk(A) and
this can be estimated by various methods including, but not limited to, stochastic
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approaches. There are variations on this idea starting from the use of different or-
thogonal polynomials, to alternative ways in which the traces can be estimated.

A common solution to the problem of estimating Trace(Tk(A)) is to use a stochas-
tic argument as suggested in [50] and, e.g., also in [29, 53]. This entails generating a

large number of random vectors v
(1)
0 , v

(2)
0 , · · · , v(nvec)

0 with each component obtained
from a normal distribution with zero mean and unit standard deviation, and each

vector is normalized such that ‖v(l)0 ‖ = 1, l = 1, . . . , nvec. The subscript 0 is added
to indicate that the vector has not been multiplied by the matrix A. Then we can
estimate the trace of Tk(A) as follows:

Trace(Tk(A)) ≈
1

nvec

nvec∑

l=1

(
v
(l)
0

)T
Tk(A)v

(l)
0 . (3.4)

Then this will lead to the desired estimate:

µk ≈ 2− δk0
nπnvec

nvec∑

l=1

(
v
(l)
0

)T
Tk(A)v

(l)
0 . (3.5)

Now we consider the computation of each term
(
v
(l)
0

)T
Tk(A)v

(l)
0 . For simplicity

we drop the superscript l and denote by v0 ≡ v
(l)
0 . The 3-term recurrence of the

Chebyshev polynomial is exploited to compute Tk(A)v0:

Tk+1(A)v0 = 2ATk(A)v0 − Tk−1(A)v0 (3.6)

so if we let vk ≡ Tk(A)v0, we have

vk+1 = 2Avk − vk−1.

Once the scalars {µk} are determined, we would in theory get the expansion for

φ(t) = 1√
1−t2

φ̂(t). Practically however, the approximate density of states will be

limited to Chebyshev polynomials of degree M , so φ is approximated by:

φ̃M (t) =
1√

1− t2

M∑

k=0

µkTk(t). (3.7)

For a general matrixA whose eigenvalues are not necessarily in the interval [−1, 1],
a linear transformation is first applied to A to bring its eigenvalues to the desired
interval. Specifically, we will apply the method to the matrix

B =
A− cI

d
,

where

c =
λmin + λmax

2
, d =

λmax − λmin

2
. (3.8)

It is important to ensure that the eigenvalues of B are within the interval [−1, 1].
In an application requiring a similar approach [59], we obtain the upper and lower
bounds of the spectrum from Ritz values provided by a standard Lanczos iteration.
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We ran a few Lanczos steps but extended the interval [λmin, λmax] by using the bounds
obtained from the Lanczos algorithm.

Specifically, the upper bound for λmax, for example, is set to [λ̃n, λ̃n + η] where

η = ‖(A− λ̃nI)ũn‖, and (λ̃n, ũn) is the (algebraically) largest Ritz pair of A. This is

plausible because we know that there is an eigenvalue in the interval [λ̃n, λ̃n + η] (see

e.g., [46].) Even though there is no theoretical guarantee that [λ̃n, λ̃n + η] is indeed
an upper bound for λmax, in practice it often is. Refined bounds which invoke the
square of η ([46]) can also be used. Note that η can be computed without explicitly
computing the eigenvector ũn. To summarize, we outline the major steps of the KPM
for approximating the spectral density of a sparse matrix in Algorithm 1.

Algorithm 1: The Kernel Polynomial Method.

Input: Real symmetric matrix A. A set of points {ti} at which DOS is to be
evaluated, the degree M of the expansion polynomial.

Output: Approximate DOS {φ̃M (ti)}.

1: Set µk = 0 for k = 0, · · · ,M ;
2: for l = 1 : nvec do

3: Select a new random vector v
(l)
0 ;

4: for k = 0 :M do

5: Compute Tk(A)v
(l)
0 using 3-term recurrence (3.6);

6: Update µk using (3.5);
7: end for

8: end for

9: Evaluate the average value of {φ̃M (ti)} at the given set of points {ti} using (3.7);

Because the KPM method amounts to approximating a discontinuous function,
it may lead to some numerical difficulties. The Dirac δ-function can be viewed as the
derivative of the Heaviside step function H(t) such that

H(t) =

{
1, t ≥ 0,

0, t < 0.
(3.9)

The discontinuity at 0 causes the polynomial approximation ofH(t) and δ(t) to exhibit
rapid oscillations around t = 0. These so-called Gibbs oscillations can lead to loss of
accuracy in the approximate DOS generated by KPM. A common approach used to
damp these oscillation, is to use the Chebyshev-Jackson approximation [30, 45, 31],
which modulates the coefficients µk with a damping factor gMk defined by

gMk =

(
1− k

M+1

)
sin(αM ) cos(kαM ) + 1

M+1 cos(αM ) sin(kαM )

sin(αM )
, (3.10)

where αM = π
M+1 . Consequently, the damped Chebyshev expansion has the form

φ̃M (t) =

M∑

k=0

µkg
M
k Tk(t).

Approximations to the δ-function δ(t) by Chebyshev polynomial expansions with and
without the Jackson damping are compared in the left subfigure in Figure 3.1. The
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Fig. 3.1: Chebyshev expansion with and without the Jackson damping for Dirac δ-
function δ(t) (left) and Heaviside function H(t) (right). The Chebyshev polynomial
degree is set to 40.

degrees of both polynomial approximations are set to 40. The right subfigure in
Figure 3.1 shows similar approximations for the Heaviside function H(t). Observe
how the approximate function obtained with Jackson damping is smooth and free of
the rapid oscillations seen in the Chebyshev expansion.

To illustrate how well this algorithm works, we now give an example on using
KPM to approximate the spectral density of a relatively small matrix. The matrix we
use for this example is a modified two-dimensional (2D) Laplacian operator with zero
Dirichlet boundary condition discretized on a domain of size [0, 30] × [0, 30] using a
five-point finite difference stencil. The modification involves adding a diagonal matrix
as a discretized potential function. The diagonal matrix is generated by adding two
Gaussians, one centered at the point (4,5) of the domain and the other at the point
(25,15). In Figure 3.2, we plot both the approximate spectral density constructed by
KPM with a 80-degree Chebyshev polynomial and 10 random vectors for estimating
the trace in (3.4), and the smoothed “exact” spectral density constructed by Gaussian
smoothing with the smoothing parameter σ = 0.56 (obtained by setting κ = 1.25, h =
0.75).
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Fig. 3.2: The approximate spectral density constructed by KPM with a 80-degree
Chebyshev polynomial for the modified 2D Laplacian example with Jackson damping
(left) and without Jackson damping (right).
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From a computational point of view, some savings in time can be achieved if we
are willing to store more vectors. This is due to the formula:

Tp(t)Tq(t) =
1

2

[
Tp+q(t)− T|p−q|(t)

]
,

from which we obtain

Tp+q(t) = 2 Tp(t)Tq(t) + T|p−q|(t).

For a given k we can use the above formula with p = ⌈k/2⌉ and q = k − p. This
requires that we compute and store vr = Tr(A)v0 for r ≤ p. Then the moments
vT0 Tr(A)v0 for r ≤ p can be computed in the usual way, and for r = p+ q > p we can
use the formula:

vT0 Tp+q(A)v0 = 2 vTp vq + vT0 v|p−q|.

This saves 1/2 of the matrix-vector products at the expense of storing all the previous
{vr}. It is not practical for high degree polynomials.

Chebyshev polynomials are not the only types of orthogonal polynomials that can
be used in the expansion. We can use any other type of orthogonal polynomials. The
only practical requirement is that we explicitly know the 3-term recurrence for the
polynomials. For example, we can use the Legendre polynomials Lk(t) which obey
the following 3-term recursion

L0(t) = 1, L1(t) = t, (k + 1)Lk+1(t) = (2k + 1)tLk(t)− kLk−1(t).

See, for example [11], for three-term recurrences for a wide class of such polynomials,
e.g., all those belonging to the Jacobi class, which include Legendre and Chebyshev
polynomials as particular cases.

Figure 3.3 shows the quality of the approximation to the spectral density of the
modified 2D Laplacian matrix obtained from the KPM with a Legendre polynomial
expansion. The degree of the polynomial approximation is set to 80. We observe
that the performance of the Legendre polynomial expansion is similar to that of a
Chebyshev expansion without Jackson damping.
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Fig. 3.3: The approximate spectral density constructed by KPM with a 80-degree
Legendre polynomial for the modified 2D Laplacian matrix.



SPECTRAL DENSITIES OF LARGE MATRICES 11

4. Spectroscopic approaches. In his 1956 book titled “Applied Analysis” [37],
Lanczos described a method for computing spectra of Hermitian matrices, which
he termed “spectroscopic”. This approach, which also relies heavily on Chebyshev
polynomials, is rather unusual in that it assimilates the spectrum of a matrix to a
collection of frequencies and the goal is to detect these frequencies by Fourier analysis.
Because it is not competitive with modern methods for computing eigenvalues, this
technique has lost its appeal. However, it appears to be better suited for computing
approximate spectral densities and so we consider here an adaptation of this approach
for this purpose.

Assume that B is the same matrix as the one in Section 3 which has eigenvalues
in [-1,1]. Let v0 be any initial vector and assume that it is expanded using the
eigenvectors of A as

v0 =

n∑

j=1

βjuj, (4.1)

where the coefficient βj = uTj v0. Consider the vector vk = Tk(A)v0, for k = 0, · · · ,M .
If we set λj = cos θj , then

vT0 vk =

n∑

j=1

β2
j Tk(λj) =

n∑

j=1

β2
j cos(kθj). (4.2)

The number vT0 vk can be viewed as a discretized version of the function

f(t) =

n∑

j=1

β2
j cos(tθj) (4.3)

sampled at the integer values t = 0, · · · ,M . The problem is then to find all values of
θj . In order to find the θj ’s, Lanczos reasoned as follows. The function f is a periodic
function and we can compute its Fourier (in this case cosine) transform:

F (p) =
1

2
(f(0) + (−1)pf(M)) +

M−1∑

k=1

f(k) cos
kpπ

M
, p = 0, · · · ,M. (4.4)

Note that as is customary the end values are halved to account for the discontinuity
of the data at the interval boundaries.

The idea then is that if f has an eigenvalue λ = cos θ, there should be a component
cos(θt), which should be revealed by a peak at the point

p =
lθ

π
.

Indeed, if we had exactly one term of the form f(t) = cos
(
tpπM
)
where 0 ≤ p ≤

M is some integer, then only F (M) would be nonzero. In the end, if we identify
a peak value at pj then, the corresponding eigenvalue λj corresponds to the angle
θj = (pj/M)π, and so, λj = cos(θj) = cos(pjπ/M). In other words, after obtaining
F (p), p = 0, · · · ,M , one can define an associated function

F̂ (p̂) ≡ F

(
M

π
arccos p̂

)
, p̂ = cos(pπ/M), p = 0, · · · ,M. (4.5)
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Then F̂ (p̂) can be interpolated on the entire interval of [−1, 1], and finally the ap-
proximate DOS can be evaluated as

φ̃M (t) = CM F̂

(
t− c

d

)
, (4.6)

where c, d are defined in Eq. (3.8), and CM is a normalization constant so that∫
φ̃M (t)dt = 1.

Note that the quantity ηk ≡ vT0 vk is based on a single vector v0 and this will
cause problems when one or more of the corresponding components βj in (4.1) are
small. To avoid this we will proceed in the same way as with the KPM method by
taking many vectors and averaging the above quantities.

The basic steps of the spectroscopic method are outlined in Algorithm 2. Fig. 4.1
illustrates the performance of the method for the modified 2D Laplacian matrix with
the polynomial degrees set to 40 and 100, respectively. The performance of the spec-
troscopic method is comparable to that of the KPMmethod without Jackson damping.
However, the usage of Jackson damping is more difficult to justify.

Algorithm 2: Lanczos spectroscopic method

Input: Real symmetric matrix A. A set of points {ti} at which the spectral
density is to be evaluated and the degree of Chebyshev polynomial ap-
proximation M .

Output: Approximate DOS {φ̃M (ti)}.

1: Set ηk = 0 for k = 0, · · · ,M ;
2: for l = 1 : nvec do

3: Select a new random vector v
(l)
0 ;

4: for k = 0 :M do

5: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2Av

(l)
k − v

(l)
k−1 (for k = 0,

v
(l)
1 = Av

(l)
0 );

6: Compute ηk ← ηk +
(
v
(l)
0

)T

v
(l)
k ;

7: end for

8: end for

9: Set ηk = ηk/nvec for all k = 0, 1, ...,M ;
10: Take the discrete cosine transform of {ηk} according to Eq. (4.4) to obtain F (p) for

p = 0, 1, ...,M ;
11: Evaluate φ̃M (ti) according to Eq. (4.6) for each ti.

5. The Delta-Chebyshev expansion algorithm. In this section, we will use
the insight provided by the spectroscopic method seen in the previous section to derive
a new algorithm which has some of the features of the spectroscopic method and which
will turn out to be mathematically equivalent to KPM. The main idea relies on an
expansion of the δ-function at a given set of points {ti}.

A δ-function defined at ti can be viewed as a spectral probe at ti. In theory, the
presence of an eigenvalue at ti can be detected by integrating the δ-function over the
entire spectrum of A with respect to a spectral point measure defined at eigenvalues
only, i.e.,

∫
δ(t − ti)dt ≡ ∑n

i=1 δ(λi − ti)/n. The integral returns +∞ if ti is an
eigenvalue of A and 0 otherwise. However, in practice, this integration cannot be
performed without knowing the eigenvalues of A in advance.
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Fig. 4.1: The approximate spectral density constructed by the spectroscopic method
for the modified 2D Laplacian matrix, obtained with polynomial degrees set to 40
(left) and 100 (right), respectively.

A practical probing scheme can be devised by replacing the δ-function with a
polynomial approximation, and approximating the spectral measure using the same
stochastic approach we introduced earlier for the KPM.

For example, if the problem has been scaled and shifted so that the spectrum of
the transformed problem has been mapped to the interval [−1, 1], we may approximate
the δ-function centered at ti by using an Mi-degree Chebyshev polynomial expansion
of the form

δ(t− ti) ≈ pMi
(t) ≡

Mi∑

ki=0

µki
(ti)Tki

(t), (5.1)

where the expansion coefficient µki
(ti) can be determined from

µki
(ti) =

2− δk0
π

∫ 1

−1

1√
1− t2

Tki
(t)δ(t− ti)dt =

2− δk0
π

Tki
(ti)√

1− t2i
. (5.2)

If v0 is some normalized random vector, whose expansion in the eigenbasis is given
by (4.1), then vMi

≡ pMi
(A)v0 will have the expansion

vMi
=

n∑

j=1

βjpMi
(λj)uj . (5.3)

Taking the Euclidean inner product between v0 and vMi
yields

〈vMi
, v0〉 =

n∑

j=1

β2
j pMi

(λj). (5.4)

Since
∑n

j=1 β
2
j = 1, (5.4) can be viewed as an integral of pMi

(t) associated with a

point measure {β2
j } defined at eigenvalues of the transformed matrix A. If β2

j = 1/n
for all j, we can then simply rewrite the integral as Trace[pMi

(A)]/n. As we have
already shown in previous sections, such a trace can be approximated by choosing
multiple random vectors v0 and averaging 〈v0, pMi

(A)v0〉 for all these vectors.
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Formally, the ideas described above can be organized as in Algorithm 3, which we
will refer to as the Delta-Chebyshev expansion algorithm. First, we select a number
of nodes ti at which the spectral density of A is to be evaluated. At each of these
points, we evaluate the expansion coefficients µk in (5.1). We then loop through a
large number of random vectors and compute the averages of the estimates (5.4) for
each of the sample points ti. These steps are outlined more precisely in Algorithm 3.

Algorithm 3: Multi-point Delta-Chebyshev expansion

Input: Real symmetric matrix A. A set of points {ti}, and associated Cheby-
shev polynomial degree {Mi}, and Mmax is the maximum degree em-
ployed for all the points.

Output: Approximate DOS {φ̃M (ti)}.

1: for each ti do
2: Compute and store the expansion coefficients µki

for k = 0, · · · ,Mi;
3: end for

4: for l = 1 : nvec do

5: Select a new random vector v
(l)
0 ;

6: for k = 0 :Mmax do

7: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2Av

(l)
k − v

(l)
k−1 (for k = 0,

v
(l)
1 = Av

(l)
0 );

8: Compute ηk ← ηk +
(
v
(l)
0

)T

v
(l)
k ;

9: end for

10: end for

11: Set ηk = ηk/nvec for all k = 0, 1, ...,Mmax;

12: Evaluate φ̃M (ti) using ηk and the stored µki
’s;

Note that this algorithm would have been an unacceptably expensive procedure
if it were not for the fact that the same Chebyshev sequence vki

= Tki
(A)v0 can be

used for all points ti at the same time. Since the average value 〈v0, pMi
(A)v0〉 can

be viewed as an approximation to the trace of pMi
(A), we can rewrite this quantity,

which serves as an approximation to the spectral density at ti, as

φ(ti) =
1

n

Mi∑

ki=0

µki
(ti)

n∑

j=1

Tki
(λj)

=
1

n

Mi∑

ki=0

2− δki,0

π

Tki
(ti)√

1− t2i
Trace(Tki

(A))

=

Mi∑

ki=0

[
2− δki,0

nπ
Trace(Tki

(A))

]
Tki

(ti)√
1− t2i

. (5.5)

Note that the coefficients within the square bracket in (5.5) are exactly the same

coefficients that appear in the expansion (3.2) of the function φ̂(t) =
√
1− t2φ(t)

used in the KPM. Therefore, when Mi =M for all i, the Delta-Chebyshev expansion
method is identical to the KPM. Hence, the cost of this approach is the same as that
of KPM if polynomials of the same degree and the same number of sampling vectors
are used at each ti.

However, whenMi is allowed to vary with respect to i, there is a slight advantage
of using the Delta-Chebyshev method in terms of flexibility. We can use polynomials
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of different degrees in different parts of the spectrum to obtain a more accurate ap-
proximation. Note that in this situation, if Mmax is the maximum degree employed
for all the points, the number of matrix-vector products employed remains the same
and equal to Mmax, since we will need to compute for each random vector v0, the
vectors Tk(A)v0 for k = 0, · · · ,Mmax as these are needed by the points requiring the
highest degree. However, some of the other calculations (inner products) required to
obtain the spectral density can be avoided, though in most cases applying Tk(A) to v0
dominate the computational cost in the DOS calculation. The Delta-Gauss-Legendre
expansion to be developed in the next section shares similar property in this aspect.

We should point out that it is also possible to apply the Delta-Chebyshev method
for approximating the accumulated spectral density, which is simply the integral of
the spectral density:

ψ(t) =

∫ t

−∞
φ(s)ds (5.6)

Consider the step function shown on the right side of Figure 3.1. Let H(t) be the
Heaviside function defined in Eq. (3.9). Then the ideal step function H(t− s) which
changes value at certain t and we have:

ψ(t) =

∫ t

−∞
φ(s)ds =

∫ ∞

−∞
H(t− s)φ(s)ds

So, ψ(t0) can also be estimated by an expression like (5.4) where now the polynomial
is an approximation of the step function H(t) instead of the δ-function.
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Fig. 5.1: The approximate spectral densities constructed by the Delta-Chebyshev
method with Jackson damping (left) and without Jackson damping (right) for the
modified 2D Laplacian matrix. The polynomial degree is 80.

6. The Delta-Gauss-Legendre expansion approach. In Section 2, we in-
voked the idea of comparing the approximation φ̃ of the spectral density not with the
spectral density φ directly but with a smoothed version of φ which we denoted by φσ
where σ is a smoothing parameter. We argued that this approach is sensible because
it may be easier in practice to compare smooth functions than to compare a distri-
bution with a function. In this section, we will take the idea a little further. Instead
of approximating φ directly we will first select a representative φσ of φ for a given σ
and then will approximate φσ by expanding it in orthogonal polynomials. In this way,
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comparisons will be relative to the same objects and the function to approximate can
be as smooth as desired.

We will proceed in the same way as with the Delta-Chebyshev approach of the
previous section, but instead of expanding the Dirac function at the point t we will
now expand its smoothed version or surrogate defined by

hσ(λ − t) =
1

(2πσ2)1/2
exp

[
− (λ− t)2

2σ2

]
. (6.1)

This is a Gaussian centered at t, and we wish to expand it in Legendre poly-
nomials. We will drop the normalization coefficient for now and seek the expansion
parameters

γk(t) =

∫ 1

−1

Lk(s)e
− 1

2
((s−t)/σ)2ds, (6.2)

where Lk(λ) is the Legendre polynomial of degree k. In the following we consider one
fixed value t and so we will drop the variable t and use γk to denote γk(t). We point
out that Legendre polynomials do not have unit norms. Therefore, they should be
properly scaled in the expansion. Specifically, since the norm of Lk is

√
2/(2k + 1),

the expansion is actually:

hσ(λ− t) =
1

(2πσ2)1/2
exp

[
− (λ− t)2

2σ2

]
=

1

(2πσ2)1/2

∞∑

k=0

(
k +

1

2

)
γkLk(λ) . (6.3)

We now calculate the γk’s starting with γ0. Since L0(λ) = 1, a change of variable

t = (s− t)/
√
2σ2 yields

γ0 = σ

√
π

2

[
erf

(
1− t√
2σ

)
− erf

(−1− t√
2σ

)]
= σ

√
π

2

[
erf

(
1− t√
2σ

)
+ erf

(
1 + t√
2σ

)]
,

(6.4)
where we have used the standard error function:

erf(x) =
2√
π

∫ x

0

e−t2dt .

Now consider a general coefficient γk+1 with k ≥ 0. There does not seem to
exist a closed form formula for γk for a general k. However, these coefficients can be
obtained by a recurrence relation. To this end we will need to determine concurrently
the sequence:

ψk =

∫ 1

−1

L′
k(s)e

− 1

2
((s−t)/σ)2ds. (6.5)

From the 3-term recurrence of the Legendre polynomials:

(k + 1)Lk+1(λ) = (2k + 1)λLk(λ) − kLk−1(λ) (6.6)

we get by integration:

(k + 1)γk+1 = (2k + 1)

∫ 1

−1

sLk(s)e
− 1

2
((s−t)/σ)2ds− kγk−1. (6.7)
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A useful observation is that the above formula is valid for k = 0 by setting γ−1 ≡ 0.
This comes from (6.6), which is valid for k = 0 by setting L−1(λ) ≡ 0. Next we
expand the integral term in the above equality:

∫ 1

−1

se−
1

2
((s−t)/σ)2Lk(s)ds = σ2

∫ 1

−1

s− t

σ2
e−

1

2
((s−t)/σ)2Lk(s)ds+ tγk (6.8)

= σ2

∫ 1

−1

d

ds
[−e− 1

2
((s−t)/σ)2 ]Lk(s)ds+ tγk. (6.9)

The next step is to proceed with integration by parts for the integral in the above
expression:

∫ 1

−1

d

ds
[−e− 1

2
((s−t)/σ)2 ]Lk(s)ds = −Lk(s)e

− 1

2
((s−t)/σ)2

∣∣∣
1

−1

+

∫ 1

−1

e−
1

2
((s−t)/σ)2L′

k(s)ds. (6.10)

Noting that Lk(1) = 1 and Lk(−1) = (−1)k for all k, we get

∫ 1

−1

d

ds
[−e−

1

2
((s−t)/σ)2 ]Lk(s)ds = −e

− 1

2
((1−t)/σ)2 + (−1)ke−

1

2
((1+t)/σ)2 + ψk (6.11)

= −e−
1

2
(1+t2)/σ2

[
et/σ

2

− (−1)ke−t/σ2
]
+ ψk (6.12)

≡ ψk − ζk, (6.13)

where we have defined

ζk = e−
1

2
((1−t)/σ)2 − (−1)ke−

1

2
((1+t)/σ)2 (6.14)

We note in passing that according to (6.12), ζk can be written as

ζk =

{
2e−

1

2
(1+t2)/σ2

sh(t/σ2) for k even

2e−
1

2
(1+t2)/σ2

ch(t/σ2) for k odd.

Substituting (6.11) into (6.9) and the result into (6.7) yields

(k + 1)γk+1 = (2k + 1)
[
σ2(ψk − ζk) + tγk

]
− kγk−1 (6.15)

The only thing that is left to do is to find a recurrence for the ψk’s. Here we use
the elegant formula which can be found in, e.g., [38, p. 47]

L′
k+1(λ) = (2k + 1)Lk(λ) + L′

k−1(λ). (6.16)

Integrating in [−1, 1] yields the relation:

ψk+1 = (2k + 1)γk + ψk−1 (6.17)

Note that initial values of ψk are ψ0 = 0, ψ1 = γ0. In the end, we obtain the following
recurrence relations:

{
γk+1 = 2k+1

k+1

[
σ2(ψk − ζk) + tγk

]
− k

k+1γk−1

ψk+1 = (2k + 1)γk + ψk−1.
(6.18)
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It can be noted that the above formulas work for k = 0 by setting γ−1 = ψ−1 = 0.
The recurrence starts with k = 0, using the initial values γ0 given by (6.4), ψ1 = γ0,
and ψ0 = 0. The result is now summarized in the following proposition.

Proposition 6.1. The Gaussian function (6.1) admits the following expansion
in Legendre polynomials:

hσ(λ− t) =
1

(2πσ2)1/2

∞∑

k=0

(
k +

1

2

)
γkLk(λ), (6.19)

where γ0 is given by (6.4), and the coefficients γk for k ≥ 1 are defined by the recur-
rence (6.18), starting with k = 0 and using the initial values γ−1 = 0, ψ0 = ψ−1 = 0.

An important remark here is that one has to be careful about the application of
the recurrence (6.18). The perceptive reader may notice that such a recurrence runs
the risk of being unstable. In fact we observe the following behavior. For large values
of σ the function (6.1) can be very smooth and as a result a very small degree of
polynomials may be needed, i.e., the value of γk drop to small values quite rapidly
as k increases. If we ask for a high degree polynomial and continue the recurrence
(6.18) beyond the point where the expansion has converged (indicated by small value
of γk) we will essentially iterate with noise. As it turns out, this noise is amplified
by the recurrence. This is because the coefficient ψk − ζk becomes just noise and this
causes the recurrence to diverge. An easy remedy is to just stop iterating (6.18) as
soon as two consecutive γk’s are small. This takes care of two issues at the same
time. First, it determines a sort of optimal degree to be used. Second, it avoids the
unstable behavior observed by continuing the recurrence. Specifically, a test such as
the following is performed:

|γk−1|+ |γk| ≤ k · tol, (6.20)

where tol is a small tolerance, which can be set to 10−6 for example. The factor k
reflects the scaling k + 1/2 in (6.3)

With this we can now easily develop an adaptation of Algorithm 3, which we will
call the Delta-Gauss-Legendre (DGL) expansion algorithm. In the DGL algorithm,
we will refer to formula (5.4). But now pM is the M -degree polynomial

pM (λ) =
1

(2πσ2)1/2

M∑

k=0

(
k +

1

2

)
γkLk(λ), (6.21)

obtained by truncating the sum (6.19) to M + 1 terms.
In Figure 6.1, we show the approximate spectral density for the modified 2D

Laplacian matrix constructed by the DGL method. The expansion coefficient γk(t)
are obtained by setting σ = 0.56 (obtained by setting κ = 1.25, h = 0.75).

7. Use of the Lanczos Algorithm. Because finding a highly accurate DOS
essentially amounts to computing all eigenvalues A, any method that can provide
approximations to the spectrum of A can be used to construct an approximate DOS
also. Since the Lanczos algorithm yields good approximations to extreme eigenvalues,
it is a good candidate for computing localized spectral densities at both ends of the
spectrum. In this section, we show that it is also possible to combine the Lanczos
algorithm with multiple randomly generated starting vectors to construct a good
approximation to the complete DOS.
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Algorithm 4: Multi-point Delta-Gauss-Legendre expansion.

Input: Real symmetric matrix A. A set of points {ti} at which the DOS is to
be evaluated, and Mmax is the maximum degree employed for all the
points.

Output: Approximate DOS {φ̃M (ti)}.

1: for each ti do
2: Compute and store the expansion coefficients γki

for k = 0, · · · ,Mi;
3: end for

4: for l = 1 : nvec do

5: Select a new random vector v
(l)
0 ;

6: for k = 0 :Mmax do

7: Compute v
(l)
k+1 via the three-term recurrence v

(l)
k+1 = 2Av

(l)
k − v

(l)
k−1 (for k = 0,

v
(l)
1 = Av

(l)
0 );

8: Compute ηk ← ηk +
(
v
(l)
0

)T

v
(l)
k ;

9: end for

10: end for

11: Set ηk = ηk/nvec for all k = 0, 1, ...,Mmax;

12: Evaluate φ̃M (ti) using ηk and the stored γki
’s;

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
DGL σ = 0.56, deg = 80

t

φ
(t
)

Exact
DGL

Fig. 6.1: The approximate spectral density constructed by the Delta-Gauss-Legendre
method for the modified 2D Laplacian matrix example. The same value σ = 0.56
as that used in the Gaussian smearing of the exact density is used in DGL. The
polynomial degree is 80.

7.1. Lanczos approximation to the spectral density. For a given start-
ing vector v0, an M -step Lanczos procedure for a real symmetric matrix A can be
succinctly described by the following equations

AVM = VMTM + feTM+1, V T
MVM = IM , V T

Mf = 0, VMe1 = v0, (7.1)

here TM is an (M +1)× (M +1) tridiagonal matrix, VM is an n× (M +1) orthogonal
matrix, and IM is an (M + 1) × (M + 1) identity matrix. It is well known that the
k-th column of VM can be expressed as

VM ek = pk−1(A)v0, k = 1, · · · ,M + 1.
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where {pk(t)}, k = 0, 1, 2, ..,M is a set of orthogonal polynomials with respect to the
weighted spectral distribution φv0(t) taking the form

φv0(t) =

n∑

j=1

β2
j δ(t− λj). (7.2)

Here v0 is assumed to be expanded in the basis of the eigenvectors of A as in Eq. (4.1).
It is also well known that these orthogonal polynomials can be generated by a three-
term recurrence whose coefficients are defined by the matrix elements of TM [22].

If (θk, yk), k = 0, 1, 2, . . . ,M are eigenpairs of the tridiagonal matrix TM , and τk
is the first entry of yk, then the distribution function defined by

M∑

k=0

τ2k δ(t− θk), (7.3)

serves as an approximation to the weighted spectral density function φv0(t), in the
sense that

n∑

j=1

β2
j pq(λj) =

M∑

k=0

τ2kpq(θk), (7.4)

for all polynomials of degree 0 ≤ q ≤ 2M + 1. The moment matching property
described by (7.4) is well known [24]. It is the basis of Gaussian quadrature rules
[23, 25].

Since in most cases, we are interested in the standard spectral density defined
by (1.1), we would like to choose a starting vector v0 such that β2

j = 1/n. However,
this is generally not possible without knowing the eigenvectors {uj} of A in advance.
To address this issue, we resort to the same stochastic approach we used in previous
sections.

We repeat the Lanczos process with multiple randomly generated starting vectors

v
(l)
0 , l = 1, 2, . . . , nvec. We assume the average

1

nvecn

nvec∑

l=1

(
v
(l)
0

)T
δ(tI −A)v

(l)
0 =

1

nvecn

nvec∑

l=1

n∑

j=1

(
v
(l)
0

)T
ujδ(t− λj)u

T
j v

(l)
0

=
1

n

n∑

j=1

(
1

nvec

nvec∑

l=1

(
β
(l)
j

)2
)
δ(t− λj)

(7.5)

is indeed a good approximation to the standard spectral density φ(t) in Eq. (1.1), i.e.

1

nvec

nvec∑

l=1

(
β
(l)
j

)2
≈ 1/n.

Since each distribution (7.3) generated by the Lanczos procedure is a good approxi-
mation to (7.4), then taking the average of (7.3) over l, i.e.

φ̃(t) =
1

nvec

nvec∑

l=1

(
1

n

M∑

k=0

(
τ
(l)
k

)2
δ(t− θ

(l)
k )

)
(7.6)
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should yield a good approximation to the standard spectral density (1.1).
Clearly, the resolution of the approximation to (7.3) given by (7.6) becomes better

as M increases. We may also replace δ-functions in (7.6) with its surrogate version
using Gaussian functions, i.e.

φ̃σ(t) =
1

nvec

nvec∑

l=1

(
1

n

M∑

k=0

(
τ
(l)
k

)2
hσ(t− θ

(l)
k )

)
. (7.7)

This will also allow us to evaluate the spectral density at some point that is different
from a Ritz value θk. The method using Eq. (7.7) will be referred to as the Lanczos
method for computing DOS in the following discussion. In Figure 7.1, we show the
approximate density of states of the modified 2D Laplacian obtained from Eq. (7.7)
running M = 80 Lanczos steps.
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Fig. 7.1: The approximate spectral density constructed by the Lanczos method for the
modified 2D Laplacian matrix. The same σ = 0.56 is used in the Gaussian smearing
of both the exact DOS, and the approximation in (7.7).

An alternative way to refine the Lanczos based DOS approximation from a M -
step Lanczos run is to first construct an approximate cumulative spectral density or
cumulative density of states (CDOS) defined in (5.6). The approximate CDOS can
be written as

ψ̃(t) =

∫ ∞

−∞
H(t− s)φ̃(s)ds =

M∑

k=0

η2kδ(t− θk), (7.8)

where η2k =
∑k

i=1 τ
2
i , and θk and τk are eigenvalues and the first components of the

eigenvectors of the tridiagonal matrix TM defined in (7.6). This approximation is
plotted as a staircase function in Figure 7.2 for the modified 2D Laplacian. Note
that both ψ(t) and ψ̃(t) are monotonically non-decreasing functions. Furthermore, it

can been shown [33] that ψ(t) − ψ̃(t) has precisely 2M − 1 sign changes within the
spectrum of A. A sign change occurs when ψ(t) crosses either a vertical or horizontal

step of ψ̃(t). These properties allow us to construct an “interpolated” CDOS that

matches ψ(t) and ψ̃(t) at the points where ψ(t) crosses ψ̃(t).

Since we do not know ψ(t), we do not know exactly where it crosses ψ̃(t) in ad-
vance. However, it can be seen from the left subfigure in Figure 7.2 that these crossing
points are often near the midpoint of a vertical or horizontal step. Therefore, we may
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Fig. 7.2: The approximate cumulative spectral density associated with the modified
2D Laplacian constructed directly from a 20-step Lanczos run (left) and its spline-
interpolated and smooth version (right).

use these midpoints to construct an interpolating function that is monotonically non-
decreasing. For many practical problems, ψ(t) approaches a smooth function as the
dimension of the problem increases. Therefore, we can impose some constraints on
the smoothness of the interpolating function in addition to monotonicity. One way
to do this is to use the monotone splines introduced in [20, 21], and other choices
of interpolating functions are also possible. The interpolation procedure allows us to
evaluate the CDOS at any point within [λ1, λn]. A recipe for constructing such an
approximation is also given in [19]. The right subfigure in Figure 7.2 shows an inter-
polated approximate CDOS evaluated at 20 points evenly spaced points in [λ1, λn]
for the modified Laplacian matrix. We observe that the interpolated CDOS is very
close to the true CDOS at this resolution.

From the smoothly interpolated CDOS approximation, we can obtain an approx-
imate DOS at any point in [λ1, λn] by taking the derivative of the interpolated ψ̃(t)
with respect to t. We can use either the analytic derivative of the spline or simply per-
form a finite difference calculation. Figure 7.3 shows the approximate DOS obtained
in this fashion. We observe that the approximate DOS captures the basic profile of
the surrogate DOS smeared by Gaussian functions.

The quality of the approximation also improves systematically as the number of
starting vectors nvec increases. Figure 7.3 shows the averaged DOS approximations
produced from 100 Lanczos runs looks much better than the approximation obtained
from a single Lanczos run.

Furthermore, by carefully choosing v0, we can also use this technique to obtain
a localized DOS approximation. For example, if we are interested in the DOS at
the low end of the spectrum, we can apply a low pass polynomial filter in A first to
a randomly chosen vl. Figure 7.4 shows that this technique indeed provide a good
approximation to the local DOS.

7.2. Rational transformation. In addition to approximating the spectrum of
A directly, the Lanczos algorithm can also be used to provide a rational approximation
to the DOS, through the use of a well known technique for approximating a δ-function
by a rational function. It follows from the Sokhotski-Plemelj formula [43]

lim
t→0

1

t+ iη
= P(1/t)− iπδ(t)



SPECTRAL DENSITIES OF LARGE MATRICES 23

0 5 10 15 20
0

0.05

0.1

0.15

0.2

t

φ
(t
)

Exact
Approximate

0 5 10 15 20
0

0.05

0.1

0.15

0.2

t

φ
(t
)

Exact
Approximate

Fig. 7.3: The approximate DOS of the modified 2D Laplacian matrix obtained from
the derivative of the CDOS approximation produced by a 20-step Lanczos procedure.
The left subfigure is obtained from a single Lanczos run. The right subfigure is
obtained from the average of 100 Lanczos runs with different random starting vectors.
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Fig. 7.4: The approximation to the local DOS at the low end of the spectrum of the
modified 2D Laplacian using a filtered initial starting vector.

that a δ-function can be expressed as the imaginary part of the rational function
1/(t+ iη) in the limit that η → 0, and P represents the Cauchy principal value. As
a result, we may express the DOS of A by

φ(t) = lim
η→0+

− 1

nπ
Im

n∑

j=1

1

t+ iη − λj

= lim
η→0+

− 1

nπ
Im Tr

[
(tI −A+ iη)−1

]
.

(7.9)

It follows from the above discussion that estimating the spectral density of A is equiva-
lent to computing the trace of (tI−A+iηI)−1. We can use the same type of stochastic
approach used previously in the KPM to compute the approximate trace by

1

nvec

nvec∑

l=1

(
v
(l)
0

)T
(tI −A+ iηI)−1v

(l)
0 , (7.10)

for several randomly sampled vectors v0.
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A direct calculation of (7.10) requires solving linear systems [A− (ti+ iη)I]z = v0
repeatedly for each point ti at which the spectral density is to be evaluated. This
approach can be prohibitively expensive. We now describe an alternative approach
that allows us to approximate vT0 (tiI − A + iηI)−1v0 for multiple ti’s at the cost of
performing a single Lanczos factorization and some additional calculations that are
much lower in complexity. If v0 is used as the starting vector of the Lanczos procedure,
then it follows from the shift-invariant property of the Lanczos algorithm that

[A− (ti + iη)I]VM = VM [TM − (ti + iη)I] + feTM+1, (7.11)

where VM and TM are the same orthonormal and tridiagonal matrices respectively
that appear in (7.1). After multiplying (7.11) from the left by [A − (ti + iη)I]−1,
from the right by [TM − (ti + iη)I]−1 and rearranging terms, we obtain

[A−(ti+iη)I]
−1VM = VM [TM−(ti+iη)I]

−1−[A−(ti+iη)I]
−1feTM+1[TM−(ti+iη)I]

−1.

It follows that

vT0 [A− (ti + iη)I])−1v0 = eT1 V
T
M [A− (ti + iη)I]−1VM e1

= eT1 [TM − (ti + iη)I]−1e1 + ξ,

where ξ = −
(
vT0 [A− (ti + iη)I]−1f

) (
eTM+1[TM − (ti + iη)I]−1e1

)
. If ξ is sufficiently

small, computing vT0 (tiI − A + iηI)−1v0 reduces to computing the (1, 1)-th entry of
the inverse of TM − (ti + iη)I. Because TM is tridiagonal with α1, α2, ..., αM+1 on
the diagonal and β2, β3, ..., βM+1 on the sub-diagonals and super-diagonals, eT1 (zI −
TM )−1e1 can be computed in a recursive fashion using a continued fraction formula

eT1 (zI − TM )−1e1 =
1

z − α1 +
β2

2

z−α2+···

. (7.12)

This formula can be verified from the identity

(z − TM )−1
1,1 ≡ det(zI − TM )

det(z − T̂M )

where T̂M is the trailing submatrix starting from the (2, 2) entry of TM (7.12) and
tridiagonal structure of both TM and T̂M matrices.

This approach is often referred to as Haydock’s method, and was first suggested
by Haydock, Heine, and Kelly [26]. It is also related to the generation of Sturm
sequences which is used in bisection methods for computing eigenvalues of tridiagonal
matrices [42]. The computational cost of computing eT1 (TM − ziI)

−1e1 is O(M + 1)
for each shift zi = ti + iη regardless whether this is done by applying a sparse direct
method to compute (TM − ziI)

−1e1 or through the use of a continued fraction. For
most problems, this cost is small compared to that required to perform the Lanczos
procedure to obtain TM . Even in exact arithmetic, Haydock’s method produces an
exact vT0 (ziI − A)−1v0 only when the last term on the right-hand side of (7.11) is
zero. This term vanishes when f = 0. In this case, columns of VM form an invariant
subspace of A. However, for most problems, f rarely becomes zero even for large M .
But when η is relatively large, the off-diagonal elements of (ziI − TM )−1 decreases
sufficiently fast, away from the diagonal. Therefore, the vT0 (ziI − A)−1v0 can be
evaluated accurately in this case.
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Fig. 7.5: The approximate spectral densities constructed by the Haydock method
with 40-step (left) and 100-step (right) Lanczos runs for the modified 2D Laplacian
matrix. The Haydock smoothing parameter η is chosen to be η = 0.187.

The performance of Haydock’s approach for computing the spectral density for
the modified 2D Laplacian example is shown in Fig. 7.5. The parameter η is chosen
to be comparable to the resolution of the spectral density we display. Specifically, we
choose

η =
εmax − εmin

2nx
, (7.13)

where εmax and εmin are the largest and smallest eigenvalues of A respectively, and
nx is the number of uniformly distributed grid points at which the spectral density
is evaluated. In Fig. 7.5 we choose nx = 55, which corresponds to ε = 0.187. This is
roughly one third of the value of σ = 0.56. We observe that running 40 Lanczos steps
produces a qualitatively different spectral density approximation. The quality of the
approximation becomes much better when 100 Lanczos steps are taken in Haydock’s
approach.

8. Numerical Results. In this section, we compare all methods discussed above
for approximating the spectral density of A through numerical examples. To compare
these methods quantitatively, we compute the L1, L2 and L∞ distances between the
approximate spectral density φ̃(t) and the surrogate spectral density φσ(t), and the
latter is the true spectral density blurred by a Gaussian of the form (1.6) with a fixed

σ value. Both φσ(t) and φ̂(t) are normalized to have ‖φσ(t)‖1 = ‖φ̂(t)‖1 = 1. It is
well known that both the L2 and L∞ norms are sensitive to outliers in the spectral
density approximation whereas the L1 norm is relatively less sensitive to outliers.

8.1. Modified 2D Laplacian. In Table 8.1, we list the L1, L2 and L∞ errors
associated with different types of approximations to the spectral density of the modi-
fied Laplacian matrix we used in the previous sections to illustrate how these methods
behave. The dimension of the matrix is 750, which is relatively small. We set σ to
0.56. This corresponds to setting κ to 1.25 and h = 0.75 in (2.1). The degree of
Chebyshev or Legendre polynomials used in the KPM and DGL methods is set to
80. Similarly, the number of iterations in the Lanczos method is also set to 80. We
also present the results for the spectroscopic method and Haydock’s method with the
number of iterations being 40 and 100, respectively. We observe that the DGL, Lanc-
zos and KPM with Jackson damping yield the most accurate approximation among



26 L. LIN, Y. SAAD AND C. YANG

all methods in L1, L2 and L∞ norms, followed by the KPM method without Jackson
damping. The spectroscopic and Haydock’s methods do not yield sufficiently accurate
approximations if only 40 steps of Lanczos iterations are taken. In order to reach the
same level of accuracy achieved by DGL and Lanczos in L1 norm, at least 100 Lanczos
iterations are required in these methods to further reduce the approximation error.
In all test cases, we use 10 random vectors.

Method L1 error L2 error L∞ error
KPM w/ Jackson, deg=80 2.994e-02 9.2190e-03 6.036e-03
KPM w/o Jackson, deg=80 1.057e-01 3.3897e-02 2.409e-02
KPM Legendre, deg=80 1.123e-01 3.4598e-02 2.628e-02
Spectroscopic, deg=40 8.724e-02 2.6650e-02 1.566e-02
Spectroscopic, deg=100 6.818e-02 2.1735e-02 1.395e-02
DGL, deg=80 3.031e-02 9.8346e-03 5.180e-03
Lanczos, deg=80 2.047e-02 5.7810e-03 3.344e-03
Haydock, deg=40 1.583e-01 5.9017e-02 4.631e-02
Haydock, deg=100 8.074e-02 2.3214e-02 1.367e-02

Table 8.1: L1, L2, and L∞ error compared with the normalized “surrogate” DOS for
modified 2D Laplacian matrix, using the same set of parameters as described in this
section.

8.2. The Kohn-ShamHamiltonian associated with the Benzene molecule.

To demonstrate that the methods presented in this paper are applicable to matrices
other than the modified Laplacian, we now show the L1, L2 and L∞ error associated
with different approximations to the spectral density of a matrix, which represents
a finite difference approximation of the Kohn-Sham Hamiltonian associated with a
benzene molecule. This matrix is generated from the PARSEC software [34]. The
dimension of this matrix is 8,219. The matrix can be obtained from the Florida
Sparse Matrix repository [12]. For this problem, we also set the σ parameter for the
smoothed exact spectral density to 0.56. We use 10 random Gaussian test vectors
in all methods. Table 8.2 shows that the accuracy of different methods in L1, L2

and L∞ norms exhibits a similar pattern to that observed for the modified Laplacian
matrix. The DGL, Lanczos and the KPM with Jackson damping still yield the most
accurate results. Haydock’s method is less accurate compared to other methods for
this example. The quality of the approximation provided by different methods can
also be seen from Figures 8.1 to 8.5.

8.3. Convergence with respect to the number of random vectors. An in-
teresting observation we made from the experimental comparison of the DGL method
and the KPM is that DGL can produce reasonable results even for a very small num-
ber of random vectors. In contrast, the accuracy of KPM can vary significantly when
only a few vectors are sampled. This is illustrated in Figure 8.6 which repeats the
previous experiment using only one random vector. The curve on the left corresponds
to KPM. It is one of many possible ones that vary quite a bit in shape. The one on
the right corresponds to DGL. It remains more stable than KPM for multiple vectors
used and captures the overall true spectral density quite well.

While using one random vector in KPM, DGL or Lanczos to obtain an approxi-
mate spectral density is an extreme case, we should expect the accuracy of the approx-
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Item L1 error L2 error L∞ error
KPM w/ Jackson, deg=80 2.592e-02 5.0329e-03 2.785e-03
KPM w/o Jackson, deg=80 2.634e-02 4.4542e-03 2.002e-03
KPM Legendre, deg=80 2.504e-02 3.7881e-03 1.174e-03
Spectroscopic, deg=40 5.589e-02 8.6527e-03 2.871e-03
Spectroscopic, deg=100 4.624e-02 7.5829e-03 2.447e-03
DGL, deg=80 1.998e-02 3.3793e-03 1.149e-03
Lanczos, deg=80 2.755e-02 4.1785e-03 1.599e-03
Haydock, deg=40 6.951e-01 1.3023e-01 6.176e-02
Haydock, deg=100 2.581e-01 4.6530e-02 1.420e-02

Table 8.2: L1, L2, and L∞ error compared with the normalized “surrogate” DOS
for benzene matrix, using the same set of parameters as used in the pictures in this
section.
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Fig. 8.1: The approximate spectral density constructed by KPM for the benzene
Hamiltonian. Chebyshev polynomials of degree 80 with Jackson damping (left) and
without Jackson damping (right) are used in KPM.
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Fig. 8.2: The approximate spectral density for the benzene Hamiltonian obtained
from KPM. A 80-degree Legendre polynomial is used in KPM.
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Fig. 8.3: The approximate spectral densities obtained from the Lanczos spectroscopic
method in which 40 (left) and 100 (right) steps of the Lanczos algorithm are taken
respectively.
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Fig. 8.4: The approximate spectral densities for the benzene Hamiltonian obtained
from the Delta-Gauss-Legendre method and the Lanczos-Delta-Gauss fit. The σ value
used in the Gaussian approximation of the δ-function in both methods is chosen to
be the same as that used in the Gaussian smearing of the exact density.
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Fig. 8.5: The approximate spectral densities for the benzene Hamiltonian obtained
from Haydock’s method. The number of Lanczos step taken are 40 (left) and 100
(right). The smoothing parameter η is set to η = 0.178.
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Fig. 8.6: KPM with degree 80 (left) and, Delta-Gauss-Legendre expansion with degree
80 (σ = 0.56) (right) for perturbed 2D Laplacian operator. In contrast with Figure
6.1, here only one random vector is used.

imation to improve systematically as we average approximations obtained from nvec

random vectors. This should be the case at least for the DGL and Lanczos methods,
since these two methods are indeed based on the expansion of the surrogate spectral
density. If the variance of the DGL or Lanczos approximation produced by sampling
one random vector is denoted by var, then averaging nvec approximations produced
by nvec independent random vectors can reduce the variance of the approximation
to var/nvec, and the standard deviation to

√
var/nvec. In other words, the L1, L2

and L∞ error should be proportional to the standard deviation and decreases as n
− 1

2

vec .
Fig. 8.7 shows that, for the modified 2D Laplacian matrix with σ = 0.56, the L1,
L2 and L∞ errors associated with DGL, Lanczos and KPM (Chebyshev expansion
with Jackson damping) all decrease as the number of random vectors used (nvec) in-
creases. We observe that the convergence with respect to nvec is roughly on the order

of O(n
− 1

2

vec ). For methods (such as the KPM) that do not directly expand the surrogate
DOS φσ, there is some positive distance between the result obtained from KPM and
that obtained from the surrogate DOS even when nvec becomes large, although the
absolute value of the error can be small as 10−3 ∼ 10−2.

8.4. DGL and Lanczos for other matrices. We now show that in addition
to the modified Laplacian and the Kohn-Sham Hamiltonian for the benzene molecule,
the DGL and Lanczos methods work equally well for a variety of problems listed in
Table 8.3. The Ga10As10H30 matrix arises from a Kohn-Sham density functional the-
ory calculation of a Ga and As cluster. It has a relatively large dimension. The PE3K
matrix arises from the molecular vibration analysis of a polyethylene molecule with
3000 atoms [58]. The CFD1 matrix arises from a computational fluid dynamics cal-
culation. The SHWATER matrix arises from another computational fluid dynamics
application involving weather shallow water equations. In order to evaluate the accu-
racy of the DGL and Lanczos methods, we compute all eigenvalues of these matrices
in advance using the ScaLAPACK software. The algebraically smallest and largest
eigenvalues are also listed in Table 8.3. Table 8.4 compares the L1, L2 and L∞ errors
for the DGL and Lanczos methods for these problems.

As can be seen from the table, both the DGL and the Lanczos methods yield
accurate approximations to the spectral densities of these matrices. We overlay the
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Fig. 8.7: The L1, L2 and L∞ errors for the DGL , Lanczos methods and the KPM
(Chebyshev expansion with Jackson damping) with respect to the number of random
vectors used (nvec). The matrix chosen is the modified 2D Laplacian matrix with
σ = 0.56.

Matrix n λ1 λn
Ga10As10H30 113,081 −1.2 1.3× 103

PE3K 9,000 8.1× 10−6 1.3× 102

CFD1 70,656 2.0× 10−5 6.8
SHWATER 81,920 5.8 2.0× 101

Table 8.3: Description of the size and the spectrum range of the test matrices.

computed spectral density (by DGL) on top of the “exact” spectral density for both
the CFD1 and SHWATER matrices in Figure 8.8. As can be seen, the computed
spectral densities are nearly indistinguishable from the exact ones. The same obser-
vation is made for Ga10As10H30, which shows a similar spectral density profile as that
associated with the benzene molecule, and the PE3K molecule, which we will show in
the next section.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

DGL σ = 0.19, deg = 80

t

φ
(t
)

Exact
DGL

5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
DGL σ = 0.37, deg = 80

t

φ
(t
)

Exact
DGL

Fig. 8.8: The approximate spectral densities of the CFD1 and SHWATER matrices
obtained from the DGL method match well with the corresponding smoothed “exact”
spectral density.
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Matrix Method L1 error L2 error L∞ error

Ga10As10H30
DGL 3.937e-03 3.214e-04 4.301e-05

Lanczos 4.828e-03 3.940e-04 5.452e-05

PE3K
DGL 4.562e-03 7.368e-04 3.143e-04

Lanczos 5.459e-03 7.372e-04 3.294e-04

CFD1
DGL 2.276e-03 1.299e-03 1.746e-03

Lanczos 2.024e-03 1.286e-03 2.478e-03

SHWATER
DGL 3.779e-03 1.282e-03 9.328e-04

Lanczos 3.047e-03 9.829e-04 6.100e-04

Table 8.4: L1, L2, and L∞ error associated with the approximate spectral densities
produced by the DGL and Lanczos methods for different test matrices in Table 8.3.

8.5. Heat capacity calculation. As we mentioned in section 1, one of the
utilities of the DOS is that it provides an appropriate measure for integrating certain
physical quantities of interest. One good example is the heat capacity defined in (1.4).
Figure 8.9 shows that, the approximate spectral density allows us to captures the
variation of the heat capacity with respect to temperature very well.
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Fig. 8.9: The spectral density of the PE3K matrix and the variation of the computed
heat capacity with respect to temperature change. The computed heat capacities
are obtained from using the exact (red) and the DGL approximate (blue) spectral
densities respectively.

9. Conclusion. We presented a number of algorithms for estimating the spec-
tral density of a Hermitian matrix A from a numerical linear algebra perspective.
Some of these algorithms (KPM, DC and DGL) are based on constructing polyno-
mial approximations to δ-functions. In these approaches, estimating the spectral
density essentially amounts to approximating the trace of A or p(A) where p(t) is
a polynomial. An important technique for approximating the trace of a Hermitian
matrix is stochastic sampling and averaging of the Rayleigh quotient vT0 p(A)v0, with
‖v0‖1 = 1.

A few other methods make use of the Lanczos procedure to either directly esti-
mate the spectrum of A or to construct a rational approximation of the δ-function.
Stochastic sampling of the starting vector of the Lanczos process often improve the
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fidelity of the approximation. However, if the number of Lanczos steps used in these
methods is sufficiently large, even one starting vector may be sufficient to produce a
reliable estimation of the spectral density.

We suggest that it is more appropriate to approximate a smoothed version of
the spectral density, which we sometimes call a surrogate spectral density, instead
of the exact spectral density given by (1.1) directly. We can view this approach
as a regularization technique to attenuate the numerical difficulties associated with
approximating δ-functions directly. The smoothness of the surrogate spectral density
can be controlled by one parameter σ. However, there is a trade-off between the
amount of smoothness of the surrogate (hence the cost of the approximation) and the
accuracy of the approximation. When σ is chosen to yield a very smooth surrogate
spectral density, accurate approximations to this surrogate can often be obtained
easily with a relatively low degree polynomial or a small number of Lanczos iterations.
However, the surrogate itself may miss some important features of the exact spectral
density required in some applications. On the other hand, if σ is chosen to minimize
the difference between the surrogate and (1.1), then more work is required obtain
a good approximation. In the extreme case when the exact spectral density given
by (1.1) is to be obtained, then all eigenvalues of the matrix A must be computed.
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[10] P. E. Dargel, A. Wöllert, A. Honecker, I. P. McCulloch, U. Schollwök, and T. Pr-

uschke, Lanczos algorithm with matrix product states for dynamical correlation functions,
Phy. Rev. B, 85 (2012), p. 205119.

[11] P. J. Davis, Interpolation and Approximation, Blaisdell, Waltham, MA, 1963.
[12] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Software, 38 (2011), p. 1.



SPECTRAL DENSITIES OF LARGE MATRICES 33

[13] David A. Drabold and Otto F. Sankey, Maximum entropy approach for linear scaling in
the electronic structure problem, Phys. Rev. Lett., 70 (1993), pp. 3631–3634.

[14] D. A. Drabold and O. F. Sankey, Maximum entropy approach for linear scaling in the
electronic structure problem, Phys. Rev. Lett., 70 (1993), pp. 3631–3634.

[15] F. Ducastelle and F. Cyrot-Lackmann, Moments developments and their application to the
electronic charge distribution of d bands, J. Phys. Chem. Solids, 31 (1970), pp. 1295–1306.

[16] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel polynomial method, Rev.
Mod. Phys., 78 (2006), pp. 275–306.

[17] Z. Fan, A. Uppstu, T. Siro, and A. Harju, Efficient linear-scaling quantum transport cal-
culations on graphics processing units and applications on electron transport in graphene,
arXiv, 1307.0288v1 (2013), pp. 1–15.

[18] A. Ferreira, J. Viana-Gomes, J. Nilsson, E. R. Mucciolo, N. M. R. Peres, and A. H. C.

Neto, Unified description of the DC conductivity of monolayer and bilayer graphene at
finite densities based on resonant scatterers, Phys. Rev. B, 83 (2011), p. 165402.

[19] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems, Wiley, New
York, 1996.

[20] F. N. Fritsch and J. Butland, A method for constructing local monotone piecewise cubic
interpolations, SIAM J. Sci. Stat. Comput., 5 (1984), pp. 300–304.

[21] F. N. Fritsch and R. E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer.
Anal., 17 (1980), pp. 238–246.

[22] W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev., 9 (1967),
pp. 24–82.

[23] , Construction of Gauss-Christoffel quadrature formulas, Math. Comp., 22 (1968),
pp. 251–270.

[24] , A survey of Gauss-Christoffel quadrature formulae, in E. B. Christoffel: The influence
of his work in mathematics and the physical sciences, P. Butzer and F. Feher, eds., Basel,
1981, Birkhauser, pp. 72–147.

[25] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rule, Math. Comp., 23
(1969), pp. 221–230.

[26] R. Haydock, V. Heine, and M. J. Kelly, Electronic structure based on the local atomic
environment for tight-binding bands, J. Phys. C: Solid State Phys., 5 (1972), p. 2845.

[27] A. Holzner, A. Weichselbaum, I. P. McCulloch, U. Schollwöck, and J. von Delft,
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