DISCRETIZATION OF PARTIAL DIFFERENTIAL
EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

e See Chap. 2 of text
e Finite difference methods
e Finite elements

e Assembled and unassembled finite element matrices



Why study discretized PDFEs?

» Still the most important source of sparse linear systems

»  Will help understand the structures of the problem and their
connections with “meshes” in 2-D or 3-D space

» Also: iterative methods are often formulated for the PDE directly
— instead of a discretized (sparse) system.
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A typical numerical stmulation

Physical Problem

1
Nonlinear PDEs

1

Discretization

1

Linearization (Newton)

1

Sequence of Sparse Linear Systems Ax = b
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Example: discretized Poisson equation

» Common Partial Differential Equation (PDE) :

0*u  O%*u r1\
| :f,form:( >Inﬂ

oxi Ox3 To
where {2 = bounded, open domain inR?
I
» 4 boundary conditions:
X2 = Dirichlet: u(z) = ¢(x)
Neumann: %(a}) =0
Cauchy: gg a(x)u =~




Y Y VY VY'Y

A = 38;% | 8853 is the Laplace operator or Laplacean
How to approximate the problem?

Answer: discretize, i.e., replace continuum with discrete set.
Then approximate Laplacean usinge this discretization

Many types of discretizations.. wll briefly cover Finite differences

and finite elements.

>

Finite Differences: Basic approximations

Formulas derived from Taylor series expansion:

du h?d’uv h3d3u h* d*u

u(x + h) = u(x) + h—— | | (€)

2-5
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Dziscretization of PDEs - Basic approxrimations

»  Simplest scheme: forward difference
du  u(x+h)—u(z) hdu(z)
dx h 2 dx?

~/
~/

» Centered differences for second derivative:
d*u(x)  u(x+h) —2u(x) +u(x—h) h*d*u(§)
dz? h? 12 dat
where ¢ < € < €,
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Notation: 0 u(x) = u(x + h) — u(x)
0 u(x) = u(x) —u(x — h)

dx dx

are very common [in-homogeneous media|.

» QOperations of the type: i [a(m) i]
» The following is a second order approximation:

d du 1

il _ + (. 8§ 2

da [a(m) dw] = ;20" (ainy 87u) + O(h?)
ai+%(ui+1 — Uj) — a’i—%(u’i — Uj—1)

h2

it

#01] Show that 67 (a-_% 5‘u) =& (aH% 5"‘u)

1
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Finite Differences for 2-D Problems

Consider the simple problem,

0%*u | 0%*u
dx2 O

f inQ (1)
u=0 onl (2)
) = rectangle (0,11) X (0,13) and T its boundary.

Discretize uniformly :

l1
ri, =1 X hy 2=0,....n1+1 hy =
1,2 1 9 s 10] 1 n1_|_1
. . Lo
CBQ,j:]Xhz 7=0,...,n941 hz:n2—|—]_
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Finite Difference Scheme for the Laplacean

» Using centered differences for both the Py and > terms - with

mesh sizes hy = ho = h :

Ly

1
Au(x) = 2 [lu(x1 + h,x2) + u(xy — hyx2)+
+u(x1,x3 + h) + u(xy, 22 — h) — du(xy, 2)]

The b-point ‘stencil’’ |

2-9
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The resulting matrix has the following block structure:

1 | B —T ] %
A= |-T B —I S
h2
_I B

2 - Matrix for 7 X 5 finite
difference mesh

With

—1 4




Finate Elements: a quick overview

Background: Green's formula

9,
/Vv.Vu dmz—/vAu dw—l—/v—t_l: ds.
0 Q r On

» V = gradient operator. In 2-D:

Vu = | 2@ :

» The dot indicates a dot product of two vectors.
» Awu = Laplacean of u

» 11 is the unit vector that is normal to I' and directed outwards.



» Frechet derivative:

ou . u(x 4+ hv) — u(x)
—(x) = lim
ov h—0 h

» Green's formula generalizes the usual formula for integration by
parts

» Define

Ju Ov du Ov
a(u,v) E/VU.V’Ud:B:/( + )da:
Q Q

8:131 82131 82132 8332
(f,v) E/fv dx.
Q

Denote:

(u,v) :/Qu(w)v(a:)da:,
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»  With Dirichlet BC, the integral on the boundary in Green's
formula vanishes —

a(u,v) = —(Au,v).

»  Weak formulation of the original problem: select a subspace of
reference V' of L? and then solve

Find v € V suchthat a(u,v) = (f,v), VveV

» Finite Element method solves this weak problem...

» ... by discretization




» The original domain is approximated by the union €25 of m
triangles K,

Triangulation of €2 :

m
Q, = K.
i=1
»  Some restrictions on angles,

edges, etc..

Vii={o | ¢, € C°, dr, = 0, @k, linear V 5}

» (CY = set of continuous functions

» @) x == restriction of ¢ to the subset X

» Lletx;,7 =1,...,n, be the nodes of the triangulation
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» Can define a (unique) 'hat’ function ¢; in V}, associated with
each x; s.t.:

1if:1:z-:a3j

qu(wi):éij:{()ifa?i#wj.

» Each function u of V}, can be expressed as

u@) = &¢(a). (%)

» The finite element approximation consists of writing the Galerkin
condition for functions in V},:

Find u € V} such that a(u,v) = (f,v), V v €V,

»  Express w in the basis {¢;} (see *), then substitute above




» Result: the linear system
n

> & = B
7=1

where
o;; = a(@j, ¢i), Bi = (f, di).

The above equations form a linear system of equations

Ax = b

» A is Symmetric Positive Definite

#n2| Prove it




The Assembly Process: Illustration

If triangle K ¢
support domains of
both ¢; and ¢, then

aK(¢i9 ¢J) =0

If triangle K €
*both* nonzero

domains of ¢; and @
then ax (i, p;) # 0

> So: ak(¢i, ¢;) #0iffi € {k,l,m} and j € {k,l,m}.
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The Assembly Process

NN

A simple finite element mesh and the pattern of the corresponding
assembled matrix.
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Al A1 A9 Al

Element matrices Al¢), e = 1,...,4 for FEM mesh shown above
» Each element contributes a 3 X 3 submatrix Al¢l (spread out)

» (Can use the matrix in un-assembled form - To multiply a vector
by A for example we can do

nel nel
y= Ax = ZA[e]a: — ZPQAKQ(PZQZ).
e=1 e=1
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» (Can be computed using the element matrices Ay - no need to
assemble

» The product Pgm gathers @ data associated with the e-element
into a 3-vector consistent with the ordering of the matrix Ag .

» Advantage: some simplification in process

» Disadvantage: cost (memory -+ computations).
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Resources: A few matlab scripts

» These (and others) will be posted in the matlab folder of class
web-site

>> help f£d3d
function A = fd3d(nx,ny,nz,alpx,alpy,alpz,dshift)
NOTE nx and ny must be > 1 -- nz can be ==
5- or 7-point block-Diffusion/conv. matrix. with

» A stripped-down version is [lap2D (nx,ny)

>> help mark

[A] = mark(m)

generates a Markov chain matrix for a random walk

on a triangular grid. A is sparse of size n=m*x(m+1)/2
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#n3| Explore A few useful matlab functions

* kron
* gplot for ploting graphs
* reshape for going from say 1-D to 2-D or 3-D arrays

#n4| Write a script to generate a 9-point discretization of the Laplacean.




The Matlab PDE toolbox

» The PDE toolbox provides functions for setting up and solving a
PDE of the form

0*u dau A(eVa) + f
m I — cvVu au =
Ot? ot

e model=createmodel (). Initiates the class 'model’

e geometryFromEdges (model, ...) Creates the geometry.

e pdegplot(model, ...) plots the geometry

e applyBoundaryCondition(model, ...) Applies boundary con-
ditions

e specifyCoefficients(model,...) Setscoeff.sm,d,c,a, f

above
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e generateMesh(model, ...) Generates the mesh

e results = pdesolve(model,...) solves the PDE

e pdeplot (model, . ..) plots solution

» Also assembleFEMatrices(model,...) assembles the FEM
problem, [returns K and M in a structure]

il

Follow the example in the documentation and get an under-

standing of the functions that are called.
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