BACKGROUND: A Brief Introduction
to Graph Theory

e General definitions; Representations;
e Graph Traversals;

e Topological sort;



Graphs — definitions € representations

» Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, F)
with E C V X V. So G represents a binary relation. The graph
Is undirected if the binary relation is symmetric. It is directed
otherwise. V is the vertex set and E is the edge set.

If R is a binary relation between elements in V' then, we can represent
it by a graph G = (V, E) as follows:

(u,v) e E <+ u R

Undirected graph <> symmetric relation

4-2 — graphBG




(LR 2); (4R 1); (2R 3); (3 | (LR 2); (2R 3); (3R 4); (4
R 2); (3R 4) R 1)

#n1| Given the numbers 5, 3, 9, 15, 16, show the two graphs
representing the relations

R1: Either < y or y divides .

R2: x and y are congruent modulo 3. [ mod(x,3) = mod(y,3)]

» |E| < |V|% For undirected graphs: |E| < |V |(|V|+1)/2.
» A sparse graph is one for which |E| < |V|?.
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Graphs — Examples and applications

» Applications of graphs are numerous.

1. Airport connection system: (a) R (b) if there is a non-stop flight
from (a) to (b).

Highway system;
Computer Networks;
Electrical circuits;

Traffic Flow:

Social Networks:

N oS 0 & N

Sparse matrices;
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Basic Terminology & notation: |

» If (u,v) € FE, then v is adjacent to u. The edge (u,v) is
incident to v and v.

» If the graph is directed, then (u, v) is an outgoing edge from u
and incoming edge to v

» Adj(i) = {j|j adjacent to 2}

» The degree of a vertex v is the number of edges incident to v.
Can also define the indegree and outdegree. (Sometimes self-edge
¢ — % omitted)

» | S| is the cardinality of set S [so |Adj(2)| == deg( 2) |
» A subgraph G’ = (V', E’) of G is a graph with V/ C V and
E'C E




Representations of Graphs

» A graph is nothing but a collection of vertices (indices from 1 to

n ), each with a set of its adjacent vertices [in effect a 'sparse matrix
without values']

» Therefore, can use any of the sparse matrix storage formats -
omit the real values arrays.

Adjacency matrix  Assume V =

{1,2,--. ,n}. Then the adjacency 1if (¢,5) € E
matrix of G = (V, E) isthen x n = %&j = { 0 Otherwise
matrix, with entries:




Representations of Graphs (cont.)

1) > (2)
- _
1
1 1
1 @< 3
Example: i l
-1 17 @ ©)
1 1
1 1
1 1
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Dynamaic representation: Linked lists

—  Null

T Null

T Null

—  Null

—  Null

T Null

O O1T | B W N =

» An array of linked lists. A linked list associated with vertex z,
contains all the vertices adjacent to vertex 1.

» General and concise for 'sparse graphs’ (the most practical situ-
ations).

» Not too economical for use in sparse matrix methods




More terminology € notation

» For agiven Y C X, the section graph of Y is the subgraph
Gy = (Y, E(Y)) where

E(Y)={(z,y) € Elz € Y, y inY}
» A section graph is a clique if all the nodes in the subgraph are
pairwise adjacent (— dense block in matrix)

» A path is a sequence of vertices wgy, Wi, ..., W, such that
(’wi,’wi_|_1) e Efore=0,...,k— 1.

»  The length of the path wqg, w1y, ..., wy is k (# of edges in the
path)

» A cycle is a closed path, i.e., a path with w;, = wy.

» A graph is acyclic if it has no cycles.




#2| Find cycles in this graph: A path in an indirected graph

- (5) (1) 5

» A path wg,...,wyg is simple if the vertices wg, ..., wy are
distinct (except that we may have wg = wy, for cycles).

» An undirected graph is connected if there is path from every
vertex to every other vertex.

» A digraph with the same property is said to be strongly connected
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» The undirected form of a directed graph the undirected graph
obtained by removing the directions of all the edges.

» Another term used “symmetrized” form -

» A directed graph whose undirected form is connected is said to
be weakly connected or connected.

» [ree = a graph whose undirected form, i.e., symmetrized form,
is acyclic & connected

» Forest = a collection of trees
» |n a rooted tree one specific vertex is designated as a root.

» Root determines orientation of the tree edges in parent-child
relation
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Root 1 S Root 1 S

10

‘9

» Parent-Child relation: immediate neighbors of root are children.
Root is their parent. Recursively define children-parents

» |n example: v3 is parent of vg, g and vg, Vg are chidren of vs.
» Nodes that have no children are leaves. In example: vqg, V7, Vg, V4

» Descendent, ancestors, ...
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Tree traversals

» Tree traversal is a process of visiting all vertices in a tree. Typically
traversal starts at root.

» Want: systematic traversals of all nodes of tree — moving from a
node to a child or parent

» Preorder traversal: Visit parent before children [recursively]
In example: v1, v2, Vg, V19, V3, Vg, Vg, U7, Vs, Uy
» Postorder traversal: Visit children before parent [recursively]

In example . V10 V9, U2, Ug,y U7,y Vgy V34 Vg, U5, U1
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Graphs Traversals — Depth First Search

» Issue: systematic way of visiting all nodes of a general graph

» Two basic methods: Breadth First Search (wll's see later) & ...
» Depth-First Search.

Algorithm List = DFS(G,v) (DFS from v)
e Visit and Mark wv;
e for all edges (v, w) do

—if w is not marked then List = DFS(G, w)
— Add v to top of list produced above

» |f G is undirected and connected, all nodes will be visited

» It GG is directed and strongly connected, all nodes will be visited
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Depth First Search — undirected graph example

A
B C
»  Assume adjacent nodes are
listed in alphabetical order.
#n3| DFS traversal from A 7 D ¢ G
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Depth First Search — directed graph example

A

A/

» Assume adjacent nodes are listed in alphabetical order.

#4| DFS traversal from A?
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function [Lst, Mark] = dfs(u, A, Lst, Mark)
%ty function [Lst, Mark] = dfs(u, A, Lst, Mark)

%& dfs from node u -- Recursive
[ii, jj, rr] = find(A(:,u));
Mark(u) = 1;
for k=1:length(ii)

v = 1i(k);

if ("Mark(v))
[Lst, Mark] = dfs(v, A, Lst, Mark);
end

end
Lst = [u,Lst]
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Depth-First-Search Tree: Consider the parent-child relation: v is
a parent of w if u was visited from v in the depth first search

algorithm. The (directed) graph resulting from this binary relation
is a tree called the Depth-First-Search Tree. To describe tree: only

need the parents list.

» To traverse all the graph we need a DFS(v,G) from each node v
that has not been visited yet — so add another loop. Refer to this as

DFS(G)

» When a new vertex is visited in DFS, some work is done. Example:
we can build a stack of nodes visited to show order (reverse order:

easier) in which the node is visited.
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EXAMPLE

DFS traversal:
Parents list:

419

We assume adjacency list
is 1n 1ncreasing order.

[e.g: Adj(4)=(1,5,6,7)]

TTTTETT

Depth First
Search Tree
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Back edges, forward edges, and cross edges

» Thick red lines: DFS traversal tree from A
» A — Fis a Forward edge

» F — B is a Back edge

» (C — B and G — F' are Cross-edges.
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» Consider the ‘List’ produced by B / \ c

DES.
Lst=[A, C, G, B, D, F, E]
»  Order in list is important for .

some algorithms / \ /.

E F
» Notice: Label nodes in List from 1 to n . Then:

® Tree-edges / Forward edges : labels increase in —
e Cross edges : labels in/de-crease in — [depends on labeling]

e Back-edges : labels decrease in —
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Properties of Depth First Search

» |If G is a connected undirected (or strongly connected) graph,
then each vertex will be visited once and each edge will be inspected
at least once.

» Therefore, for a connected undirected graph, The cost of DFS is
O(lV|] + |E])

» If the graph is undirected, then there are no cross-edges. (all
non-tree edges are called ‘back-edges’)

Theorem: A directed graph is acyclic iff a DFS search of G yields
no back-edges.

» Terminology: Directed Acyclic Graph or DAG

4-22 — graphBG




Topological Sort

The Problem: Given a Directed Acyclic Graph (DAG), order the

vertices from 1 to n such that, if (u, v) is an edge, then w appears
before v in the ordering.

» Equivalently, label vertices from 1 to n so that in any (directed)
path from a node labelled k, all vertices in the path have labels >k.

» Many Applications
Prerequisite requirements in a program
Scheduling of tasks for any project

Parallel algorithms;

Y Y VYY
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Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one

vertex with indegree = 0.

il

Prove this

Algorithm: |

» First label these verticesas 1, 2, ..., k:

» Remove these vertices and all edges incident from them

» Resulting graph is again acyclic ... d nodes with indegree = 0.
label these nodesas k + 1,k + 2,...,

» Repeat..

aily
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Alternative methods: Topological sort from DFS

» Depth first search traversal of graph.

» Do a ‘post-order traversal’ of the DFS tree.

Algorithm Lst = T'sort(G) (post-order DFS from v)
Mark = zeros(n,1); Lst =10
for v=1:n do:
if (Mark(v)==0)
[Lst, Mark] = dfs(v, G, Lst, Mark);
end
end

» dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of
Lst after finishing the traversal from v
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Lst = DFS(G,v) |

e Visit and Mark v;
e for all edges (v, w) do
—if w is not marked then Lst = DF S(G, w)

o Lst = v, Lst]

» Topological order given by the final Lst array of Tsort

#n7| Explore implementation issue

#og| Implement in matlab

#19] Show correctness [i.e.: is this indeed a topol. order? hint: no
back-edges in a DAG]




GRAPH MODELS FOR SPARSE MATRICES

e See Chap. 3 of text
e Sparse matrices and graphs.
e Bipartite model, hypergraphs

e Application: Paths in graphs, Markov chains



Graph Representations of Sparse Matrices. Recall:

Adjacency Graph G = (V, E) of an n X n matrix A :
V = {1, 2, ,N} E = {(z,])|aw # O}

» (G == undirected if A has a symmetric pattern

Example:

*

* * *
* * * *




#110 Show the matrix pattern for the
graph on the right and give an interpre-
tation of the path w4, vo, v3, V5, V1 0N
the matrix

» A separator is a set Y of vertices such that the graph Gx_y is
disconnected.

Example: |Y = {v3, v4,v5} is a separator in the above figure
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Example: | Adjacency graph of:

* *

* *
* *
* *

Example: | For any adjacency matrix A, what is the graph of
A?? [interpret in terms of paths in the graph of A]
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» Two graphs are isomorphic is there is a mapping between the
vertices of the two graphs that preserves adjacency.

#n11

Are the following 3 graphs isomorphic? If yes find the mappings

between them.

O—O @
OO @)
5 (6 )—@

» Graphs are identical — labels are different
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Baipartite graph representation

» Each row is represented by a vertex; Each column is represented
by a vertex.

» Relations only between rows and columns: Row % is connected
to column 7 if a;; # 0

- - ]
*
O O
*
Example: * * O
* ok O
* * o A

» Bipartite models used only for specific cases [e.g. rectangular
matrices, ...] - By default we use the standard definition of graphs.

4-32 ———————— — 8raph




Interpretation of graphs of matrices

#n12

In which of the following cases is the underlying physical mesh

the same as the graph of A (in the sense that edges are the same):

e Finite difference mesh [consider the simple case of 5-pt and 7-pt
FD problems - then 9-point meshes. |

e Finite element mesh with linear elements (e.g. triangles)?

e Finite element mesh with other types of elements? [to answer

this question you would have to know more about higher order
elements]

#n13

#n14

#n15
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What is the graph of A 4+ B (for two . X 1 matrices)?
What is the graph of AT ?
What is the graph of A.B?
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Paths in graphs

#116] What is the graph of A*?

Theorem Let A be the adjacency matrix of a graph G = (V, E).
Then for kK > 0 and vertices u and v of GG, the number of paths

of length k starting at u and ending at v is equal to (A¥), .

Proof: Proof is by induction.lli

» Recall (definition): A matrix is reducible if it can be permuted
into a block upper triangular matrix.

» Note: A matrix is reducible iff its adjacency graph is not (strongly)
connected, i.e., iff it has more than one connected component.
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» No edges from
C to A or B. No

edges from B to A.

T'heorem: Perron-Frobenius An irreducible, nonnegative n X n
matrix A has a real, positive eigenvalue \; such that:
(i) A1 is a simple eigenvalue of A;
(i) A1 admits a positive eigenvector u; ; and
(iii))| A;| < Aq for all other eigenvalues A; where 2 > 1.

» The spectral radius is equal to the eigenvalue \q
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» Definition : a graph is d regular if each vertex has the same
degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated
with the eigenvalue A = d. In addition this eigenvalue is the largest
possible (consider the infinity norm of A). Therefore € is the Perron-
Frobenius vector u;.
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Application: Markov Chains

» Read about Markov Chains in Sect. 10.9 of:
https://www-users.cs.umn.edu/~saad/eig_book 2ndEd.pdf

» The stationary probability satisfies the equation:

P =

Where 7t 1s a row vector.

» P is the probabilty transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if :
(i) pij = 0forallz,j

(ll) Z;L:lp’ld — ]_ 'Fori —_ ]_,... s T
(iii) No column of P is a zero column.
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https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf

» Spectral radius is < 1 [Why?]
» Assume P is irreducible. Then:

» Perron Frobenius — p(P) = 1 is an eigenvalue and associated
eigenvector has positive entries.

» Probabilities are obtained by scaling 7t by its sum.

» Example: One of the 2 models used for page rank.

Example:

A college Fraternity has 50 students at various stages of college

(Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the

following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without
degree. Following table gives probability of transitions from one stage

to next
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To From Fr|So. | Ju.|Sr.|Grad|lwd
Fr. 2,000 0 | O
So. 6, 1/]0/ 0] 0 | O
Ju. o .7/ 1,0 0 | O
Sr. 0, 0.8/.1] 0 | O
Grad 0O 0 0|75 1 |0
lwd 2 2.1/15 0 |1

#117] What is P? Assume initial population is ¢y = [10,16,12,12, 0, 0]
and do a follow the population for a few years. What is the probability

that a student will graduate? What is the probability that s/he leaves
without a degree?

4-39 — graph




A few words about hypergraphs

» Hypergraphs are very general.. Ideas borrowed from VLSI work

» Main motivation: to better represent communication volumes
when partitioning a graph. Standard models face many limitations

» Hypergraphs can better express complex graph partitioning prob-
lems and provide better solutions.

» Example: completely nonsymmetric patterns ...

» .. Even rectangular matrices. Best illustration: Hypergraphs are
ideal for text data
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Example: |V = {1,...,9} and E = {a,...,e} with
a—=1{1,2,3,4}, b={3,5,6,7}, c = {4,7,8,9},
d={6,7,8}, ande={2,9}

3 5

Boolean matrix:

123456789
1111 a
1 111 b
1 111 c
111 |d

net d

1 1le

het e
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A few words on computational graphs

f(x,y,2) = g(a(x,y,z), b(x,y,z))

» Computational graphs: graphs where oy

nodes represent computations whose

evaluation depend on other (incoming) Chigyz) )
nodes. \ \

> .Con5|der the 1.‘o||ow- g(z,y) = (x +y—2) % (y + 1)
ing expression:

zZ=x+Y
We can decompose thisas { v = y + 1
g = (2 —2)*v

4-42 — graph




» Corresponding compu- S
vt O

tational graph:

» Given values of x, y we want to (a) Evaluate the nodes and also
(b) derivatives of g w.r.t @, y at the nodes

(a) is trivial - just follow the graph up - starting from the leaves (that
contain x and vy)

(b): Use the chain rule — here shown for & only using previous setting

99 _ Ogda | gdb
Ox  Oadx obdx

#013| For the above example compute values at nodes and derivatives
when x = —1,y = 2.




Back-Propagation

» Often we want to compute the gradient of the function at the
root, once the nodes have been evaluated

» The derivatives can be calculated by going backward (or down
the tree)

» Here is a very simple example from Neural Networks

(L:l(y—t)z X t

2

Yy =o(z) >%y>
Lz = wx+b b/

» Note that t (desired output) and x (input) are constant.
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Back-Propagation: General computational graphs
v @ - )
(e F Un—1
v - e — ( . )
k V] L *- Voo Un Un\Un—-1,Un—-2,Un-3
S el N

\\ - "‘-._‘ » ’Uﬂ
".___._ “/
Upp o, v

“a A .

. Representation: a DAG

» Last node (v;,) is the target function. Let us rename it f.

» Nodes v;,2 = 1,--- , e with indegree 0 are the variables

» Want to compute 3 f/0v1,0f /Ovg, -+ ,0Ff/O0v,

»  Simply use the chain rule. Look for example at node vy, in figure

of  0Of 0v, it Of Ov; | of Ov,,

8—vk - Ov;0v,, Ov0v,  Ovy, Ovg
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» Let o = g—,li (called ‘errors’). Then

5 _5(‘9113-_'_58111_'_6 OV,
b J@vk lc’?vk " 8’Uk
, ) Uj A”,/
» To compute the 0y's once the v;'s °

~
-~

have been computed (in a ‘forward’ prop- () /’U[ .

agation) — proceed backward. i
» J;, 0,0, available and Ov;/0v s,
computable. Nore 9,, = 1. -

Um ™.

~

» However: cannot just do this in any order. Must follow a
topological order in order to obey dependencies.
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Example:

E(=?)
‘ » .
\ -
T Nl B \\ | \\\ :? f— U(ﬂf)
- s B U(a!) qt T 1
ris a; = W;y~
a; = w; )z |
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