DISCRETIZATION OF PARTIAL DIFFERENTIAL
EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

e See Chap. 2 of text

e Finite difference methods

e Finite elements

e Assembled and unassembled finite element matrices

Why study discretized PDEs?

» Still the most important source of sparse linear systems

»  Will help understand the structures of the problem and their
connections with “meshes” in 2-D or 3-D space

» Also: iterative methods are often formulated for the PDE directly
— instead of a discretized (sparse) system.
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A typical numerical simulation
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Physical Problem

1
Nonlinear PDEs

1

Discretization

1

Linearization (Newton)

1

Sequence of Sparse Linear Systems Ax = b
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Example: discretized Poisson equation
» Common Partial Differential Equation (PDE) :
’u  O%u

L1\
R T om I == (z) o

where 2 = bounded, open domain inR?

r
» + boundary conditions:

X2 n Dirichlet: u(x) = ¢(x)

Neumann: %(w) =0

. 0 —
Cauchy: 3z + a(z)u =~
x1
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2 2 .
A = % —+ 8—2 is the Laplace operator or Laplacean
i Ox3
How to approximate the problem?
Answer: discretize, i.e., replace continuum with discrete set.

Then approximate Laplacean usinge this discretization

Y YVYYVYY

Many types of discretizations.. wll briefly cover Finite differences
and finite elements.

Finite Differences: Basic approximations

»  Formulas derived from Taylor series expansion:

( —|—h) ( )+hdu_|_h2d2u_|_h3d3u_|_h4 d*u
ul(x = u(x — - -
dx 2 dx? 6 dx3 24 dx*

(&)
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Discretization of PDEs - Basic approximations

»  Simplest scheme: forward difference

du  u(x+h) —u(x) hdu(x) .
dr 2 dx? +O(R)

h
_u(xz+h) —u(z)
h
» Centered differences for second derivative:

d*u(x) _ u(xz +h) —2u(x) + u(z — h) h?d*u(§)
de? h2 12 dxt
where § < & < €.

9
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Notation: dtu(z) = u(z + h) — u(z)
0 u(x) = u(x) — u(x — h)

[ &

are very common [in-homogeneous media].

»  Operations of the type:
» The following is a second order approximation:

d du 1
— + — 2
dn [a(w) —] = 739 (a;_2 67u) + O(h?)
@1 (Uit1 — wi) — a;_1(ui — ui—1)

h2

Q

Show that 61 (ai_% 6‘u> =6 (ai_l_% 6+u>
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Finite Differences for 2-D Problems

Consider the simple problem,

o%u N o%u FoinQ )
— - - — n
ox?  0x3 |

u=0 onl (2)
Q = rectangle (0,1;) X (0,13) and I its boundary.

Discretize uniformly :

. ) l
T =1tXh 1=0,...,n1+1 hl:n1—|—1
. ) Iy
Toj =3 Xhy 7=0,...,n2+1 h2=n2+1
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Finite Difference Scheme for the Laplacean

The resulting matrix has the following block structure:

» Using centered differences for both the 8‘9—;2 and 86—; terms - with " .
mesh sizes hy = hy = h : :EE:_"._
1 B _I ..I..=E=I.
Au(zx) = 2 [u(x1 + h,x2) + u(xy — h,x2)+ A % 1 B —J . "ais
h —h)—4 _
tuls, 2z 4 h) 4 u(@, @ ) w(@s, )] I B Matrix for 7 X 5 finite
difference mesh
With _ -
4 -1
H ‘ HR _1 4: —].
The 5-point ‘stencil: B 1 4 —1
-1 4 -1
-1 4
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Finite FElements: a quick overview » Frechet derivative:
ou, . u(x + hv) — u(x)
Background:  Green's formula 95\ = heo h

o
/V'U.Vu dac:—/'vAu d:c—l—/'v—l_': ds.
Q Q r on
» V = gradient operator. In 2-D:
ou

_ | 8
Vu = 50 |

ozy

» The dot indicates a dot product of two vectors.
» Awu = Laplacean of u

» 11 is the unit vector that is normal to I'" and directed outwards.

» Green's formula generalizes the usual formula for integration by
parts

» Define

Ou Ov du Ov
a(u,v) = / Vu.Vvdmz/( + >da:
Q Q

81131 8&31 8.’132 8:1:2
(fsv) E/f’u dz.
9)

Denote:

(u,v) :/Qu(a:)v(w)dac,
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»  With Dirichlet BC, the integral on the boundary in Green's
formula vanishes —

a(u,v) = —(Au,v).

»  Weak formulation of the original problem: select a subspace of
reference V' of L? and then solve

Find v € V suchthat a(u,v) = (f,v), VveV

» Finite Element method solves this weak problem...

» ... by discretization
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» The original domain is approximated by the union €25 of m
triangles K,

Triangulation of €2 :

m
Q, = J K.
i=1
»  Some restrictions on angles,
edges, etc..

Vi={9¢| P, € co, dr, = 0, ¢|K,- linear V 5}

» C° = set of continuous functions
» @ x == restriction of ¢ to the subset X

» letxj,j =1,...,n, be the nodes of the triangulation
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» Can define a (unique) 'hat’ function ¢; in V4, associated with
each x; s.t.:

1if33i:£13j

(,Z')](iliz) :5ij - {0 if wl;éwj

» Each function u of V}, can be expressed as
u(z) =) &d;(x). ()
j=1

» The finite element approximation consists of writing the Galerkin
condition for functions in V},:

Find w € V}, such that a(u,v) = (f,v), V v €V,

» Express u in the basis {¢;} (see *), then substitute above
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»  Result: the linear system

> g = Bi
j=1

where
o;; = a(dj, di), Bi = (f, Pi)-

The above equations form a linear system of equations

Ax =0b

» A is Symmetric Positive Definite
Prove it
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The Assembly Process: Illustration

i J
If triangle K ¢ ’

support domains of

both ¢; and ¢; then ‘ o *
aK(¢ia ¢J) =0 Wm

If triangle K S
*both* nonzero

domains of ¢; and ¢; T
then ax (i, @;) # 6 ﬂ

> So: ax(di,¢;) # 0iffi € {k,1,m} and j € {k,l,m}.
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The Assembly Process

1 2 a 1

2 | "E

A simple finite element mesh and the pattern of the corresponding
assembled matrix.
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Al Al Al Al
= = m
= = | ] L] [ ] = m
E 1= " = ]
L] " = "=
LI L] - L ] LI
= ==

Element matrices Al¢l, e = 1,...,4 for FEM mesh shown above
» Each element contributes a 3 X 3 submatrix Al¢l (spread out)

» Can use the matrix in un-assembled form - To multiply a vector
by A for example we can do

nel nel
y= Ax = ZA[E]:[: — ZPEAKE(PZZL‘).
e=1 e=1
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» Can be computed using the element matrices A, - no need to
assemble

» The product PeTa: gathers x data associated with the e-element
into a 3-vector consistent with the ordering of the matrix A, .

» Advantage: some simplification in process

» Disadvantage: cost (memory + computations).
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Resources: A few matlab scripts

» These (and others) will be posted in the matlab folder of class
web-site

>> help £d3d
function A = fd3d(nx,ny,nz,alpx,alpy,alpz,dshift)
NOTE nx and ny must be > 1 -- nz can be ==
5- or 7-point block-Diffusion/conv. matrix. with

» A stripped-down version is |1ap2D (nx,ny)|

>> help mark

[A] = mark(m)

generates a Markov chain matrix for a random walk

on a triangular grid. A is sparse of size n=mx(m+1)/2
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Explore A few useful matlab functions

* kron

* gplot for ploting graphs

* reshape for going from say 1-D to 2-D or 3-D arrays

Write a script to generate a 9-point discretization of the Laplacean.
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The Matlab PDE toolbox

» The PDE toolbox provides functions for setting up and solving a
PDE of the form

o*u ou
m% + da — A(cVu)+au=f

e model=createmodel (). Initiates the class 'model’

e geometryFromEdges (model, ...) Creates the geometry.

e pdegplot (model, ...) plots the geometry

e applyBoundaryCondition(model, ...) Applies boundary con-
ditions

e specifyCoefficients(model,...) Setscoeffsm,d,c,a, f

above
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e generateMesh(model, ...) Generates the mesh
eresults = pdesolve(model,...) solves the PDE
e pdeplot(model, .. .) plots solution

» Also assembleFEMatrices(model,...) assembles the FEM
problem, [returns K and M in a structure]

Follow the example in the documentation and get an under-
standing of the functions that are called.
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