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Preface to the Classics Edition

This is a revised edition of a book which appeared close to two decades ago.
Someone scrutinizing how the field has evolved in these two decades will make
two interesting observations. On the one hand the observer will be struck by the
staggering number of new developments in numerical linear algebra during this
period. The field has evolved in all directions: theory, algorithms, software, and
novel applications. Two decades ago there was essentially no publically available
software for large eigenvalue problems. Today one has a flurry to choose from,
and the activity in software development does not seem to be abating. A number
of new algorithms appeared in this period as well. I can mention at the outset the
Jacobi-Davidson algorithm and the idea of implicit restarts, both discussed in this
book, but there are a few others. The most interesting development to the numeri-
cal analyst may be the expansion of the realm of eigenvalue techniques into newer
and more challenging applications. Or perhaps, the more correct observation is
that these applications were always there, but they were not as widely appreciated
or understood by numerical analysts, or were not fully developed due to lack of
software.

The second observation to be made when comparing the state of the field now
and two decades ago is that at the same time the basic tools used to compute spec-
tra have essentially not changed much: Krylov subspaces are still omnipresent.
On the whole, the new methods that have been developed consist of enhance-
ments to these basic methods, sometimes major, in the form of preconditioners, or
other variations. One might say that the field has evolved even more from gain-
ing maturity than from the few important developments which took place. This
maturity has been brought about by the development of practical algorithms and
by software. Therefore, synergistic forces played a major role: new algorithms,
enhancements, and software packages were developed which enabled new interest
from practitioners, which in turn sparkled demand and additional interest from the
algorithm developers.

In light of this observation, I have grouped the 10 chapters of the first edition
into three categories. In the first group are those chapters that are of a theoreti-
cal nature (Chapters 1, 3, and 9). These have undergone small changes such as
correcting errors, improving the style, and adding references.

The second group includes a few chapters that describe basic algorithms or
concepts—for example, subspace iteration (Chapter 5) or the tools of spectral

xiii



X1V PREFACE TO THE CLASSICS EDITION

approximation (Chapter 4). These have been left unchanged or have received
small updates. Chapters 2 and 10 are also in this group which then consists of
Chapters 2, 4, 5, and 10.

Chapters in the third group (Chapters 6-8) underwent the biggest changes.
These describe algorithms and their implementations. Chapters 7 and 8 of the
first edition contained a mix of topics, some of which are less important today,
and so some reorganization was needed. I preferred to shorten or reorganize the
discussion of some of these topics rather than remove them altogether, because
most are not covered in other books. At the same time it was necessary to add a
few sections on topics of more recent interest. These include the implicit restart
techniques (included in Chapter 7) and the Jacobi-Davidson method (included as
part of Chapter 7 on preconditioning techniques). A section on AMLS (Auto-
matic Multi-Level Substructuring) which has had excellent success in Structural
Engineering has also been included with a goal to link it to other known methods.

Problems were left unchanged from the earlier edition, but the Notes and ref-
erences sections ending each chapter were systematically updated. Some notation
has also been altered from the previous edition to reflect more common usage.
For example, the term “null space’ has been substituted for the less common term
“kernel.”

An on-line version of this book, along with a few resources such as tutorials
and MATLAB scripts, is posted on my web site; see

http://www.siam.org/books/cl66.

Finally, I am indebted to the National Science Foundation and to the Depart-
ment of Energy for their support of my research throughout the years.

Yousef Saad
Minneapolis, January 6, 2011


http://www.siam.org/books/cl66

Preface

Matrix eigenvalue problems arise in a large number of disciplines of sciences and
engineering. They constitute the basic tool used in designing buildings, bridges,
and turbines, that are resistent to vibrations. They allow to model queueing net-
works, and to analyze stability of electrical networks or fluid flow. They also allow
the scientist to understand local physical phenonema or to study bifurcation pat-
terns in dynamical systems. In fact the writing of this book was motivated mostly
by the second class of problems.

Several books dealing with numerical methods for solving eigenvalue prob-
lems involving symmetric (or Hermitian) matrices have been written and there
are a few software packages both public and commercial available. The book
by Parlett [148]] is an excellent treatise of the problem. Despite a rather strong
demand by engineers and scientists there is little written on nonsymmetric prob-
lems and even less is available in terms of software. The 1965 book by Wilkinson
still constitutes an important reference. Certainly, science has evolved since
the writing of Wilkinson’s book and so has the computational environment and
the demand for solving large matrix problems. Problems are becoming larger
and more complicated while at the same time computers are able to deliver ever
higher performances. This means in particular that methods that were deemed too
demanding yesterday are now in the realm of the achievable. I hope that this book
will be a small step in bridging the gap between the literature on what is avail-
able in the symmetric case and the nonsymmetric case. Both the Hermitian and
the non-Hermitian case are covered, although non-Hermitian problems are given
more emphasis.

This book attempts to achieve a good balance between theory and practice. [
should comment that the theory is especially important in the nonsymmetric case.
In essence what differentiates the Hermitian from the non-Hermitian eigenvalue
problem is that in the first case we can always manage to compute an approxi-
mation whereas there are nonsymmetric problems that can be arbitrarily difficult
to solve and can essentially make any algorithm fail. Stated more rigorously, the
eigenvalue of a Hermitian matrix is always well-conditioned whereas this is not
true for nonsymmetric matrices. On the practical side, I tried to give a general
view of algorithms and tools that have proved efficient. Many of the algorithms
described correspond to actual implementations of research software and have
been tested on realistic problems. I have tried to convey our experience from the
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practice in using these techniques.

As a result of the partial emphasis on theory, there are a few chapters that
may be found hard to digest for readers inexperienced with linear algebra. These
are Chapter III and to some extent, a small part of Chapter IV. Fortunately, Chap-
ter 111 is basically independent of the rest of the book. The minimal background
needed to use the algorithmic part of the book, namely Chapters IV through VIII,
is calculus and linear algebra at the undergraduate level. The book has been used
twice to teach a special topics course; once in a Mathematics department and once
in a Computer Science department. In a quarter period representing roughly 12
weeks of 2.5 hours lecture per week, Chapter I, III, and IV, to VI have been cov-
ered without much difficulty. In a semester period, 18 weeks of 2.5 hours lecture
weekly, all chapters can be covered with various degrees of depth. Chapters II and
X need not be treated in class and can be given as remedial reading.

Finally, I would like to extend my appreciation to a number of people to
whom I am indebted. Francoise Chatelin, who was my thesis adviser, introduced
me to numerical methods for eigenvalue problems. Her influence on my way of
thinking is certainly reflected in this book. Beresford Parlett has been encouraging
throughout my career and has always been a real inspiration. Part of the motiva-
tion in getting this book completed, rather than ‘never finished’, is owed to L. E.
Scriven from the Chemical Engineering department and to many others in applied
sciences who expressed interest in my work. I am indebted to Roland Freund who
has read this manuscript with great care and has pointed out numerous mistakes.



Chapter 1

BACKGROUND IN MATRIX THEORY
AND LINEAR ALGEBRA

This chapter reviews basic matrix theory and introduces some of the elementary
notation used throughout the book. Matrices are objects that represent linear map-
pings between vector spaces. The notions that will be predominantly used in this
book are very intimately related to these linear mappings and it is possible to discuss
eigenvalues of linear operators without ever mentioning their matrix representations.
However, to the numerical analyst, or the engineer, any theory that would be de-
veloped in this manner would be insufficient in that it will not be of much help
in developing or understanding computational algorithms. The abstraction of linear
mappings on vector spaces does however provide very concise definitions and some
important theorems.

1.1 Matrices

When dealing with eigenvalues it is more convenient, if not more relevant, to
manipulate complex matrices rather than real matrices. A complex m X n matrix
Ais an m X n array of complex numbers

a;j, i=1,...,m, 3=1,...,n.

The set of all m x n matrices is a complex vector space denoted by C"*". The
main operations with matrices are the following:

e Addition: C' = A 4+ B, where A, B and C are matrices of size m x n and

Cij = aij + bij

e Multiplication by a scalar: C = a A, where ¢;; = a a;;.
e Multiplication by another matrix:

C = AB,



2 Chapter 1

where A € C"™*" B € C"*P, ' € C™*P, and
n
Cij = Zaikbkg‘.
k=1

A notation that is often used is that of column vectors and row vectors. The
column vector a_; is the vector consisting of the j-th column of A4, ie., a; =
(@ij)i=1,...,m- Similarly we will use the notation a;. to denote the i-th row of the
matrix A. For example, we may write that

A == (a.17a.27 ce 5a.n) .
or
ai.
a.
A =
G,

The transpose of a matrix A in C™*™ is a matrix C' in C"*"™ whose elements
are defined by ¢;; = aj;,4 = 1,...,n, j =1,..., m. The transpose of a matrix A
is denoted by AT It is more relevant in eigenvalue problems to use the transpose
conjugate matrix denoted by AX and defined by

A = AT = AT

in which the bar denotes the (element-wise) complex conjugation.

Finally, we should recall that matrices are strongly related to linear mappings
between vector spaces of finite dimension. They are in fact representations of
these transformations with respect to two given bases; one for the initial vector
space and the other for the image vector space.

1.2 Square Matrices and Eigenvalues

A matrix belonging to C™*"™ is said to be square. Some notions are only defined
for square matrices. A square matrix which is very important is the identity matrix

I= {51‘]‘}1‘,]‘:1,..4,/”

where ¢;; is the Kronecker symbol. The identity matrix satisfies the equality Al =
IA = A for every matrix A of size n. The inverse of a matrix, when it exists, is a
matrix C such that CA = AC = I. The inverse of A is denoted by A~!.

The determinant of a matrix may be defined in several ways. For simplicity
we adopt here the following recursive definition. The determinant of a 1 x 1 matrix
(a) is defined as the scalar a. Then the determinant of an n x n matrix is given by

det(A) = zn:(—l)j“aljdet(Alj)

J=1
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where A is an (n — 1) x (n — 1) matrix obtained by deleting the 1-st row and
the j — th column of A. The determinant of a matrix determines whether or not
a matrix is singular since A is singular if and only if its determinant is zero. We
have the following simple properties:

From the above definition of the determinant it can be shown by induction that
the function that maps a given complex value A to the value p4 (A) = det(A—\I)
is a polynomial of degree n (Problem P-1[6). This is referred to as the character-
istic polynomial of the matrix A.

Definition 1.1 A complex scalar \ is called an eigenvalue of the square matrix
A if there exists a nonzero vector u of C" such that Au = Au. The vector u is
called an eigenvector of A associated with \. The set of all the eigenvalues of A
is referred to as the spectrum of A and is denoted by A(A).

An eigenvalue of A is a root of the characteristic polynomial. Indeed ) is an
eigenvalue of A iff det(A — AI) = pa(A) = 0. So there are at most n distinct
eigenvalues. The maximum modulus of the eigenvalues is called spectral radius
and is denoted by p(A):

A) = Al
p(A) NGt Al
The trace of a matrix is equal to the sum of all its diagonal elements,

tI‘(A) = i Aig.
i=1

It can be easily shown that this is also equal to the sum of its eigenvalues counted
with their multiplicities as roots of the characteristic polynomial.

Proposition 1.1 If \ is an eigenvalue of A then X is an eigenvalue of A™. An

eigenvector v of A™ associated with the eigenvalue X is called left eigenvector of
A.

When a distinction is necessary, an eigenvector of A is often called a right eigen-
vector. Thus the eigenvalue )\ and the right and left eigenvectors, u and v, satisfy
the relations

Au=Xu, vfA=x "

or, equivalently,

uT AT =Xl ) AHy =)o
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1.3 Types of Matrices

The properties of eigenvalues and eigenvectors of square matrices will sometimes
depend on special properties of the matrix A. For example, the eigenvalues or
eigenvectors of the following types of matrices will all have some special proper-
ties.

o Symmetric matrices: AT = A;

e Hermitian matrices: A7 = A

Skew-symmetric matrices: AT = —A;

Skew-Hermitian matrices: A™ = —A;

Normal matrices: AT A = AAT;

Nonnegative matrices: a;; > 0, 4,7 = 1,...,n (similar definition for
nonpositive, positive, and negative matrices);

e Unitary matrices: Q € C™™and Q7 Q = I.

It is worth noting that a unitary matrix @ is a matrix whose inverse is its transpose
conjugate Q. Often, a matrix @ such that Q¥ (Q is diagonal (not necessarily
square) is called orthogonal.

1.3.1 Matrices with Special Srtuctures

Some matrices have particular structures that are often convenient for computa-
tional purposes and play important roles in numerical analysis. The following list
though incomplete, gives an idea of the most important special matrices arising in
applications and algorithms. They are mostly defined for square matrices.

e Diagonal matrices: a;; = 0 for j # i. Notation for square diagonal
matrices:

A =diag (a11,a22,...,Gm) -

Upper triangular matrices: a;; = 0 fori > j.

o Lower triangular matrices: a;; = 0 fori < j.

Upper bidiagonal matrices: a;; = 0 for j # i and j # i + 1.

Lower bidiagonal matrices: a;; = 0 for j #4iand j # i — 1.

Tridiagonal matrices: a;; = 0 for any pair 7, j such that [j — ¢| >1. Nota-
tion:
A = tridiag (aiﬂ;_l, Ay ai,H_l) .
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e Banded matrices: there exist two integers m; and m,, such that a;; # 0
only if i — m; < j < ¢ 4+ m,. The number m; + m, + 1 is called the
bandwidth of A.

e Upper Hessenberg matrices: a;; = 0 for any pair 4, j such that ¢ > j + 1.
One can define lower Hessenberg matrices similarly.

o Outer product matrices: A = uv™  where both u and v are vectors.

e Permutation matrices: the columns of A are a permutation of the columns
of the identity matrix.

e Block diagonal matrices: generalizes the diagonal matrix by replacing each
diagonal entry by a matrix. Notation:

A= dlag (All,AQQ, . 7A'rm) .

e Block tri-diagonal matrices: generalizes the tri-diagonal matrix by replac-
ing each nonzero entry by a square matrix. Notation:

A = tridiag (Asi—1, Aii, Aiig1) -

The above properties emphasize structure, i.e., positions of the nonzero ele-
ments with respect to the zeros, and assume that there are many zero elements or
that the matrix is of low rank. No such assumption is made for, say, orthogonal or
symmetric matrices.

1.3.2 Special Matrices

A number of matrices which appear in applications have even more special struc-
tures than the ones seen in the previous subsection. These are typically dense
matrices, but their entries depend on fewer parameters than n?.

Thus, Toeplitz matrices are matrices whose entries are constant along diago-
nals. A 5 x 5 Toeplitz matrix will be as follows:

to t1 ta  t3 1y

t1 to t1 ta 13
T=|to t1 to t ta2],
t_s t_o t_q to t
t_y t_g t_o t_1 to
wheret_4,t_3,- - ,t3,ts are parameters. The entries of A are such that a; ;41 =
t, a constant depending only on k, for k = —(m — 1), —(m —2), ---,0,1,2,

-, n — 1. Indices (4,7 + k) outside the valid range of indices for the matrix are
ignored. Such matrices are determined by the m + n — 1 values .
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Similarly, the entries of Hankel matrices are constant along anti-diagonals:

The entries of A are such that a; 41—, = hy, a constant which depends only on
k,fork =1,2,--- ,m+n — 1. Again, indices (i, k + 1 — 4) falling outside the
valid range of indices for A are ignored. Hankel matrices are determined by the
m + n — 1 values hy,.

A special case of Toplitz matrices is that of Circulant matrices which are
defined by n parameters 11,12, - - - , 1. Ina circulant matrix, the entries in a row
are cyclically right-shifted to form next row as is shown in the following 5 x 5
example:

m M2 N3 N4 75
N5 M 7M2 73 74
C=|m n5 m n2 03
3 Ma 15 12
M2 M3 M4 75

An important practical characteristic of these special matrices, is that fast
algorithms can often be devised for them. For example, one could hope that a
Toeplitz linear system can be solved faster than in the standard O(n3) operations
normally required, perhaps in order n? operations. This is indeed the case, see
[77)) for details.

Circulant matrices are strongly connected to the discrete Fourier transform.
The eigenvectors of a circulant matrix of a given size are the columns of the dis-
crete Fourier transform matrix of size n:

FE, = (fjr) with fjr =1/VNe 28/ for0 < j, k < n.
More specifically, it can be shown that a circulant matrix C'is of the form
C = F,diag (F,v)F;*
where F),v is the discrete Fourier transform of the vector v = [y, 72, - - ,nn]T
(the first column of C). For this reason matrix-vector products with circulant

matrices can be performed in O(n log, n) operations via Fast Fourier Transforms
(FFTs) instead of the standard O(n?) operations.

1.4 Vector Inner Products and Norms

We define the Hermitian inner product of the two vectors z = (z;);=1,...m and
y = (Yi)i=1,...,m of C™ as the complex number

(z,y) =Y ¥, (1.1)
=1
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which is often rewritten in matrix notation as

(z,y) =y" .
A vector norm on C™ is a real-valued function on C™, which satisfies the
following three conditions,
||| >0 Va, and |[z|=0iffz=0;
laz|| = |allz|, VzeC™, VaeC;
2 +yll < [zl +lyll, Vz,yeC™.

Associated with the inner product (I.I) is the Euclidean norm of a complex

vector defined by
|2]l2 = (z,2)"/2.

A fundamental additional property in matrix computations is the simple relation
(Az,y) = (z,AHy) Vo eCr,yecC™ (1.2)

the proof of which is straightforward. The following proposition is a consequence
of the above equality.

Proposition 1.2 Unitary matrices preserve the Hermitian inner product, i.e.,

(Qz,Qy) = (z,9)

Sfor any unitary matrix Q.

Proof. Indeed (Qz, Qy) = (z,Q7Qy) = (z,y). U

In particular a unitary matrix preserves the 2-norm metric, i.e., it is isometric with
respect to the 2-norm.

The most commonly used vector norms in numerical linear algebra are special
cases of the Holder norms defined as follows for p > 1

n 1/p
], = <Z x#’) : (1.3)

i=1

It can be shown that these do indeed define norms for p > 1. Note that the limit of
|||, when p tends to infinity exists and is equal to the maximum modulus of the
2;’s. This defines a norm denoted by ||.||oo. The cases p =1, p = 2, and p = oo
lead to the most important norms in practice,

zlly = |z1] + 22| + - + |20
[zll2 = [Ja1]* + |zo® + -+ + |za|?

|z|loc = max |z;| .
1=1,..,n

]1/2
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A very important relation satisfied by the 2-norm is the so-called Cauchy-
Schwarz inequality:

(@ 9)| < [lzll2]ly]l2-

This is a special case of the Holder inequality:

@ 9)l < llzllpllyllq,

for any pair p, ¢ such that 1/p+1/g=1and p > 1.

1.5 Matrix Norms

For a general matrix A in C™*™ we define a special set of norms of matrices as
follows
Azl

Jant
zeCn, x#0 HLCHq

[Allpg = (1.4)
We say that the norms ||.|| .4 are induced by the two norms |||, and ||.||,. These
satisfy the usual properties of norms, i.e.,

JA| >0 VA €C™" and ||A| =0 iff A=0;
laAl|l = |a|[|A], YA € C™ ", VaeC;
A+ B| <A+ IB]|, VA,B eC™™.

Again the most important cases are the ones associated with the cases p, ¢ =
1,2, 00. The case ¢ = p is of particular interest and the associated norm ||.||,q is
simply denoted by ||.||,.

A fundamental property of these norms is that

IABlp < [[Allpl|Bllp,

which is an immediate consequence of the definition (I.4). Matrix norms that
satisfy the above property are sometimes called consistent. As a result of the
above inequality, for example, we have that for any square matrix A, and for any
non-negative integer k,
k k
1A%, < [IAll;

which implies in particular that the matrix A* converges to zero as k goes to
infinity, if any of its p-norms is less than 1.
The Frobenius norm of a matrix is defined by

1/2

Alr = [ D lai;? : (1.5)
g

This can be viewed as the 2-norm of the column (or row) vector in C™ ™ consisting
of all the columns (resp. rows) of A listed from 1 to n (resp. 1 to m). It can easily
be shown that this norm is also consistent, in spite of the fact that is not induced
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by a pair of vector norms, i.e., it is not derived from a formula of the form (I.4),
see Problem P-1.3. However, it does not satisfy some of the other properties of
the p-norms. For example, the Frobenius norm of the identity matrix is not unity.
To avoid these difficulties, we will only use the term matrix norm for a norm that
is induced by two norms as in the definition (L4). Thus, we will not consider the
Frobenius norm to be a proper matrix norm, according to our conventions, even
though it is consistent.

It can be shown that the norms of matrices defined above satisfy the following
equalities which provide alternative definitions that are easier to use in practice.

Al ngf}?fnzlaijl; (1.6)
[Alloe =, max > lai|; (1.7)
j=1
1/2 1/2
IAll2 = [p(AT )] = [p(aat)]"? ; (1.8)

1/2

A p = [tr(AT 4))"% = [tr(AAT)] (1.9)

It will be shown in Section 5 that the eigenvalues of A A are nonnegative.
Their square roots are called singular values of A and are denoted by 0,7 =
1,...,n. Thus, relation shows that || Al|2 is equal to o1, the largest singular
value of A.

Example 1.1. From the above properties, it is clear that the spectral radius
p(A) is equal to the 2-norm of a matrix when the matrix is Hermitian. How-
ever, it is not a matrix norm in general. For example, the first property of norms is

not satisfied, since for
0 1
= 0
we have p(A) = 0 while A # 0. The triangle inequality is also not satisfied for
the pair A, B where A is defined above and B = AT, Indeed,
p(A+ B)=1 while p(A)—+p(B)=0. O

1.6 Subspaces

A subspace of C™ is a subset of C™ that is also a complex vector space. The
set of all linear combinations of a set of vectors G = {a1,as, ..., aq} of C™ is a
vector subspace called the linear span of G,

span{G} = span{ai,as,...,aq}

q
{z eCm|z:Zaiai; {a}tiz1,.., qE(Cq} .

i=1
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If the a;’s are linearly independent, then each vector of span{G} admits a unique
expression as a linear combination of the a;’s. The set G is then called a basis of
the subspace span{G}.

Given two vector subspaces .S and S, their sum S is a subspace defined as
the set of all vectors that are equal to the sum of a vector of S and a vector of Ss.
The intersection of two subspaces is also a subspace. If the intersection of S and
S5 is reduced to {0} then the sum of Sy and Sy is called their direct sum and is
denoted by S = S; @ So. When S is equal to C™ then every vector  of C™ can
be decomposed in a unique way as the sum of an element z; of S; and an element
x9 of Sy. In this situation, we clearly have dim (S;) + dim (S2) = m. The
transformation P that maps x into x; is a linear transformation that is idempotent
(P? = P). Itis called a projector, onto S; along Ss.

Two important subspaces that are associated with a matrix A of C™*™ are its
range, defined by

Ran(A) = {Ax |z € C"}, (1.10)

and its null space or kernel:
Null(A) ={zx e C" | Az =0}.

The range of A, a subspace of C™, is clearly equal to the linear span of its
columns. The column rank of a matrix is equal to the dimension of the range
of A, i.e., to the number of linearly independent columns. An important property
of matrices is that the column rank of a matrix is equal to its row rank, the number
of linearly independent rows of A. This common number is the rank of A and it
clearly satisfies the inequality

rank(A) < min{m,n}. (1.11)

A matrix in C™*™ is of full rank when its rank is equal to the smallest of n and
m, i.e., when equality is achieved in (LI1T).
A fundamental result of linear algebra is stated by the following relation

C™ = Ran(A) @ Null(AT) . (1.12)
The same result applied to the transpose of A yields:
C" = Ran(A”) @ Null(A). (1.13)

Taking the dimensions of both sides and recalling that dim (S; @ Ss) equals
dim (S;)+dim (S) shows that dim(Ran(A”)) +dim(Null(A4)) = n. However,
since

dim (Ran(A”)) = dim (Ran(A)) = rank(A)

then (II3) leads to the following equality

rank(A) + dim(Null(A)) = n. (1.14)
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The dimension of the null-space of A is often called the nullity or co-rank of A.
The above result is therefore often known as the Rank+Nullity theorem which
states that the rank and nullity of a matrix add up to its number of columns.

A subspace S is said to be invariant under a (square) matrix A whenever
AS C S. In particular, for any eigenvalue A of A the subspace Null(A — \I)
is invariant under A. This subspace, which consists of all the eigenvectors of A
associated with A (in addition to the zero-vector), is called the eigenspace of A
associated with \.

1.7 Orthogonal Vectors and Subspaces
A set of vectors G = {a1, ag, ..., a,} is said to be orthogonal if
(ai,a;) =0 when i#j

It is orthonormal if in addition every vector of G has a 2-norm equal to unity. Ev-
ery subspace admits an orthonormal basis which is obtained by taking any basis
and “orthonormalizing” it. The orthonormalization can be achieved by an algo-
rithm referred to as the Gram-Schmidt orthogonalization process which we now
describe. Given a set of linearly independent vectors {x1, 2, ..., x,}, we first
normalize the vector z1, i.e., we divide it by its 2-norm, to obtain the scaled vec-
tor ¢;. Then x5 is orthogonalized against the vector ¢; by subtracting from zo a
multiple of ¢; to make the resulting vector orthogonal to ¢, i.e.,

To — 22 — (22, q1)q1-

The resulting vector is again normalized to yield the second vector g3. The i-th
step of the Gram-Schmidt process consists of orthogonalizing the vector x; against
all previous vectors g;.

ALGORITHM 1.1 Gram-Schmidt
1. Start: Compute 11 := ||z1]|2. If 11 = 0 stop, else q1 := x1/711.
2. Loop: Forj =2,...,pdo:
(a) Compute r;; := (x;,q;) fori=1,2,...,5—1,
j—1
b)) §i=x;— > 1ij¢
i=1

© rj; =l .
(d) Ifr;; = 0 then stop, else q; := G/r;;.

It is easy to prove that the above algorithm will not break down, i.e., all  steps
will be completed, if and only if the family of vectors x1,x2,...,x, is linearly
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independent. From 2-(b) and 2-(c) it is clear that at every step of the algorithm the
following relation holds:

J
Tj = E Tijdi -
i=1

If welet X = [21,29,...,2], @ = [¢1,¢2, - .., qp), and if R denotes the p X p
upper-triangular matrix whose nonzero elements are the r;; defined in the algo-
rithm, then the above relation can be written as

X =QR. (1.15)

This is called the QR decomposition of the n x p matrix X. Thus, from what was
said above the QR decomposition of a matrix exists whenever the column vectors
of X form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are other
formulations of the same algorithm which are mathematically equivalent but have
better numerical properties. The Modified Gram-Schmidt algorithm (MGSA) is
one such alternative.

ALGORITHM 1.2 Modified Gram-Schmidt
1. Start: define r11 := ||x1]|2. If r11 = O stop, else q1 := x1/711.
2. Loop: Forj =2,...,pdo:
(a) Define ¢ := x;,
(b) Fori=1,...,j—1,do { rij 1= (4,4
q:=4q—Tijq;
(c) Compute rj; := |||z,
(d) Ifr;j; = 0 then stop, else q; := §/rj;.

A vector that is orthogonal to all the vectors of a subspace .S is said to be
orthogonal to that subspace. The set of all the vectors that are orthogonal to S is a
vector subspace called the orthogonal complement of S and denoted by S-+. The
space C" is the direct sum of .S and its orthogonal complement. The projector
onto S along its orthogonal complement is called an orthogonal projector onto S.
If V = [v1,v2,...,v,] is an orthonormal matrix then VAV = I ie., V is or-
thogonal. However, V'V is not the identity matrix but represents the orthogonal
projector onto span{V'}, see Section 1 of Chapter 3 for details.

1.8 Canonical Forms of Matrices

In this section we will be concerned with the reduction of square matrices into
matrices that have simpler forms, such as diagonal or bidiagonal, or triangular. By
reduction we mean a transformation that preserves the eigenvalues of a matrix.



BACKGROUND 13

Definition 1.2 Two matrices A and B are said to be similar if there is a nonsin-
gular matrix X such that
A=XBX™!

The mapping B — A is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity transformations
preserve the eigenvalues of matrix. An eigenvector up of B is transformed into
the eigenvector uy = Xup of A. In effect, a similarity transformation amounts
to representing the matrix B in a different basis.

We now need to define some terminology.

1. An eigenvalue X of A is said to have algebraic multiplicity p if it is a root
of multiplicity p of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one it is said to be simple. A
nonsimple eigenvalue is said to be multiple.

3. An eigenvalue \ of A has geometric multiplicity ~ if the maximum num-
ber of independent eigenvectors associated with it is . In other words the
geometric multiplicity -y is the dimension of the eigenspace Null (A — A\I).

4. A matrix is said to be derogatory if the geometric multiplicity of at least
one of its eigenvalues is larger than one.

5. An eigenvalue is said to be semi-simple if its algebraic multiplicity is equal
to its geometric multiplicity. An eigenvalue that is not semi-simple is called
defective .

We will often denote by Aq, A2, ..., Ay, (p < n), all the distinct eigenvalues
of A. It is a simple exercise to show that the characteristic polynomials of two
similar matrices are identical, see Exercise P-1[71 Therefore, the eigenvalues of
two similar matrices are equal and so are their algebraic multiplicities. Moreover
if v is an eigenvector of B then Xwv is an eigenvector of A and, conversely, if y is
an eigenvector of A then X ~!y is an eigenvector of B. As a result the number of
independent eigenvectors associated with a given eigenvalue is the same for two
similar matrices, i.e., their geometric multiplicity is also the same.

The possible desired forms are numerous but they all have the common goal
of attempting to simplify the original eigenvalue problem. Here are some possi-
bilities with comments as to their usefulness.

e Diagonal: the simplest and certainly most desirable choice but it is not
always achievable.

e Jordan: this is an upper bidiagonal matrix with ones or zeroes on the super
diagonal. Always possible but not numerically trustworthy.

e Upper triangular: in practice this is the most reasonable compromise as the
similarity from the original matrix to a triangular form can be chosen to be
isometric and therefore the transformation can be achieved via a sequence
of elementary unitary transformations which are numerically stable.
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1.8.1 Reduction to the Diagonal Form

The simplest form in which a matrix can be reduced is undoubtedly the diagonal
form but this reduction is, unfortunately, not always possible. A matrix that can
be reduced to the diagonal form is called diagonalizable. The following theorem
characterizes such matrices.

Theorem 1.1 A matrix of dimension n is diagonalizable if and only if it has n
linearly independent eigenvectors.

Proof. A matrix A is diagonalizable if and only if there exists a nonsingular matrix
X and a diagonal matrix D such that A = X DX ~! or equivalently AX = XD,
where D is a diagonal matrix. This is equivalent to saying that there exist n
linearly independent vectors — the n column-vectors of X — such that Az; = d;z;,
i.e., each of these column-vectors is an eigenvector of A. O

A matrix that is diagonalizable has only semi-simple eigenvalues. Conversely, if
all the eigenvalues of a matrix are semi-simple then there exist n eigenvectors of
the matrix A. It can be easily shown that these eigenvectors are linearly indepen-
dent, see Exercise P-1[1} As a result we have the following proposition.

Proposition 1.3 A matrix is diagonalizable if and only if all its eigenvalues are
semi-simple.

Since every simple eigenvalue is semi-simple, an immediate corollary of the
above result is that when A has n distinct eigenvalues then it is diagonalizable.

1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of
matrices is the well-known Jordan form. In what follows, the main constructive
steps that lead to the Jordan canonical decomposition are outlined. For details, the
reader is referred to a standard book on matrix theory or linear algebra.

e For every integer [ and each eigenvalue ); it is true that
Null(A — A1) 5 Null(A — \I) .

e Because we are in a finite dimensional space the above property implies that
there is a first integer /; such that

Null(4 — A\ D)5+ = Null(A — A1),

and in fact Null(4 — \;I)! = Null(A — \;1)% for all | > I;. The integer [; is
called the index of \;.

e The subspace M; = Null(A — ;) is invariant under A. Moreover, the space
C™ is the direct sum of the subspaces M;, i = 1,2, ..., p. Let m; = dim(M;).
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e In each invariant subspace M, there are -; independent eigenvectors, i.e., ele-
ments of Null(A — \;I), with v; < m,. It turns out that this set of vectors can
be completed to form a basis of M; by adding to it elements of Null(4 — \; )2,
then elements of Null(4 — X\;1)3, and so on. These elements are generated by
starting separately from each eigenvector u, i.e., an element of Null(A — \; 1),
and then seeking an element that satisfies (A — A\;1)z; = u. Then, more generally
we construct z; 11 by solving the equation (A—\;I)z;11 = z; when possible. The
vector z; belongs to Null(A — \;1)**! and is called a principal vector (sometimes
generalized eigenvector). The process is continued until no more principal vectors
are found. There are at most [; principal vectors for each of the ; eigenvectors.

e The final step is to represent the original matrix A with respect to the basis made
up of the p bases of the invariant subspaces M; defined in the previous step.

The matrix representation JJ of A in the new basis described above has the
block diagonal structure,

J1
Ja

X 'AX =J =

Jp

where each J; corresponds to the subspace M; associated with the eigenvalue ;.
It is of size m; and it has itself the following structure,

Ji = X with J;, = .

Jiyi Ai
Each of the blocks J;;, corresponds to a different eigenvector associated with the
eigenvalue \;. Its size is equal to the number of principal vectors found for the
eigenvector to which the block is associated and does not exceed ;.

Theorem 1.2 Any matrix A can be reduced to a block diagonal matrix consisting
of p diagonal blocks, each associated with a distinct eigenvalue. Each diagonal
block number i has itself a block diagonal structure consisting of ~; subblocks,
where ~y; is the geometric multiplicity of the eigenvalue )\;. Each of the subblocks,
referred to as a Jordan block, is an upper bidiagonal matrix of size not exceed-
ing l;, with the constant \; on the diagonal and the constant one on the super
diagonal.

We refer to the i-th diagonal block, ¢ = 1,..., p as the ¢-th Jordan submatrix
(sometimes “Jordan Box”). The Jordan submatrix number ¢ starts in column j; =
mi1 + mo + -+ +m;_1 + 1. From the above form it is not difficult to see that
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M; = Null(A — )\iI)l'i is merely the span of the columns j;,5; +1,...,7;41 — 1
of the matrix X. These vectors are all the eigenvectors and the principal vectors
associated with the eigenvalue \;.

Since A and J are similar matrices their characteristic polynomials are iden-
tical. Hence, it is clear that the algebraic multiplicity of an eigenvalue \; is equal
to the dimension of M;:

i = m; = dim(M;) .
As a result,
Hi 2 Y-

Because C™ is the direct sum of the subspaces M;,i = 1,...,p each vector

2 can be written in a unique way as

where x; is a member of the subspace M;. The linear transformation defined by
P :x—x

is a projector onto )M, along the direct sum of the subspaces M;,j # i. The

family of projectors P;,7 = 1, ..., p satisfies the following properties,
PP, =P;P;=0,ifi#j (1.17)
P
Z P=1 (1.18)
i=1

In fact it is easy to see that the above three properties define a decomposition of
C™ into a direct sum of the images of the projectors P; in a unique way. More pre-
cisely, any family of projectors that satisfies the above three properties is uniquely
determined and is associated with the decomposition of C” into the direct sum of
the images of the P; ’s.

It is helpful for the understanding of the Jordan canonical form to determine
the matrix representation of the projectors P;. Consider the matrix J; which is
obtained from the Jordan matrix by replacing all the diagonal submatrices by zero
blocks except the ' submatrix which is replaced by the identity matrix.

0

<
I
~

0

In other words if each i-th Jordan submatrix starts at the column number j;, then
the columns of .J; will be zero columns except columns j;, ..., j;+1 — 1 which are
the corresponding columns of the identity matrix. Let P, = XJ; X! Thenitis
not difficult to verify that P isa projector and that,



BACKGROUND 17

1. The range of ]52» is the span of columns j;,...,7;+1 — 1 of the matrix X.
This is the same subspace as M;.

2. P,Pj = PjP, = 0 whenever i # j
PPyt By

According to our observation concerning the uniqueness of a family of projectors
that satisfy (L18) - (I.I8) this implies that

Example 1.2. Let us assume that the eigenvalue J; is simple. Then,

P, = XeieZHXfl = uin

[

in which we have defined u; = Xe; and w; = X He,. Tt is easy to show that
u; and w; are right and left eigenvectors, respectively, associated with \; and
normalized so that w/u; = 1. O

Consider now the matrix D; obtained from the Jordan form of A by replac-
ing each Jordan submatrix by a zero matrix except the ¢-th submatrix which is
obtained by zeroing its diagonal elements, i.e.,

0

Ji =Nl

0

Define D; = XD; X _}. Then it is a simple exercise to show by means of the
explicit expression for P;, that

D; = (A= X\I)P,. (1.19)

Moreover, Dﬁ’i = 0, i.e., D; is a nilpotent matrix of index [;. We are now ready
to state the following important theorem which can be viewed as an alternative
mathematical formulation of Theorem [[.2] on Jordan forms.

Theorem 1.3 Every square matrix A admits the decomposition

p
A=Y (NP + D) (1.20)
i=1
where the family of projectors { P;}i—1. .., satisfies the conditions (L16), (L.I7),
and (LI8), and where D; = (A — \;I)P; is a nilpotent operator of index ;.
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Proof. From (.19), we have

Summing up the above equalities fors = 1,2,...,p we get

p p

AZPi = Z(/\ipi + D;)

i=1 i=1
The proof follows by substituting (L.18) into the left-hand-side. O

The projector P; is called the spectral projector associated with the eigen-
value \;. The linear operator D; is called the nilpotent associated with \;. The
decomposition (I.20) is referred to as the spectral decomposition of A. Additional
properties that are easy to prove from the various expressions of P; and D; are the
following

PD; = D;P, = §;;P; (1.21)
AP, = P,A = P,AP; = \;P, + D, (1.22)
Akp, = pA*Y = P ARP, =

Pi(\I + Dy)* = (\I + Dy)F P (1.23)
AP, =[x,y @ —1)Bil¥jis s Yjir 117 (1.24)

where B; is the i-th Jordan submatrix and where the columns y; are the columns
of the matrix X 1.

Corollary 1.1 For any matrix norm ||.||, the following relation holds
lim |JAR||Y* = p(A). (1.25)
k—o0

Proof. The proof of this corollary is the subject of exercise P-1[8] |

Another way of stating the above corollary is that there is a sequence €, such that
IAF]F = (p(A) + )"

where limy_, . €, = 0.

1.8.3 The Schur Canonical Form

We will now show that any matrix is unitarily similar to an upper-triangular ma-
trix. The only result needed to prove the following theorem is that any vector of
2-norm one can be completed by n — 1 additional vectors to form an orthonormal
basis of C".

Theorem 1.4 For any given matrix A there exists a unitary matrix Q) such that
QFAQ =Ris upper-triangular.
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Proof. The proof is by induction over the dimension n. The result is trivial for
n = 1. Let us assume that it is true for n — 1 and consider any matrix A of size n.
The matrix admits at least one eigenvector u that is associated with an eigenvalue
A. We assume without loss of generality that |julz = 1. We can complete the
vector u into an orthonormal set, i.e., we can find an n x (n — 1) matrix V' such
that the n x n matrix U = [u, V] is unitary. Then we have AU = [Au, AV] and
hence,

H H

H |u (A uTAV
UH AU = {VH] u, AV] = (0 e AV) (1.26)
We now use our induction hypothesis for the (n—1) x (n—1) matrix B = VHZ AV
there exists an (n — 1) x (n — 1) unitary matrix @ such that Q¥ BQ, = Ry is

upper-triangular. Let us define the n X n matrix

s (1 0
Ql — (0 Ql)
and multiply both members of (I28) by Q! from the left and Q; from the right.

The resulting matrix is clearly upper triangular and this shows that the result is
true for A, with @ = QU which is a unitary n x n matrix. O

A simpler proof that uses the Jordan canonical form and the QR decomposition
is the subject of Exercise P-1[3l Since the matrix R is triangular and similar to
A, its diagonal elements are equal to the eigenvalues of A ordered in a certain
manner. In fact it is easy to extend the proof of the theorem to show that we can
obtain this factorization with any order we want for the eigenvalues. One might
ask the question as to which order might be best numerically but the answer to
the question goes beyond the scope of this book. Despite its simplicity, the above
theorem has far reaching consequences some of which will be examined in the
next section.

It is important to note that for any £ < n the subspace spanned by the first k&
columns of ) is invariant under A. This is because from the Schur decomposition
we have, for 1 < j <k,

i=j
Agj = Z Tijqi -
i=1
In fact, letting Qx = [q1, q2, - - -, qx] and Ry, be the principal leading submatrix of
dimension k of R, the above relation can be rewritten as

AQy = Qi Ry

which we refer to as the partial Schur decomposition of A. The simplest case of
this decomposition is when k£ = 1, in which case ¢; is an eigenvector. The vectors
q; are usually referred to as Schur vectors. Note that the Schur vectors are not
unique and in fact they depend on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quasi Schur form, also
referred to as the real Schur form. Here, diagonal blocks of size 2 x 2 are allowed
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in the upper triangular matrix R. The reason for this is to avoid complex arithmetic
when the original matrix is real. A 2 x 2 block is associated with each complex
conjugate pair of eigenvalues of the matrix.

Example 1.3. Consider the 3 x 3 matrix

1 10 0
A= -1 3 1
-1 0 1

The matrix A has the pair of complex conjugate eigenvalues
2.4069.. £+ 7 x 3.2110..

and the real eigenvalue 0.1863... The standard (complex) Schur form is given by
the pair of matrices

0.3381 — 0.8462¢ 0.3572 — 0.1071¢ 0.1749
V=1 0.3193 —0.0105¢ —0.2263 — 0.6786: —0.6214
0.1824 + 0.1852¢ —0.2659 — 0.5277¢ 0.7637

and

2.4069 + 3.2110¢  4.6073 — 4.7030¢ —2.3418 — 5.2330:
S = 0 24069 —3.2110: —2.0251 — 1.2016¢
0 0 0.1863

It is possible to avoid complex arithmetic by using the quasi-Schur form which
consists of the pair of matrices

—-0.9768 0.1236 0.1749
U= —-0.0121 0.7834 —-0.6214
0.2138 0.6091 0.7637

and
1.3129 —7.7033 6.0407
R= 1.4938 3.5008 —1.3870 |
0 0 0.1863

We would like to conclude this section by pointing out that the Schur and the
quasi Schur forms of a given matrix are in no way unique. In addition to the de-
pendence on the ordering of the eigenvalues, any column of ) can be multiplied
by a complex sign ¢’ and a new corresponding R can be found. For the quasi
Schur form there are infinitely many ways of selecting the 2 x 2 blocks, corre-
sponding to applying arbitrary rotations to the columns of @) associated with these
blocks.
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1.9 Normal and Hermitian Matrices

In this section we look at the specific properties of normal matrices and Hermitian
matrices regarding among other things their spectra and some important optimal-
ity properties of their eigenvalues. The most common normal matrices that arise in
practice are Hermitian or skew-Hermitian. In fact, symmetric real matrices form
a large part of the matrices that arise in practical eigenvalue problems.

1.9.1 Normal Matrices

By definition a matrix is said to be normal if it satisfies the relation
AP A = AAT. (1.27)
An immediate property of normal matrices is stated in the following proposition.

Proposition 1.4 [f a normal matrix is triangular then it is necessarily a diagonal
martrix.

Proof. Assume for example that A is upper-triangular and normal and let us com-
pare the first diagonal element of the left hand side matrix of (I.27) with the cor-
responding element of the matrix on the right hand side. We obtain that

n

lana|* = lay; [,

Jj=1

which shows that the elements of the first row are zeros except for the diagonal
one. The same argument can now be used for the second row, the third row, and
so on to the last row, to show that a;; = 0 for i # j. O

As a consequence of this we have the following important result.

Theorem 1.5 A matrix is normal if and only if it is unitarily similar to a diagonal
matrix.

Proof. 1t is straightforward to verify that a matrix which is unitarily similar to a
diagonal matrix is normal. Let us now show that any normal matrix A is unitarily
similar to a diagonal matrix. Let A = QRQ™ be the Schur canonical form of A
where we recall that @) is unitary and R is upper-triangular. By the normality of
A we have
QR"QMQRQ™ = QRQ"QR" Q"
or,
QR"RQ"™ = QRRYQ"

Upon multiplication by Q¥ on the left and Q on the right this leads to the equality
RHR = RRM which means that R is normal, and according to the previous
proposition this is only possible if R is diagonal. O
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Thus, any normal matrix is diagonalizable and admits an orthonormal basis of
eigenvectors, namely the column vectors of ().

Clearly, Hermitian matrices are just a particular case of normal matrices.
Since a normal matrix satisfies the relation A = QDQ™, with D diagonal and
@ unitary, the eigenvalues of A are the diagonal entries of D. Therefore, if these
entries are real it is clear that we will have A = A. This is restated in the
following corollary.

Corollary 1.2 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly the converse is also true, in that a Hermitian matrix has
real eigenvalues.
An eigenvalue \ of any matrix satisfies the relation
(Au, u)

(u, w)

where u is an associated eigenvector. More generally one might consider the

complex scalars,
(Az, )
wz) = )

defined for any nonzero vector in C™. These ratios are referred to as Rayleigh
quotients and are important both from theoretical and practical purposes. The set
of all possible Rayleigh quotients as « runs over C" is called the field of values of
A. This set is clearly bounded since each |u(x)| is bounded by the the 2-norm of
A ie., |u(z)| < || A2 for all z.

If a matrix is normal then any vector z in C™ can be expressed as

n
Zfi%
i=1

where the vectors ¢; form an orthogonal basis of eigenvectors, and the expression
for p(x) becomes,

(1.28)

_ (Az, ) _ ZZ:MkI&@Iz _ - A 1.29
() @.2) ST el kz::lﬁk k (1.29)

where ) N
13
0<fi=cmi—z<l, and > fi=1
> k=1 €kl P

From a well-known characterization of convex hulls due to Hausdorff, (Haus-
dorft’s convex hull theorem) this means that the set of all possible Rayleigh quo-
tients as x runs over all of C™ is equal to the convex hull of the A;’s. This leads to
the following theorem.

Theorem 1.6 The field of values of a normal matrix is equal to the convex hull of
its spectrum.
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The question that arises next is whether or not this is also true for non-normal
matrices and the answer is no, i.e., the convex hull of the eigenvalues and the field
of values of a non-normal matrix are different in general, see Exercise P-1[IQ] for
an example. As a generic example, one can take any nonsymmetric real matrix
that has real eigenvalues only; its field of values will contain imaginary values.
It has been shown (Hausdorff) that the field of values of a matrix is a convex
set. Since the eigenvalues are members of the field of values, their convex hull is
contained in the field of values. This is summarized in the following proposition.

Proposition 1.5 The field of values of an arbitrary matrix is a convex set which
contains the convex hull of its spectrum. It is equal to the convex hull of the
spectrum when the matrix in normal.

1.9.2 Hermitian Matrices

A first and important result on Hermitian matrices is the following.

Theorem 1.7 The eigenvalues of a Hermitian matrix are real, i.e., A(A) C R.

Proof. Let X be an eigenvalue of A and u an associated eigenvector or 2-norm
unity. Then

A = (Au,u) = (u, Au) = (Au,u) = X 0O

Moreover, it is not difficult to see that if, in addition, the matrix is real then the
eigenvectors can be chosen to be real, see Exercise P-1[T6 Since a Hermitian ma-
trix is normal an immediate consequence of Theorem [[.3lis the following result.

Theorem 1.8 Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that
form a basis of C".

In the proof of Theorem [L.6] we used the fact that the inner products (Au, u)
are real. More generally it is clear that any Hermitian matrix is such that (Az, x)
is real for any vector z € C”. It turns out that the converse is also true, i.e., it
can be shown that if (Az, z) is real for all vectors z in C” then the matrix A is
Hermitian, see Problem P-1[14]

Eigenvalues of Hermitian matrices can be characterized by optimality prop-
erties of the Rayleigh quotients (I28). The best known of these is the Min-Max
principle. Let us order all the eigenvalues of A in descending order:

AL > Ao o > Ay

Here the eigenvalues are not necessarily distinct and they are repeated, each ac-
cording to its multiplicity. In what follows, we denote by S a generic subspace of
C™. Then we have the following theorem.
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Theorem 1.9 (Min-Max theorem) The eigenvalues of a Hermitian matrix A are
characterized by the relation

. (Az, )
A\ = min max
s, dim(S)=n—k+1 @€Sa#0 (z,1)

(1.30)
Proof. Let {¢;}i=1,... » be an orthonormal basis of C™ consisting of eigenvectors
of A associated with Ay, ..., A\, respectively. Let Sy, be the subspace spanned by
the first & of these vectors and denote by 1(S) the maximum of (Az,x)/(z, z)
over all nonzero vectors of a subspace S. Since the dimension of Sy, is k, a well-
known theorem of linear algebra shows that its intersection with any subspace S
of dimension n — k + 1 is not reduced to {0}, i.e., there is vector = in .S (] S For
this z = Y| &,¢; we have

(Ar,0) _ S NIEGP

() S &l

so that pu(S) > Ai .
Consider on the other hand the particular subspace Sy of dimension n —k+1
which is spanned by ¢z, . . ., ¢,,. For each vector x in this subspace we have

(Az,x) _ Y MlGl?
(, ) Sikl&lr T
so that 1£(Sp) < Ag. In other words, as S runs over all n — k + 1-dimensional

subspaces ((S) is always > Ay and there is at least one subspace Sy for which
1(So) < A, which shows the result. O

Ak

This result is attributed to Courant and Fisher, and to Poincaré and Weyl. It is
often referred to as Courant-Fisher min-max principle or theorem. As a particular
case, the largest eigenvalue of A satisfies

A
Al = max 7( z,7) .

max < (1.31)

Actually, there are four different ways of rewriting the above characterization.
The second formulation is

. (Azx, z)
A = max min
s, dim(s)=k TESz#0 (2, 7)

(1.32)

and the two other ones can be obtained from the above two formulations by simply
relabeling the eigenvalues increasingly instead of decreasingly. Thus, with our
labeling of the eigenvalues in descending order, tells us that the smallest
eigenvalue satisfies,

A
A, = min (A, z)
220 (z,x)
with \,, replaced by \; if the eigenvalues are relabeled increasingly.
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In order for all the eigenvalues of a Hermitian matrix to be positive it is nec-
essary and sufficient that

(Az,2) >0, VzeC", z#£0.

Such a matrix is called positive definite. A matrix that satisfies (Az,z) > 0 for
any x is said to be positive semi-definite. In particular the matrix A¥ A is semi-
positive definite for any rectangular matrix, since

(A" Az, ) = (Az, Az) > 0 VY

Similarly, AA is also a Hermitian semi-positive definite matrix. The square
roots of the eigenvalues of A A for a general rectangular matrix A are called the
singular values of A and are denoted by ;. In Section 1.5 we have stated without
proof that the 2-norm of any matrix A is equal to the largest singular value o of
A. This is now an obvious fact, because
AR = mox 1A2lE _ o, (A0d) (AT AnD)
a#0  ||z||3 w#0  (x,2) 270 (z,x)

which results from (L31).

Another characterization of eigenvalues, known as the Courant characteriza-
tion, is stated in the next theorem. In contrast with the min-max theorem this
property is recursive in nature.

Theorem 1.10 The eigenvalue \; and the corresponding eigenvector q; of a Her-
mitian matrix are such that

A A
N = Awa) L (Ana)
(a1, q1) zeCr a0 (z,7)
and for k > 1:
Agk A
A = Adkoar) . (A7) 133
(qka Qk) r#O,qu:E:...:qf_lx:O (ZC7 .'17)

In other words, the maximum of the Rayleigh quotient over a subspace that
is orthogonal to the first £ — 1 eigenvectors is equal to Ax and is achieved for the
eigenvector g associated with \;. The proof follows easily from the expansion
(I29) of the Rayleigh quotient.

1.10 Nonnegative Matrices

A nonnegative matrix is a matrix whose entries are nonnegative,
(%% > 0.

Nonnegative matrices arise in many applications and play a crucial role in the the-
ory of matrices. They play for example a key role in the analysis of convergence of
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iterative methods for partial differential equations. They also arise in economics,
queuing theory, chemical engineering, etc..

A matrix is said to be reducible if, there is a permutation matrix P such that
PAPT is block upper-triangular. An important result concerning nonnegative
matrices is the following theorem known as the Perron-Frobenius theorem.

Theorem 1.11 Let A be a real n X n nonnegative irreducible matrix. Then \ =

p(A), the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists
an eigenvector u with positive elements associated with this eigenvalue.

PROBLEMS

P-1.1 Show that two eigenvectors associated with two distinct eigenvalues are linearly
independent. More generally show that a family of eigenvectors associated with distinct
eigenvalues forms a linearly independent family.

P-1.2  Show that if X is any eigenvalue of the matrix AB then it is also an eigenvalue of the
matrix BA. Start with the particular case where A and B are square and B is nonsingular
then consider the more general case where A, B may be singular or even rectangular (but
such that AB and B A are square).

P-1.3 Show that the Frobenius norm is consistent. Can this norm be associated to two
vector norms via (I.4)? What is the Frobenius norm of a diagonal matrix? What is the
p-norm of a diagonal matrix (for any p)?

P-1.4 Find the Jordan canonical form of the matrix:

1 2 —4
A=10 1 2
0 0 2

Same question for the matrix obtained by replacing the element az3 by 1.

P-1.5 Give an alternative proof of Theorem [[.4] on the Schur form by starting from the
Jordan canonical form. [Hint: write A = X JX ~! and use the QR decomposition of X.]

P-1.6 Show from the definition of determinants used in Section (1.2) that the characteris-
tic polynomial is a polynomial of degree n for an n X n matrix.

P-1.7 Show that the characteristic polynomials of two similar matrices are equal.
P-1.8 Show that

lim [ A"* = p(4),

k— o0
for any matrix norm. [Hint: use the Jordan canonical form or Theorem [[3]]
P-19 Let X be a nonsingular matrix and, for any matrix norm ||.||, define |A||x =
||[AX]|. Show that this is indeed a matrix norm. Is this matrix norm consistent? Similar
questions for || X A|| and ||Y AX || where Y is also a nonsingular matrix. These norms are

not, in general, associated with any vector norms, i.e., they can’t be defined by a formula
of the form (L.4). Why? What about the particular case || A" = || X AX (|2
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P-1.10 Find the field of values of the matrix

(0 1
=)
and verify that it is not equal to the convex hull of its eigenvalues.

P-1.11 Show that any matrix can be written as the sum of a Hermitian and a skew-
Hermitian matrix (or the sum of a symmetric and a skew-symmetric matrix).

P-1.12 Show that for a skew-Hermitian matrix .S, we have
Re(Sz,z) =0 foranyz € C".

P-1.13 Given an arbitrary matrix S, show that if (Sz,z) = 0 for all z in C™ then we
must have
(Sy,z) + (Sz,y) =0 Vy,z e C".

[Hint: expand (S(y + 2),y + 2) 1.

P-1.14 Using the result of the previous two problems, show that if (Ax, z) is real for all
z in C", then A must be Hermitian. Would this result be true if we were to replace the
assumption by: (Az, x) is real for all real x? Explain.

P-1.15 The definition of a positive definite matrix is that (Ax, z) be real and positive for
all real vectors . Show that this is equivalent to requiring that the Hermitian part of A,
namely % (A + A™), be (Hermitian) positive definite.

P-1.16 Let A be a real symmetric matrix and A an eigenvalue of A. Show that if « is an
eigenvector associated with \ then so is u. As a result, prove that for any eigenvalue of a
real symmetric matrix, there is an associated eigenvector which is real.

P-1.17 Show that a Hessenberg matrix H such that hj11; # 0,5 = 1,2,...,n — 1
cannot be derogatory.

NOTES AND REFERENCES. A few textbooks can be consulted for additional reading on the material
of this Chapter. Since the classic volumes by Golub and Van Loan [[77] and Stewart mentioned
in the first edition of this book a few more texts have been added to the literature. These include
Demmel [44], Trefethen and Bau [214]], Datta [40]], and the introductory text by Gilbert Strang [209].
Details on matrix eigenvalue problems can be found in Gantmacher’s book and Wilkinson [223].
Stewart and Sun’s book [206] devotes a separate chapter to matrix norms and contains a wealth of
information. Some of the terminology we use is borrowed from Chatelin [22] 23] and Kato [103].
For a good overview of the linear algebra aspects of matrix theory and a complete proof of Jordan’s
canonical form Halmos’ book is highly recommended. |






Chapter 2

SPARSE MATRICES

The eigenvalue problems that arise in practice often involve very large matrices. The
meaning of ‘large’ is relative and it is changing rapidly with the progress of computer
technology. A matrix of size a few tens of thousands can be considered large if one
is working on a workstation, while, similarly, a matrix whose size is in the hundreds
of millions can be considered large if one is using a high-performance computer.
Fortunately, many of these matrices are also sparse, i.e., they have very few nonzeros.
Again, it is not clear how ‘few’ nonzeros a matrix must have before it can be called
sparse. A commonly used definition due to Wilkinson is to say that a matrix is sparse
whenever it is possible to take advantage of the number and location of its nonzero
entries. By this definition a tridiagonal matrix is sparse, but so would also be a
triangular matrix, which may not be as convincing. It is probably best to leave this
notion somewhat vague, since the decision as to whether or not a matrix should be
considered sparse is a practical one that is ultimately made by the user.

2.1 Introduction

The natural idea of taking advantage of the zeros of a matrix and their location
has been exploited for a long time. In the simplest situation, such as for banded or
tridiagonal matrices, special techniques are straightforward to develop. However,
the notion of exploiting sparsity for general sparse matrices, i.e., sparse matrices
with irregular structure, has become popular only after the 1960’s. The main issue,
and the first one to be addressed by sparse matrix technology, is to devise direct
solution methods for linear systems, that are economical both in terms of storage
and computational effort. These sparse direct solvers allow to handle very large
problems that could not be tackled by the usual ‘dense’ solvers. We will briefly
discuss the solution of large sparse linear systems in Section[2.4] of this Chapter.
There are basically two broad types of sparse matrices: structured and un-
structured. A structured sparse matrix is one whose nonzero entries, or square
blocks of nonzero entries, form a regular pattern, often along a small number of

'In support of this observation is the fact that in the first edition of this book, the numbers I used
were ‘a few hundreds’ and ’in the millions’, respectively

29
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diagonals. A matrix with irregularly located entries is said to be irregularly struc-
tured. The best example of a regularly structured matrix is that of a matrix that
consists only of a few diagonals. Figure shows a small irregularly structured
sparse matrix associated with the finite element grid problem shown in Figure 2,11

vivarivio

JAVAVAVAVAVAVAN

RARK

Figure 2.1: A finite element grid model

Although the difference between the two types of matrices may not matter
that much for direct solvers, it may be important for eigenvalue methods or iter-
ative methods for solving linear systems. In these methods, one of the essential
operations are matrix by vector products. The performance of these operations
on supercomputers can differ significantly from one data structure to another. For
example, diagonal storage schemes are ideal for vector machines, whereas more
general schemes, may suffer on such machines because of the need to use indirect
addressing.

In the next section we will discuss some of the storage schemes used for
sparse matrices. Then we will see how some of the simplest matrix operations
with sparse matrices can be performed. We will then give an overview of sparse
linear system solution methods. The last two sections discuss test matrices and a
set of tools for working with sparse matrices called SPARSKIT.

2.2 Storage Schemes

In order to take advantage of the large number of zero elements special schemes
are required to store sparse matrices. Clearly, the main goal is to represent only the
nonzero elements, and be able at the same time to perform the commonly needed
matrix operations. In the following we will denote by Nz the total number of
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Figure 2.2: Sparse matrix associated with the finite element grid of Figure 2.1]

nonzero elements. We describe only the most popular schemes but additional

details can be found in the book by Duff, Erisman, and Reid [52].

The simplest storage scheme for sparse matrices is the so-called coordinate
format. The data structure consists of three arrays: a real array containing all the
real (or complex) values of the nonzero elements of A in any order, an integer array
containing their row indices and a second integer array containing their column

indices. All three arrays are of length N z. Thus the matrix

1. 0. 0. 2. 0.
3. 4. 0. 5 0.
A=1| 6. 0. 7. 8 9.
0. 0. 10. 11. oO.
0. 0. 0. 0. 12
will be represented (for example) by
AA =|[12. 9. 7. 5 1L 11. 10.
JR =5 3 3 2 1 4 4
Ic =15 5 3 4 1 4 3

2.1

In the above example we have, on purpose, listed the elements in an arbi-
trary order. In fact it would have been more natural to list the elements by row
or columns. If we listed the elements row-wise, we would notice that the array
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JC' contains redundant information, and may be replaced by an array that points
to the beginning of each row instead. This would entail non-negligible savings
in storage. The new data structure consists of three arrays with the following
functions.

e A real array AA contains the real values a;; stored row by row, from row 1
to n. The length of AAis Nz.

e An integer array JA contains the column indices of the elements a;; as
stored in the array AA. The length of JA is Nz.

e An integer array / A contains the pointers to the beginning of each row in
the arrays AA and JA. Thus, the content of I A(4) is the position in arrays
AA and JA where the i-th row starts. The length of /A is n + 1 with
TA(n + 1) containing the number TA(1) + Nz.i.e., the address in A and
J A of the beginning of a fictitious row n + 1.

For example, the above matrix could be stored as follows.

AA = |1. 2. 3. 4 5 6. 7. 8 9. 10. 11. 12
JA. =1 4 1 2 4 1 3 4 5 3 4 5
IA. =1 3 6 10 12 13

This format is probably the most commonly used to store general sparse ma-
trices. We will refer to it as the Compressed Sparse Row (CSR) format. An advan-
tage of this scheme over the coordinate scheme is that it is often more amenable
to perform typical computations. On the other hand the coordinate scheme is at-
tractive because of its simplicity and its flexibility. For this reason it is used as the
‘entry’ format in software packages such as the Harwell library.

There are a number of variations to the Compressed Sparse Row format. The
most obvious variation is to store the columns instead of the rows. The corre-
sponding scheme will be called the Compressed Sparse Column (CSC) scheme
Another common variation exploits the fact that the diagonal elements of many
matrices are usually all nonzero and/or that they are accessed more often than the
rest of the elements. As a result they can be stored separately. In fact, what we
refer to as the Modified Sparse Row (MSR) format, consists of only two arrays: a
real array AA and an integer array JA. The first n positions in AA contain the
diagonal elements of the matrix, in order. The position n + 1 of the array AA is
not used, or may sometimes be used to carry some other information concerning
the matrix. Starting at position n + 2,the nonzero elements of A A excluding its
diagonal elements, are stored row-wise. Corresponding to each element AA(k)
the integer JA(k) is the column index of the element A (k) in the matrix AA. The
n + 1 first positions of .J A contain the pointer to the beginning of each row in AA
and J A. Thus, for the above example the two arrays will be as follows.
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AA = (1. 4 7. 11. 12, * 2. 3. 5 6. 8 9. 10.
JAA. =17 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that JA(n) = JA(n + 1) = 14,
indicating that the last row, is a zero row, once the diagonal element has been
removed.

There are a number of applications that lead to regularly structured matrices.
Among these matrices one can distinguish two different types: block matrices,
and diagonally structured matrices. Here we discuss only diagonally structured
matrices which are matrices whose nonzero elements are located along a small
number of diagonals. To store such matrices we may store the diagonals in a
rectangular array DIAG(1 : n,1 : Nd) where Nd is the number of diagonals.
We also need to know the offsets of each of the diagonals with respect to the main
diagonal. These will be stored in an array JOF F'(1 : Nd). Thus, in position (3, j)
of the array DI AG is located the element a; ; 10rr(;) Of the original matrix, i.e.,

DIAG(i,j) + ; i1iofi(5)-

The order in which the diagonals are stored in the columns of DI AG is unimpor-
tant in general. If many more operations are performed with the main diagonal
there may be a slight advantage in storing it in the first column. Note also that all
the diagonals except the main diagonal have fewer than n elements, so there are
positions in DI AG that will not be used.

For example the following matrix which has three diagonals

1. 0. 2. 0. O
3. 4. 0. 5. 0.
A=| 0. 6. 7. 0. 8. (2.2)
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.

will be represented the two arrays

1L 2.
3. 4. S

DIAG=| 6. 7. 8. IOFF =
9. 10. *
112

A more general scheme that has been popular on vector machines is the so-
called Ellpack-Itpack format. The assumption in this scheme is that we have at
most Nd nonzero elements per row, where Nd is small. Then two rectangular
arrays of dimension n x Nd each are required, one real and one integer. The
first, COE'Fis similar to DI AG and contains the nonzero elements of A. We
can store the nonzero elements of each row of the matrix in a row of the array



34 Chapter 2

COEF(1 : n,1: Nd) completing the row by zeros if necessary. Together with
COEF we need to store an integer array JCOEF (1 : n,1 : Nd) which contains
the column positions of each entry in COEF'. Thus, for the above matrix, we
would have,

. 2. 0. I 3 1
3. 4. 5. 1 2 4
COEF=| 6. 7. 8. JCOEF=|2 3 5
9. 10. 0. 3 4 4
11 12. 0. 4 5 5

Note that in the above JCOFEF array we have put a column number equal
to the row number, for the zero elements that have been added to pad the rows
of DIAG that correspond to shorter rows in the matrix A. This is somewhat
arbitrary, and in fact any integer between 1 and n would be acceptable, except
that there may be good reasons for not putting the same integers too often, for
performance considerations.

2.3 Basic Sparse Matrix Operations

One of the most important operations required in many of the algorithms for com-
puting eigenvalues of sparse matrices is the matrix-by-vector product. We do not
intend to show how these are performed for each of the storage schemes consid-
ered earlier, but only for a few important ones.

The following Fortran 8-X segment shows the main loop of the matrix by
vector operation for matrices stored in the Compressed Sparse Row stored format.

DO I=1, N
K1 = IA(I)
K2 = IA(I+1)-1
Y(I) = DOTPRODUCT (A(K1:K2) ,X(JA(K1:K2)))
ENDDO

Notice that each iteration of the loop computes a different component of the
resulting vector. This has the obvious advantage that each of these iterations can
be performed independently. If the matrix is stored column-wise, then we would
use the following code instead.

DO J=1, N

K1 = TIA(D)

K2 = TA(J+1)-1

Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)
ENDDO

In each iteration of the loop a multiple of the j-th column is added to the re-
sult, which is assumed to have been set initially to zero. Notice now that the outer
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loop is no longer parallelizable. Barring the use of a different data structure, the
only alternative left to improve parallelization is to attempt to split the vector op-
eration in each inner loop, which has few operations, in general. The point of this
comparison is that we may have to change data structures to improve performance
when dealing with supercomputers.

We now consider the matrix-vector product in diagonal storage.

DO J=1, NDIAG
JOFF = IOFF(J)
DO I=1, N
Y(I) = Y(I) + DIAG(I,J)*X(JOFF+I)
ENDDO
ENDDO

Here, each of the diagonals is multiplied by the vector x and the result added
to the vector y. It is again assumed that the vector y has been filled with zero
elements before the start of the loop. From the point of view of parallelization
and/or vectorization the above code is probably the one that has the most to offer.
On the other hand, its drawback is that it is not general enough.

Another important ‘kernel’ in sparse matrix computations is that of solving a
lower or upper-triangular system. The following segment shows a simple routine
for solving a unit lower-triangular system.

X(1) = YD)
DO K =2, N

K1 = TAL(K)

k2 = TAL(K+1)-1

X(K)=Y(X)-DOTPRODUCT (AL (K1:K2) ,X(JAL(K1:K2)))
ENDDO

2.4 Sparse Direct Solution Methods

Solution methods for large sparse linear systems of equations are important in
eigenvalue calculations mainly because they are needed in the context of the shift-
and-invert techniques, described in Chapter 4. In these techniques the matrix that
is used in the iteration process is (A — o)™t or (A — 0 B)~1 B for the general-
ized eigenvalue problem. In this section we give a brief overview of sparse matrix
techniques for solving linear systems. The difficulty here is that we must deal
with problems that are not only complex, since complex shifts are likely to occur,
but also indefinite. There are two broad classes of methods that are commonly
used: direct and iterative. Direct methods are more commonly used in the con-
text of shift-and-invert techniques because of their robustness when dealing with
indefinite problems.

Most direct methods for sparse linear systems perform an LU factorization of
the original matrix and try to reduce cost by minimizing fill-ins, i.e., non-zero ele-
ments introduced during the elimination process in positions which were initially
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zeros. Typical codes in this category include MA28, see reference [30], from the
Harwell library and the Yale Sparse Matrix Package (YSMP), see reference [[193]].
For a detailed view of sparse matrix techniques we refer to the book by Duff,
Erisman, and Reid [52]].

Currently, the most popular iterative methods are the preconditioned conju-
gate gradient type techniques. In these techniques an approximate factorization
A = LU + FE of the original matrix is obtained and then the conjugate gradient
method is applied to a preconditioned system, a form of which is U"!L=1 Az =
U~1L~1b. The conjugate gradient method is a projection method related to the
Lanczos algorithm, which will be described in Chapter 4. One difficulty with
conjugate gradient-type methods is that they are designed for matrices that are
positive real, i.e., matrices whose symmetric parts are positive definite, and as a
result they will perform well for the types of problems that will arise in the context
of shift-and-invert.

2.5 Test Problems

When developing algorithms for sparse matrix computations it is desirable to be
able to use test matrices that are well documented and often used by other re-
searchers. There are many different ways in which these test matrices can be
useful but their most common use is for comparison purposes.

Two different ways of providing data sets consisting of large sparse matrices
for test purposes have been used in the past. The first one is to collect sparse
matrices in a well-specified format, from various applications. This approach has
is used in the well-known Harwell-Boeing collection of test matrices. The second
approach is to collect subroutines or programs that generate such matrices. This
approach is taken in the SPARSKIT package which we briefly describe in the next
section.

In the course of the book we will often use two test problems in the examples.
These are described in detail next. While these two examples are far from being
representative of all the problems that occur they have the advantage of being easy
to reproduce. They have also been extensively used in the literature.

2.5.1 Random Walk Problem

The first test problem is issued from a Markov model of a random walk on a
triangular grid. It was proposed by G. W. Stewart [202] and has been used in
several papers for testing eigenvalue algorithms. The problem models a random
walk ona (k + 1) x (k + 1) triangular grid as is shown in Figure 23]

We label by (i, 7) the node of the grid with coordinates (ih, jh) where h is
the grid spacing, for 7,7 = 0, 1,...k. A particle moves randomly on the grid by
jumping from a node (4, j) into either of its (at most 4) neighbors. The probability
of jumping from node (%, j) to either node (i — 1, ) or node (,j — 1) (down
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i=6
j=5
j=4
71=3
j=2
j=1
7=0

Figure 2.3: Random walk on a triangular grid

transition) is given by
. i+
d =
pd(i,j) = -
this probability being doubled when either 7 or j is equal to zero. The probability
of jumping from node (4, j) to either node (i+1, j) or node (4, j+1) (up transition)
is given by

. 1 .
pu(i, j) = 5 — pd(i, 7).

Note that there cannot be an up transition when ¢ 4+ j = k, i.e., for nodes on the
oblique boundary of the grid. This is reflected by the fact that in this situation
pu(i,j) = 0.

The problem is to compute the steady state probability distribution of the
chain, i.e., the probabilities that the particle be located in each grid cell after a
very long period of time. We number the nodes from the bottom up and from left
to right, i.e., in the order,

(0,0), (0,1), ..., (0,&); (1,0, (1, 1), .. (1,k — 1);....; (K, 0)

The matrix P of transition probabilities is the matrix whose generic element py, 4
is the probability that the particle jumps from node % to node ¢. This is a stochastic



38 Chapter 2

V74
//’/

2

NN

N

100 \%\ .
NE)
RN
120 L L L L L \Q?:

0 20 40 60 80 100 120
nz = 420

Figure 2.4: Sparsity pattern of the matrix Mark(15).

matrix, i.e., its elements are nonnegative and the sum of elements in the same row
is equal to one. The vector (1,1, ....,1)7 is an eigenvector of P associated with
the eigenvalue unity. As is known the steady state probability distribution vector
is the appropriately scaled eigenvector of the transpose of P associated with the
eigenvalue one. Note that the number of different states is 3 (k + 1)(k +2), which
is the dimension of the matrix. We will denote by Mark(k+1) the corresponding
matrix. Figure 2.4] shows the sparsity pattern of Mark(15) which is a matrix of
dimension n = 120 with nz = 420 nonzero elements.

2.5.2 Chemical Reactions

The second test example, models concentration waves in reaction and transport
interaction of some chemical solutions in a tubular reactor. The concentrations
x(7, 2),y(7, 2) of two reacting and diffusing components, where 0 < z < 1
represents a coordinate along the tube, and 7 is the time, are modeled by the
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system:
Ox D, 0%z
9~ I2o= T f(z,y), (2.3)
0 D, 02
5L = [haa tely). 24)

with the initial condition
x(0,2) = z0(2), y(0,2) =yo(z), Vze [0,1],
and the Dirichlet boundary conditions:
z(0,7)=z(l,7) =%

y(O,T) = y(la T) =y.

The linear stability of the above system is traditionally studied around the
steady state solution obtained by setting the partial derivatives of x and y with re-
spect to time to be zero. More precisely, the stability of the system is the same as
that of the Jacobian of (2.3)) - (Z.4) evaluated at the steady state solution. In many
problems one is primarily interested in the existence of limit cycles, or equiv-
alently the existence of periodic solutions to (Z.3), 2.4). This translates into the
problem of determining whether the Jacobian of (2.3)), (2.4) evaluated at the steady
state solution admits a pair of purely imaginary eigenvalues.

We consider in particular the so-called Brusselator wave model in which

fla,y) = A= (B+ 1)z +a%y
g(x,y) = Bx — z?y.

Then, the above system admits the trivial stationary solution z = A, y = B/A.
A stable periodic solution to the system exists if the eigenvalues of largest real
parts of the Jacobian of the right-hand side of 2.3), 2.4) is exactly zero. To
verify this numerically, we first need to discretize the equations with respect to
the variable z and compute the eigenvalues with largest real parts of the resulting
discrete Jacobian.

For this example, the exact eigenvalues are known and the problem is ana-
Iytically solvable. The following set of parameters have been commonly used in
previous articles,

1
D, =0.008, D, = 3D =0.004,
A=2 B=545.

The bifurcation parameter is L. For small L the Jacobian has only eigenvalues
with negative real parts. At L ~ 0.51302 a purely imaginary eigenvalue appears.
We discretize the interval [0, 1] using n + 1 points, and define the mesh size

h = 1/n. The discrete vector is of the form Z where x and y are n-dimensional
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vectors. Denoting by f3 and g, the corresponding discretized functions f and
g.the Jacobian is a 2 x 2 block matrix in which the diagonal blocks (1, 1) and
(2,2) are the matrices

ﬁﬁ trldlag {17 —2, 1} + T
and D gn ()
Yy s 13 gh\T,Y
T2 tridiag {1,-2,1} + ~an
respectively, while the blocks (1,2) and (2, 1) are
Ofnlz,y) 4 9gn(z,y)
dy ox

respectively. Note that because the steady state solution is a constant with respect
to the variable z,the Jacobians of either f}, or g, with respect to either x or y are
scaled identity matrices. We denote by A the resulting 2n x 2n Jacobian matrix.
The matrix A has the following structure

_(aoT BI
A= ('y[ §T> ’
In which T' = tridiag {1, —2, 1},and «,(3,, and § are scalars. The exact eigen-

values of A are readily computable, since there exists a quadratic relation between
the eigenvalues of the matrix A and those of the classical difference matrix 7.

2.5.3 The Harwell-Boeing Collection

This large collection of test matrices has been gathered over several years by I.
Duff (Harwell) and R. Grimes and J. Lewis (Boeing) [53]. The number of ma-
trices in the collection at the time of this writing is 292. The matrices have been
contributed by researchers and engineers in many different areas. The sizes of the
matrices vary from very small, such as counter example matrices, to very large.
One drawback of the collection is that it contains few non-Hermitian eigenvalue
problems. Many of the eigenvalue problems in the collection are from structural
engineering, which are generalized eigenvalue problems. One the other hand the
collection provides a data structure which constitutes an excellent medium of ex-
changing matrices.

The matrices are stored as ASCII files with a very specific format consisting
of a 4 or 5 line header and then the data containing the matrix stored in CSC
format together with any right-hand sides, initial guesses, or exact solutions.

The collection is available for public distribution from the authors.

2.6 SPARSKIT

SPARSKIT is a package aimed at providing subroutines and utilities for working
with general sparse matrices. Its purpose is not as much to solve particular prob-
lems involving sparse matrices (linear systems, eigenvalue problems) but rather
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to make available the little tools to manipulate and performs simple operations
with sparse matrices. For example there are tools for exchanging data structures,
e.g., passing from the Compressed Sparse Row format to the diagonal format and
vice versa. There are various tools for extracting submatrices or performing other
similar manipulations. SPARSKIT also provides matrix generation subroutines as
well as basic linear algebra routines for sparse matrices (such as addition, multi-
plication, etc...).

A short description of the contents of SPARSKIT follows. The package is
divided up in six modules, each having a different function. To refer to these
six parts we will use the names of the subdirectories where they are held in the
package in its current version.

FORMATS This module contains essentially two sets of routines. The first
set contained in the file formats.f consists of the routines needed to translate data
structures. Translations from the basic Compressed Sparse Row format to any
of the other formats supported is provided together with a routine for the reverse
transformation. This way one can translate from any of the data structures sup-
ported to any other one with two transformation at most. The formats currently
supported are the following.

DNS Dense format

BND Linpack Banded format

CSR Compressed Sparse Row format

CSC Compressed Sparse Column format

COO Coordinate format

ELL Ellpack-Itpack generalized diagonal format
DIA Diagonal format

BSR Block Sparse Row format

MSR Modified Compressed Sparse Row format
SSK Symmetric Skyline format

NSK Nonsymmetric Skyline format

JAD The Jagged Diagonal scheme

The second set of routines contains a number of routines, currently 27, called
‘unary’, to perform simple manipulation functions on sparse matrices, such as
extracting a particular diagonal or permuting a matrix, or yet for filtering out small
elements. For reasons of space we cannot list these routines here.



42 Chapter 2

BLASSM This module contains a number of routines for doing basic linear
algebra with sparse matrices. It is comprised of essentially two sets of routines.
Basically, the first one consists of matrix-matrix operations (e.g., multiplication
of matrices) and the second consists of matrix-vector operations. The first set
allows to perform the following operations with sparse matrices, where A, B, C
are sparse matrices, D is a diagonal matrix, and o is a scalar. C' = AB,C =
A+BC=A+0BC=A+BT C=A+0BT A:=A+ol,C=A+D.

The second set contains various routines for performing matrix by vector
products and solving sparse triangular linear systems in different storage formats.

INOUT This module consists of routines to read and write matrices in the
Harwell-Boeing format. For more information on this format and the Harwell-
Boeing collection see the reference [53]]. It also provides routines for plotting the
pattern of the matrix or simply dumping it in a nice format.

INFO There is currently only one subroutine in this module. Its purpose is to
provide as many statistics as possible on a matrix with little cost. About 33 lines
of information are written. For example, the code analyzes diagonal dominance
of the matrix (row and column), its degree of symmetry (structural as well as
numerical), its block structure, its diagonal structure, etc,...

MATGEN The set of routines in this module allows one to generate test matri-
ces. For now there are generators for 5 different types of matrices.

1. Five-point and seven point matrices on rectangular regions discretizing a
general elliptic partial differential equation.

2. Same as above but provides block matrices (several degrees of freedom per
grid point in the PDE).

3. Finite elements matrices for the heat condition problem, using various do-
mains (including user provided ones).

4. Test matrices from the paper by Z. Zlatev, K. Schaumburg, and J. Was-
niewski, [229]].

5. Markov chain matrices arising from a random walk on a triangular grid. See
Section 2511 for details.

UNSUPP As is suggested by its name this module contains various unsup-
ported software tools that are not necessarily portable or that do not fit in any
of the previous modules. For example software for viewing matrix patterns on
some workstations will be found here. For now UNSUPP contains subroutines
for visualizing matrices and a preconditioned GMRES package (with a ‘robust’
preconditioner based on Incomplete LU factorization with controlled fill-in).
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2.7 The New Sparse Matrix Repositories

The Harwell-Boeing collection project started in the 1980s [33]]. As time went by,

matrices of this collection became too small relative to the capabilities of modern

computers. As a result several collections were added. The best known of these

in the sparse matrix computation communities are the matrix market located in
http://math.nist.gov/MatrixMarket

and the Florida collection:
http://www.cise.ufl.edu/research/sparse/matrices/

In addition, the old Harwell-Boeing format which was geared toward efficient
utilization from fortran 77, became unnecessarily rigid. This format was devel-
oped to save memory but with todays capabilities it is not worth it to avoid the
coordinate format to save a space. Recall that for square matrices that the require-
ments for these two schemes ia as follows: Nz* (1*float + 2*int) for the COO
format versus Nz (1*float + 1xint) + nxint for the CSC/CSC format. In-
stead one can store matrix data in a file and an information header of arbitrary
length can be added. Separate files can be used for the right-hand sides and solu-
tions. This is the essence of the Matrix Market format (MM). The first line of the
file header if of the form (for example)

%%MatrixMarket matrix coordinate real general
which specifies the format, the class of storage used (here coordinate), the type of
data (real) and the type of storage (general, meaning symmetry is not exploited).

These new storage schemes made it necessary to develop additional tools to
deal with them. For example, the site
http://bebop.cs.berkeley.edu/smc/
offers a package named BeBop for converting matrices between various formats.

2.8 Sparse Matrices in MATLAB

MATLAB "™ is a commercial interactive programming languageﬁ which was
developed initially as an interactive version to the Linpack[46] and Eispack
packages, now both replaced by LAPACK. GNU Octavel, is a rather similar prod-
uct based on a GNU-community effort, which is also publically available (under
the GPL license). MATLAB became more common for performing general com-
putations. As its use began to spread in the scientific computing community, there
was a need to provide support for sparse matrices. Starting in the mid 1990’s this
support became available. GNU Octave has also added support for sparse matrices
in recent years.

It is possible to generate sparse matrices, solve sparse linear systems, and
compute eigenvalues of large sparse matrices with MATLAB or Octave. The fol-
lowing descriptions is restricted to MATLAB but Octave can be invoked in essen-
tially an identical way. MATLAB scripts can be invoked to implement functions.
For example, the following few lines of code will generate the sparse matrix re-

2See: http://www.mathworks . com/
3See: http://www.gnu.org/software/octave/
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lated to the Markov Chain example seen in Section 2.5.11

function [A] = mark(m)
%% [A]l = mark(m)
%% generates a Markov chain matrix for a random walk
%% on a triangular ggrid --
%% The matrix is sparse -- and of size n= mx(m+1)/2
Jofy= ==
ix = 0;
cst = 0.5/(m-1) ;
n = (mx(m+1))/2;
A = sparse(n,n) ;
Yofy=——————— sweep y coordinates;
for i=1:m
jmax = m-i+1;
Ioh=———————mmm————— - sweep x coordinates;
for j=1:jmax,
ix = ix + 1;
if (j<jmax)
pd = cstx(i+j-1) ;

Yofh———————— - north move
jx = ix + 1;
jx = ix + 1;
A(ix, jx) = pd;
if (4 == 1)
A(ix,jx) = A(ix,jx)+pd;
end
Yofy=mmmmmmmmm east move

jx = ix + jmax;
A(ix,jx) = pd;

if (j = 1)
A(ix,jx) = A(ix,jx)+pd;
end
end
Yoty=——— = mm—mmm——— south move
pu = 0.5 - cst*x(i+j-3) ;
if ( j>1)
jx = ix-1;
A(ix,jx) = pu;
end
Yoth=——————————————————— west move
if (1> 1)

jx = ix - jmax - 1 ;
A(ix,jx) = pu;
end
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end

Once MATLAB is launched in a directory where this script is available, then
we can issue the following commands for example

>> A = mark(15);
>> size(A)
ans =
120 120
>> spy(A);

The lines starting with >> are commands typed in and ans are responses (if any)
from MATLAB . The command spy (A) generated the plot used in Figure 2.4

MATLAB enables one to compute eigenvalues of full matrices with the eig
command. In the test shown above the matrice is sparse so eig(A) will generate
an error. Instead the matrix must first converted to dense format:

>> eig(full(A))
ans =
-1.0000
1.0000
0.9042
0.9714
0.8571
-0.9042
-0.9714
-0.8571

Only the first 8 eigenvalues are shown but the command generated 120 numbers,
all 120 eigenvalies. What if the matrix is too large to be converted to dense format
first? Then one can use the eigs command which computes a few eigenvalues
using some of the methods which will be covered later in this book. Specifically
the ARPACK package [118]] is invoked.

PROBLEMS

P-2.1 Write a FORTRAN code segment to perform the matrix-vector product for matrices
stored in Ellpack-Itpack format.

P-2.2 Write a small subroutine to perform the following operations on a sparse matrix in
coordinate format, diagonal format, and in CSR format: a) count the number on nonzero
elements in the main diagonal; b) extract the diagonal whose offset is k (which may be
negative); ¢) add a nonzero element in position (i, j) of the matrix (assume that this position
may contain a zero or a nonzero element); d) add a given diagonal to the matrix. What is
the most convenient storage scheme for each of these operations?
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P-2.3 Generate explicitly the matrix Mark(4). Verify that it is a stochastic matrix. Verify
that 1 and -1 are eigenvalues.

NOTES AND REFERENCES. Two good sources of reading on sparse matrix computations are the
books by George and Liu [71]] and by Duff, Erisman, and Reid [52]. Also of interest are and
and the early survey by Duff [49]]. A notable recent addition to these is the volume by Davis [43]],
which deals with sparse direct solution methods and contains a wealth of hepful details for dealing with
sparse matrices.

For applications related to eigenvalue problems, see [37] and [13]]. For details on Markov Chain
modeling see [106] 192} 207].

SPARSKIT is now more than 20 years old. It is written in FORTRAN-77 and as such is
somewhat outdated. However, the many routines available therein remain useful, judging from the
requests I receive.
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PERTURBATION THEORY AND
ERROR ANALYSIS

This chapter introduces some elementary spectral theory for linear operators on
finite dimensional spaces as well as some elements of perturbation analysis. The
main question that perturbation theory addresses is: how does an eigenvalue and
its associated eigenvectors, spectral projector, etc.., vary when the original matrix
undergoes a small perturbation. This information is important both for theoretical
and practical purposes. The spectral theory introduced in this chapter is the main
tool used to extend what is known about spectra of matrices to general operators
on infinite dimensional spaces. However, it has also some consequences in analyzing
the behavior of eigenvalues and eigenvectors of matrices. The material discussed in
this chapter is probably the most theoretical of the book. Fortunately, most of it
is independent of the rest and may be skipped in a first reading. The notions of
condition numbers and some of the results concerning error bounds are crucial in
understanding the difficulties that eigenvalue routines may encounter.

3.1 Projectors and their Properties

A projector P is a linear transformation from C"™ to itself which is idempotent,
i.e., such that
P?=P

When P is a projector then so is (I — P) and we have Null(P) = Ran(l — P).
The two subspaces Null(P) and Ran(P) have only the element zero in common.
This is because if a vector z is in Ran(P) then Pz = z and if it is also in Null(P)
then Pz = 0 so that z = 0 and the intersection of the two subspaces reduces to
{0}. Moreover, every element of C" can be written as © = Px + (I — P)z. As a
result the space C™ can be decomposed as the direct sum

C"™ = Null(P) @ Ran(P).

Conversely, every pair of subspaces M and S that form a direct sum of C™
define a unique projector such that Ran(P) = M and Null(P) = S. The cor-
responding transformation P is the linear mapping that maps any element x of

47
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C™ into the component zz; where x; is the M-component in the unique decom-
position x = x1 + x9 associated with the direct sum. In fact, this association is
unique in that a projector is uniquely determined by its null space and its range,
two subspaces that form a direct sum of C™.

3.1.1 Orthogonal Projectors

An important particular case is when the subspace S is the orthogonal complement
of M.i.e., when
Null(P) = Ran(P)*.

In this case the projector P is said to be the orthogonal projector onto M. Since
Ran(P) and Null(P) from a direct sum of C",the decomposition z = Pz + (I —
P)z is unique and the vector Pz is uniquely defined by the set of equations

PreM and (I —P)zlM (3.1)
or equivalently,

PreM and ((I—-P)z,y)=0 VYyeM.

Proposition 3.1 A projector is orthogonal if and only if it is Hermitian.

Proof. As a consequence of the equality

(Pfa,y) = (z,Py) Yz, vy (32)

we conclude that
Null(P) = Ran(P)* (3.3)
Null(P) = Ran(P#)* . (3.4)

By definition an orthogonal projector is one for which Null(P) = Ran(P)*.
Therefore, by (3.3), if P is Hermitian then it is orthogonal.

To show that the converse is true we first note that P is also a projector
since (PH)2 = (P2)H = PH_ We then observe that if P is orthogonal then (3.3)
implies that Null(P) = Null(P#) while (3.4) implies that Ran(P) = Ran(P).
Since P is projector this implies that P = P because a projector is uniquely
determined by its range and its null space. |

Given any unitary n X m matrix V' whose columns form an orthonormal
basis of M = Ran(P),we can represent P by the matrix P = V'V, Indeed,
in addition to being idempotent, the linear mapping associated with this matrix
satisfies the characterization given above, i.e.,

VVHz e M and (I-VVH)z € M*.
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It is important to note that this representation of the orthogonal projector P is not
unique. In fact any orthonormal basis V' will give a different representation of P in
the above form. As a consequence for any two orthogonal bases Vi, V5 of M, we
must have V; Vi1 = V4 V;H an equality which can also be verified independently,
see Exercise P-301

From the above representation it is clear that when P is an orthogonal pro-
jector then we have ||Pz||s < ||z|2 for any 2. As a result the maximum of
|Pz||2/]|x||2 for all z in C™ does not exceed one. On the other hand the value
one is reached for any element in Ran(P) and therefore,

[Pz =1

for any orthogonal projector P.
Recall that the acute angle between two nonzero vectors of C” is defined by

cosf(x,y) = @yl 0<0(z,y) <

= llllzllyll

S

We define the acute angle between a vector and a subspace S as the smallest acute
angle made between x and all vectors y of S,

O(z,S) =min 0(x,y) . (3.5)

yeSs
An optimality property of orthogonal projectors is the following.

Theorem 3.1 Let P be an orthogonal projector onto the subspace S. Then given
any vector x in C" we have,

min ||z — y|[2 = [z — P2, (3.6)
yeSs

or, equivalently,
0(x,S) = 0(x, Px) . 3.7

Proof. Let y any vector of S and consider the square of its distance from z. We
have,

lz = yl3 = llz = P+ (Pz = y)l5 = llo = Pzll3 + [|(Pz - y)II3 ,

because x— Pz is orthogonal to .S to which Px—y belongs. Therefore, ||z—y||2 >
||z — Pz|2 for all y in S and this establishes the first result by noticing that the
minimum is reached for y = Pz. The second equality is a simple reformulation
of the first. |

It is sometimes important to be able to measure distances between two sub-
spaces. If P; represents the orthogonal projector onto M;,for ¢ = 1,2,a natural
measure of the distance between M, and M5 is provided by their gap defined by:

eM
w(My, M) = max{ THEl]lvg |z — Piz|]2 , min ‘EE”Q :11 [l — P2$|2} )

llzll2=1
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We can also redefine w(My, M>) as
w(My, M) = max{[|(I — P1) P22, (I — P2)P1]]2}
and it can even be shown that

w(My, M) = ||P1 — P|s. (3.8)

3.1.2 Oblique Projectors

A projector that is not orthogonal is said to be oblique. It is sometimes useful to
have a definition of oblique projectors that resembles that of orthogonal projectors,
i.e., a definition similar to (3.I). If we call L the subspace that is the orthogonal
complement to S = Null(P),it is clear that L will have the same dimension as
M. Moreover, to say that (I — P)x belongs to Null(P) is equivalent to saying
that it is in the orthogonal complement of L. Therefore, from the definitions seen
at the beginning of Section 1, the projector P can be characterized by the defining
equation

PreM and (I—P)x L L. (3.9)

We say that P is a projector onto M and orthogonal to L or along the orthogonal
complement of L. This is illustrated in Figure 3.1l

Px e M, x—Px 1 M
Qr € M, x—Qx L L

Figure 3.1: Orthogonal and oblique projectors P and Q.

Matrix representations of oblique projectors require two bases: a basis V' =
[v1,...,vy] of the subspace M = Ran(P) and the other W = [wy, ..., w,y,] for
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the subspace L,the orthogonal complement of Null(P). We will say that these
two bases are biorthogonal if

(UZ‘, U)j) = 6ij (310)
Given any pair of biorthogonal bases V, W the projector P can be represented by
p=vwH (3.11)

In contrast with orthogonal projectors, the norm of P is larger than one in general.
It can in fact be arbitrarily large, which implies that the norms of P — @ for two
oblique projectors P and ), will not, in general, be a good measure of the distance
between the two subspaces Ran(P) and Ran(Q). On the other hand, it may give
an idea on the difference between their rank as is stated in the next theorem.

Theorem 3.2 Let ||.|| be any matrix norm, and assume that two projectors P and
Q are such that |P — Q|| < 1 then

rank(P) = rank(Q) (3.12)

Proof. First let us show that rank(Q) < rank(P). Given a basis {x;};=1,.. 4 of
Ran(Q) we consider the family of vectors G = {Px;};=1, . 4 in Ran(P) and
show that it is linearly independent. Assume that

q
Z OéiPl‘i =0.
i=1

Then the vector y = > ¢, oz is such that Py = 0 and therefore (Q — P)y =
Qy = yand |[(Q — P)yl| = [|y||. Since [|Q — P|| < 1 this implies that y = 0. As
a result the family G is linearly independent and so rank(P) > ¢ = rank(Q). It
can be shown similarly that rank(P) < rank(Q).

The above theorem indicates that no norm of P — (@ can be less than one if the two
subspaces have different dimensions. Moreover, if we have a family of projectors
P(t) that depends continuously on ¢ then the rank of P(¢) remains constant. In
addition, an immediate corollary is that if the gap between two subspaces is less
than one then they must have the same dimension.

3.1.3 Resolvent and Spectral Projector

For any given complex z not in the spectrum of a matrix A we define the resolvent
operator of A at z as the linear transformation

R(A,z) = (A—zI)"t. (3.13)

The notation R(z) is often used instead of R(A, z) if there is no ambiguity. This
notion can be defined for operators on infinite dimensional spaces in which case
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the spectrum is defined as the set of all complex scalars such that the inverse of
(A — zI) does not exist, see reference for details.

The resolvent regarded as a function of z admits singularities at the eigenval-
ues of A. Away from any eigenvalue the resolvent R(z) is analytic with respect to
z. Indeed, we can write for any z around an element 2, not equal to an eigenvalue,

Riz)=(A-z)"" = ((A=z0l) = (2 —20)D)""
—  R(20)(I — (2 — 20) R(0)) "

The term (I —(z—20)R(20)) ! can be expanded into the Neuman series whenever
the spectral radius of (z — zg)R(zo) is less than unity. Therefore, the Taylor
expansion of R(z) in the open disk |z — zg| < 1/p(R(z,)) exists and takes the

form,
oo

R(z) = (2 — 20)FR(z0)" . (3.14)
k=0

It is important to determine the nature of the singularity of R(z) at the eigen-
values \;,i = 1,...,p. By a simple application of Cramer’s rule it is easy to see
that these singularities are not essential. In other words, the Laurent expansion of
R(z)

+oo
R(z)= Y (2= \)*Cy

k=—o0

around each pole A; has only a finite number of negative powers. Thus, R(z) is a
meromorphic function.
The resolvent satisfies the following immediate properties.

First resolvent equality:
R(z1) — R(22) = (21 — 22) R(21) R(22) (3.15)
Second resolvent equality:
R(Ar, 2) — R(As, 2) = R(Ay, 2)(As — Ay)R(As, 2) (3.16)

In what follows we will need to integrate the resolvent over Jordan curves
in the complex plane. A Jordan curve is a simple closed curve that is piecewise
smooth and the integration will always be counter clockwise unless otherwise
stated. There is not much difference between integrating complex valued func-
tions with values in C or in C™"*". In fact such integrals can be defined over
functions taking their values in Banach spaces in the same way.

Consider any Jordan curve I'; that encloses the eigenvalue \; and no other
eigenvalue of A,and let

Jo— / R(z)dz (3.17)
T

T 2mi

The above integral is often referred to as the Taylor-Dunford integral.
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3.1.4 Relations with the Jordan form

The purpose of this subsection is to show that the operator P; defined by (3.17)
is identical with the spectral projector defined in Chapter 1 by using the Jordan
canonical form.

Theorem 3.3 The linear transformations P;, i = 1,2, ..., p, associated with the
distinct eigenvalues \;,© = 1, ..., p, are such that

(1) P? = P, i.e., each P; is a projector.
(2) PP =PiP;=0if i#7j.
(3)¥F P =1
Proof. (1) Let " and I two curves enclosing \; with I enclosing I. Then
(2in)*P? = / R(2)R(2")dzdz'
r

//[‘: o — z — R(2))d7'dz

because of the first resolvent equality. We observe that

d dz'
/,Z =0 and /Z = 2im,
FZ—Z F/Z_Z
so that p
/ 2dz /R(;:’)(/ = )dz’:O
F/Z—Z ’ I‘\Z_Z
and,

/F/F ZI,%EZ)Zdz’dz = /I‘R(Z) (/F Z,dz/z)dz = 2m/FR(Z)dZ
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from which we get P? = P;.
(2) The proof is similar to (1) and is left as an exercise.

(3) Consider

Since R(z) has no poles outside of the p Jordan curves, we can replace the sum
of the integrals by an integral over any curve that contains all of the eigenvalues
of A. If we choose this curve to be a circle C of radius 7 and center the origin, we

get
-1
P=— .
5in /c R(z)dz

Making the change of variables ¢ = 1/z we find that

- <A—(1/t>f>1< ‘“) = i/lm_nfl%

2 Jor 2 2im

where C”_ (resp. C”_ ) is the circle of center the origin, radius 1/7 run clock-wise
(resp. counter-clockwise). Moreover, because r must be larger than p(A) we have
p(tA) < 1 and the inverse of I — t A is expandable into its Neuman series, i.e., the

series
oo

I—tA)7h =) (tA

k=0

converges and therefore,

k=00
1
P: - tkilAk
2im Jor [1;)

dt =1

by the residue theorem. O

The above theorem shows that the projectors P; satisfy the same properties
as those of the spectral projector defined in the previous chapter, using the Jordan
canonical form. However, to show that these projectors are identical we still need
to prove that they have the same range. Note that since A and R(z) commute
we get by integration that AP; = P; A and this implies that the range of P; is
invariant under A. We must show that this invariant subspace is the invariant
subspace M; associated with the eigenvalue \;,as defined in Chapter 1. The next
lemma establishes the desired result.

Lemma 3.1 Ler M; = Ran(P;) and let M; = Null(A — M\ 1) be the invariant
subspace associated with the eigenvalue )\;. Then we have M; = M; for i =
1,2,....p
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Proof. We first prove that M; C M;. This follows from the fact that when
x € Null(A — \;I)% we can expand R(z)z as follows:
R(z)x = (A—zD)"'z
= [(A=XNI)—(z= )] '=

1 _ -1
= 72_)\‘ [I*(Z*)\z) 1(A7)\1[)} T
—1 L
- 5 S =)A= NIz
z— A £
7=0

The integral of this over I'; is simply —2imx by the residue theorem, hence the
result. .
We now show that M; C M;. From

(z=XN)R(z) = =T+ (A—-NI)R(z) (3.18)
it is easy to see that
-1 -1
%im F(z —\N)R(2)dz = %(A —\NI) /r R(2)dz = (A—NI)P;

and more generally,

—1

. —1
g G ARGIE = (A=A /FR(z)dz

= (A= NDFP;. (3.19)

Notice that the term in the left-hand side of (3.19) is the coefficient A_j_; of the
Laurent expansion of R(z) which has no essential singularities. Therefore, there is
some integer & after which all the left-hand sides of vanish. This proves that
for every x = P,z in Mi,there exists some [ for which (4 — \;1)*z = 0,k > 1.
It follows that = belongs to M;. |

This finally establishes that the projectors P; are identical with those defined
with the Jordan canonical form and seen in Chapter 1. Each projector P; is asso-
ciated with an eigenvalue \;. However, it is important to note that more generally
one can define a projector associated with a group of eigenvalues, which will be
the sum of the individual projectors associated with the different eigenvalues. This
can also be defined by an integral similar to (3.17) where I is a curve that encloses
all the eigenvalues of the group and no other ones. Note that the rank of P thus
defined is simply the sum of the algebraic multiplicities of the eigenvalue. In other
words, the dimension of the range of such a P would be the sum of the algebraic
multiplicities of the distinct eigenvalues enclosed by I'.

3.1.5 Linear Perturbations of A
In this section we consider the family of matrices defined by

A(t) = A+ tH
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where ¢t belongs to the complex plane. We are interested in the behavior of the
eigenelements of A(t) when ¢ varies around the origin. Consider first the ‘param-
eterized’ resolvent,

R(t,z) = (A+tH — zI)"".
Noting that R(¢,2) = R(2)(I + tR(z)H)~!itis clear that if the spectral radius

of tR(z)H is less than one then R(t, z) will be analytic with respect to ¢. More
precisely,

Proposition 3.2 The resolvent R(t, z) is analytic with respect to t in the open disk
[t] < p~H(HR(2)).

We wish to show by integration over a Jordan curve I' that a similar result
holds for the spectral projector P(t),i.e., that P(t) is analytic for ¢ small enough.
The result would be true if the resolvent R(t, z) were analytic with respect to ¢
for each z on T';. To ensure this we must require that

[t] < inf p~H(R(2)H)) .

The question that arises next is whether or not the disk of all ¢ ’s defined above is
empty. The answer is no as the following proof shows. We have

p(R(2)H) < |[R(:)H| < [[R()[|H]-

The function ||R(z)]| is continuous with respect to z for z € T" and therefore it
reaches its maximum at some point zg of the closed curve I' and we obtain

p(R(z)H) < [R()H| < [|R(z0) || H| = -

Hence,

inf p~H(R(z)H)) = k7"

Theorem 3.4 Let I be a Jordan curve around one or a few eigenvalues of A and
let

_ -1
pa = inf[p(R(2)H)]™" .

Then py,>0 and the spectral projector
-1

PO =g |

R(t, z)dz

is analytic in the disk |t| < p.

We have already proved that p,>0. The rest of the proof is straightforward.
As an immediate corollary of Theorem 3.4l we know that the rank of P(t) will
stay constant as long as ¢ stays in the disk [t| < pq.

Corollary 3.1 The number m of eigenvalues of A(t), counted with their algebraic
multiplicities, located inside the curve T, is constant provided that |t| < pq.
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In fact the condition on ¢ is only a sufficient condition and it may be too restrictive
since the real condition required is that P(t) be continuous with respect to ¢.

While individual eigenvalues may not have an analytic behavior, their average
is usually analytic. Consider the average

At) == ()
i=1

of the eigenvalues Aq(t), Aa(t),..., A\p(t) of A(t) that are inside I where we
assume that the eigenvalues are counted with their multiplicities. Let B(t) be a
matrix representation of the restriction of A(t) to the invariant subspace M (t) =
Ran(P(t)). Note that since M (t) is invariant under A(t) then B(¢) is the matrix
representation of the rank m transformation

A) @y = AP @)y = POA®) |ary = POAR) P ()0t
and we have

1 1
—tr|B(t = —tr[A(t)P(¢
“ulB()] = AP0 )

1

= —tr[A(t)P(1)] (3.20)

m
The last equality in the above equation is due to the fact that for any = not in M (¢)
we have P(t)x = 0 and therefore the extension of A(¢)P(t) to the whole space
can only bring zero eigenvalues in addition to the eigenvalues \;(¢),i = 1,...,m.

Theorem 3.5 The  linear  transformation — A(t)P(t)  and  its
weighted trace \(t) are analytic in the disk |z| < pa.

Proof. That A(t)P(t) is analytic is a consequence of the previous theorem. That
A(t) is analytic, comes from the equivalent expression (320) and the fact that the
trace of an operator X (¢) that is analytic with respect to ¢ is analytic. O

Therefore, a simple eigenvalue A(¢) of A(t) not only stays simple around a
neighborhood of ¢ = 0 but it is also analytic with respect to ¢. Moreover, the vector
u;(t) = P;(t)u; is an eigenvector of A(t) associated with this simple eigenvalue,
with u; = w;(0) being an eigenvector of A associated with the eigenvalue \;.
Clearly, the eigenvector w;(t) is analytic with respect to the variable ¢. However,
the situation is more complex for the case of a multiple eigenvalue. If an eigen-
value is of multiplicity m then after a small perturbation, it will split into at most
m distinct small branches \;(t). These branches taken individually are not ana-
Iytic in general. On the other hand, their arithmetic average is analytic. For this
reason it is critical, in practice, to try to recognize groups of eigenvalues that are
likely to originate from the splitting of a perturbed multiple eigenvalue.
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Example 3.1. That an individual branch of the m branches of eigenvalues \; (¢)
is not analytic can be easily illustrated by the example

()

The matrix A(t) has the eigenvalues ++/7 which degenerate into the double eigen-
value 0 as ¢t — 0. The individual eigenvalues are not analytic but their average
remains constant and equal to zero. O

In the above example each of the individual eigenvalues behaves like the square
root of ¢ around the origin. One may wonder whether this type of behavior can be
generalized. The answer is stated in the next proposition.

Proposition 3.3 Any eigenvalue \;(t) of A(t) inside the Jordan curve T satisfies
i) = il = O (jtV")

where l; is the index of \;.

Proof. Let f(z) = (z — \;)%. We have seen earlier (proof of Lemma [3.1)) that
f(A)P; = 0. For an eigenvector u(t) of norm unity associated with the eigenvalue
Ai(t) we have

FAD)PHut) = fA®)ult) = (At) = Ad)"u(t)
= (A) =) u(t) -

Taking the norms of both members of the above equation and using the fact that
f(A)P; = 0 we get

Ni(t) = Al 1 (A@) P (E)u(®)]l

< FA@) PO = [IF(A@))P() = F(A) Pl -

Since f(A) = f(A(0)),P; = P(0) and P(t), f(A(t)) are analytic the right-hand-
side in the above inequality is O(t) and therefore

IAi(t) = Al = O (Jt])

A

which shows the result. O

Example 3.2. A standard illustration of the above result is provided by taking

A to be a Jordan block and H to be the rank one matrix H = e,e?:

0 1
0 1
A= 0 1
0 1

0 1 0
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The matrix A has nonzero elements only in positions (i, + 1) where they are
equal to one. The matrix H has its elements equal to zero except for the element
in position (n, 1) which is equal to one. For ¢ = 0 the matrix A + ¢ H admits only
the eigenvalue A = 0. The characteristic polynomial of A 4 tH is equal to

pe(z) =det(A+tH — 2I) = (—1)" (2" — 1)

2ijm

and its roots are \;(t) = t'/"e™%" j = 1,...,n. Thus, if n = 20 then for a
perturbation on A of the order of 1071, a reasonable number if double precision
arithmetic is used, the eigenvalue will be perturbed by as much as 0.158. . O

3.2 A-Posteriori Error Bounds

In this section we consider the problem of predicting the error made on an eigen-
value/eigenvector pair from some a posteriori knowledge on their approximations.
The simplest criterion used to determine the accuracy of an approximate eigenpair
5\, U , is to compute the norm of the so called residual vector

r = At — \i.

The aim is to derive error bounds that relate some norm of r,typically its 2-norm,
to the errors on the eigenpair. Such error bounds are referred to a posteriori er-
ror bounds. Such bounds may help determine how accurate the approximations
provided by some algorithm may be. This information can in turn be helpful in
choosing a stopping criterion in iterative algorithms, in order to ensure that the
answer delivered by the numerical method is within a desired tolerance.

3.2.1 General Error Bounds

In the non-Hermitian case there does not exist any ‘a posteriori’ error bounds in
the strict sense of the definition. The error bounds that exist are in general weaker
and not as easy to use as those known in the Hermitian case. The first error
bound which we consider is known as the Bauer-Fike theorem. We recall that the
condition number of a matrix X relative to the p-norm is defined by Cond,,(X) =
111X -

Theorem 3.6 (Bauer-Fike) Let 5\, w be an approximate eigenpair of A with resid-
ual vector r = At — A, where @ is of 2-norm unity. Moreover, assume that the
matrix A is diagonalizable and let X be the matrix that transforms it into diagonal
form. Then, there exists an eigenvalue \ of A such that

IA = X < Condy(X)||7]|2 -
Proof. If \ € A(A) the result is true. Assume that \ is not an eigenvalue. From

A = XDX ! where D is the diagonal of eigenvalues and since we assume that
A ¢ A(A), we can write

i=A-A)"tr=XD-X)"'X"1r



60 Chapter 3

and hence

1 = || X(D—=X)"'X"1r|,
IX 20X 2D =AD" 2 7]z - (3.21)

IN

The matrix (D — Vs )~1 is a diagonal matrix and as a result its 2-norm is the
maximum of the absolute values of its diagonal entries. Therefore,

1 < Condy(X)||rlls max [N — A
NiEA(A)

from which the result follows. O

In case the matrix is not diagonalizable then the previous result can be gener-
alized as follows.

Theorem 3.7 Let \, @ an approximate eigenpair with residual vector r = At —
A, where U has unit 2-norm. Let X be the matrix that transforms A into its
Jordan canonical form, A = XJX 1. Then, there exists an eigenvalue \ of A
such that _
A=A
THA= A+ A=A

where [ is the index of ).

< Conda(X)||r||2

Proof. The proof starts as in the previous case but here the diagonal matrix D is
replaced by the Jordan matrix .J. Because the matrix (. — AI) is block diagonal
its 2-norm is the maximum of the 2-norms of each block (a consequence of the
alternative formulation for 2-norms seen in Chapter 1). For each of these blocks
we have

(Jz — S\I)_l = ((/\z — S\)I + E)_l

where F is the nilpotent matrix having ones in positions (7,7 + 1) and zeros else-
where. Therefore,

li
(=AD" = S0 = ) (- By
j=1
and as a result, setting J; = |\; — A| and noting that || E||y = 1,we get

li—1

(i =AD M2 < Y = ATNEIGT = D67 = 670> 6l
J=1 Jj=1 J=0

The analogue of (3.21)) is

1 < Conda(X)[(J — L)~ ||2[|7|2- (3.22)
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Since,
l,j—l
Y-l — i1 —1 J
I =ADTH ] = max (/i = ATz < max 670> o]
7=0
we get
5
min ————— 5 < Conds(X)||7]|2
i=1,...,p 2?;01 57 Ol
which is essentially the desired result. O

Corollary 3.2 (Kahan, Parlett, and Jiang, 1980). Under the same assumptions
as those of theorem[3.7 there exists an eigenvalue \ of A such that

A=A

W < Condz(X)||7]|2

where [ is the index of .

Proof. Follows immediately from the previous theorem and the inequality,

-1
dool < (14a) O

j=0

For an alternative proof see [[101]. Unfortunately, the bounds of the type
shown in the previous two theorems are not practical because of the presence of
the condition number of X. The second result even requires the knowledge of
the index of \;,which is not numerically viable. The situation is much improved
in the particular case where A is Hermitian because in this case Condy(X) = 1.
This is taken up next.

3.2.2 The Hermitian Case

In the Hermitian case, Theorem [3.6]leads to the following corollary.

Corollary 3.3 Let \, @ be an approximate eigenpair of a Hermitian matrix A,with
|lulle = 1 and let v be the corresponding residual vector. Then there exists an
eigenvalue of A such that

A=Al < Il (3.23)

This is a remarkable result because it constitutes a simple yet general error
bound. On the other hand it is not sharp as the next a posteriori error bound, due
to Kato and Temple 2111, shows. We start by proving a lemma that will
be used to prove Kato-Temple’s theorem. In the next results it is assumed that the
approximate eigenvalue A is the Rayleigh quotient of the approximate eigenvector.
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Lemma 3.2 Let 1 be an approximate eigenvector of norm unity of A,and A =
(Aa,w). Let (o, B) be an interval that contains \ and no eigenvalue of A. Then

B=NA=a) < |Irl3.

Proof. This lemma uses the observation that the residual vector r is orthogonal to
u. Then we have

((A—al)a, (A - pI)u)
(M.ADu+Q—aD”«A—XD@+@—ﬁD®
= |3 + (A = al)(A = BI),

because of the orthogonality property mentioned above. On the other hand, one
can expand @ in the orthogonal eigenbasis of A as

i =&uy + Soup + -+ Ly

to transform the left hand side of the expression into
(A —al)i, (A - Bl 2]@ (A = a)(xi = B) .

Each term in the above sum is nonnegative because of the assumptions on « and
3. Therefore ||r]|3 + (3 — A\)(A — ) > 0 which is the desired result. O

Theorem 3.8 (Kato and Temple [104, 211]]) Let @ be an approximate eigenvec-
tor of norm unity of A,and X = (A, ). Assume that we know an interval (a,b)
that contains \ and one and only one eigenvalue \ of A. Then

[ V1V

2 ~
B 5y o I
A—a b—

or

Proof. Let ) be the closest eigenvalue to . In the case where \ is located at left
of A then take & = A and 8 = b in the lemma to get

0< -\ < M

T b
In the opposite case where A > \,use &« = a and § = \ to get
~ 2
o<a—x< Al
A—a
This completes the proof. |

A simplification of Kato-Temple’s theorem consists of using a particular in-
terval that is symmetric about the approximation A, as is stated in the next corol-
lary.
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Corollary 3.4 Let u be an approximate eigenvector of norm unity of A,and A=
(A, @). Let \ be the eigenvalue closest to \ and & the distance from X to the rest
of the spectrum, i.e.,

§ = min{|\; — A, A # A}

Then,

~ 2
|A—Mg|ﬁb. (3.24)

Proof. This is a particular case of the previous theorem with a = A — 4 and
b=X+6. O

It is also possible to show a similar result for the angle between the exact and
approximate eigenvectors.

Theorem 3.9 Let @ be an approximate eigenvector of norm unity of A, A= (Aa,a)
andr = (A — A )a. Let A be the eigenvalue closest to X and § the distance from
X to the rest of the spectrum, i.e., § = min;{|\; — A|,\; # \}. Then, if u is an
eigenvector of A associated with \ we have

lI7]l2
5

sin@(a, u) < (3.25)

Proof. Let us write the approximate eigenvector @ as %4 = u cos 6 + z sin 6 where
z is a vector orthogonal to u. We have

(A=X)a = cosf (A—A)u+sind (A— )z
= cosf (A= A)u+sinf (A—X)z .
The two vectors on the right hand side are orthogonal to each other because,
(u, (A= X)z) = (A= AD)u,z) = (A= N)(u,2) =0.
Therefore,
7|2 = ||(A — AD)i||? = sin 0 ||(A — X)z||2 + cos? 0 |A — A% .

Hence, -
sin 6 [|(A = A)z[f5 < [Ir|3 -

The proof follows by observing that since z is orthogonal to u then || (A=XI)z|2 s
larger than the smallest eigenvalue of A — A[ restricted to the subspace orthogonal
to u,which is precisely 0. |

Although the above bounds for the Hermitian case are sharp they are still not
computable since d involves a distance from the ‘next closest’ eigenvalue of A
to A which is not readily available. In order to be able to use these bounds in
practical situations one must provide a lower bound for the distance 6. One might



64 Chapter 3

simply approximate ¢ by A — 5\j where ;\j is some approximation to the next

closest eigenvalue to A. The result would no longer be an actual upper bound on

the error but rather an ‘estimate’ of the error. This may not be safe however. To

ensure that the computed error bound used is rigorous it is preferable to exploit

the simpler inequality provided by Corollary[33]in order to find a lower bound for

the distance ¢,for example
S=A=X] = [(A=X)+ A=Al

= A= A=A = A

> A=l = lrlle-

where ||7;||2 is the residual norm associated with the eigenvalue A\;. Now the

above lower bound of ¢ is computable. In order for the resulting error bound to

have a meaning, ||r;||2 must be small enough to ensure that there are no other

potential eigenvalues \j that might be closer to A than is A;. The above error
bounds when used cautiously can be quite useful.

Example 3.3. Let

1.0 2.0
20 1.0 20
A= 20 1.0 2.0
20 1.0 20

20 1.0

The eigenvalues of A are {3,—1,1,1 — 23,1+ 2\/5}
An eigenvector associated with the eigenvalue A = 3 is

-0.5

-0.5

u = 0.0
0.5

0.5

Consider the vector
—0.49

—0.5

U= 0.0
0.5

0.5

The Rayleigh quotient of @ with respect to A is A = 2.9998... The closest eigen-
value is A = 3.0 and the corresponding actual error is 2.02 x 10~%. The residual

norm is found to be )
[(A— A2 ~ 0.0284 .

The distance ¢ here is

0 =12.9998 — 4.464101...| ~ 1.46643 .
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So the error bound for the eigenvalue 2.9998 found is

(0.0284..)3
1.4643

For the eigenvector, the angle between the exact and approximate eigenvector
is such that cos§ = 0.999962,giving an angle § ~ 0.0087 and the sine of the
angle is approximately sin 6 = 0.0087. The error as estimated by (3.9) is

0.0284

inf < —— ~0.01
sinf < 14643 0.01939

~ 5.5177 x 1074

which is about twice as large as the actual error. |

We now consider a slightly more realistic situation. There are instances in
which the off-diagonal elements of a matrix are small. Then the diagonal elements
can be considered approximations to the eigenvalues of A and the question is how
good an accuracy can one expect? We illustrate this with an example.

Example 3.4. Let

1.00 0.0055 0.10 0.10 0.00

0.0055 2.00 -0.05 0.00 -0.10

A= 0.10 —0.05 3.00 0.10 0.05
0.10 0.00 0.10 4.00 0.00

0.00 —0.10 0.05 0.00 5.00

The eigenvalues of A rounded to 6 digits are
A(A) ={0.99195,1.99443, 2.99507, 4.01386, 5.00466} .

A natural question is how accurate is each of the diagonal elements of A as an
approximate eigenvalue? We assume that we know nothing about the exact spec-
trum. We can take as approximate eigenvectors the e;’s, = = 1,--- ;5 and the
corresponding residual norms are

0.141528 ;0.1119386 ; 0.1581139 ;0.1414214 ;0.1118034

respectively. The simplest residual bound (3:23) tells us that

A — 1.0 <0.141528; |A —2.0| < 0.111939;
A —3.0] <0.158114; |\ —4.0] < 0.141421; .
A — 5.0 < 0.111803.

The intervals defined above are all disjoint. As a result, we can get a reasonable
idea of §; the distance of each of the approximations from the eigenvalues not in
the interval. For example,

81 = Jars — Ao| > |1 — (2.0 — 0.1119386)| ~ 0.88806
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and

52 min{|a22 —)\3‘,‘(122 —)\1|}
min{|2.0 — (3.0 — 0.15811)|, 2.0 — (1.0 + 0.14153)|}

0.8419...

v

We find similarly d3 > 0.8585,04 > 0.8419, and §5 > 0.8586.
We now get from the bounds (3.24) the following inequalities,

A —1.0] <0.0226; |A—2.0| < 0.0149;
A —3.0 <0.0291; |\—4.0] <0.0238;
1A —5.0] < 0.0146.

whereas the actual errors are

A — 1.0] &~ 0.0080; |\ — 2.0 ~0.0056; |\ — 3.0 ~ 0.0049;
A —4.0] & 0.0139; |\ — 5.0 ~ 0.0047.

3.2.3 The Kahan-Parlett-Jiang Theorem

We now return to the general non-Hermitian case. The results seen for the Her-
mitian case in the previous section can be very useful in practical situations. For
example they can help develop efficient stopping criteria in iterative algorithms.
In contrast, those seen in Section 3.2.1]for the general non-Hermitian case are not
too easy to exploit in practice. The question that one might ask is whether or not
any residual bounds can be established that will provide information similar to
that provided in the Hermitian case. There does not seem to exist any such result
in the literature. A result established by Kahan, Parlett and Jiang [101]], which we
now discuss, seems to be the best compromise between generality and sharpness.
However, the theorem is of a different type. It does not guarantee the existence
of, say, an eigenvalue in a given interval whose size depends on the residual norm.
It only gives us the size of the smallest perturbation that must be applied to the
original data (the matrix), in order to transform the approximate eigenpair into an
exact one (for the perturbed problem).

To explain the nature of the theorem we begin with a very simple result which
can be regarded as a one-sided version of the one proved by Kahan, Parlett, and
Jiang in that it only considers the right eigenvalue — eigenvector pair instead of the
eigen-triplet consisting of the eigenvalue and the right and left eigenvectors.

Proposition 3.4 Let a square matrix A and a unit vector u be given. For any
scalar y define the residual vector,

r = Au — yu,
andlet & = {E : (A — E)u = ~yu}. Then

min || Elz = [|rlz . (3.26)
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Proof. From the assumptions we see that each F is in & if and only if it satisfies
the equality
Eu=r. (3.27)

Since ||u||2 = 1 the above equation implies that for any such F
IE]l2 = [Irll2,

W]llCll 1n turn IIIlphCS that
X l 7 2 > 2 ; 28

Now consider the matrix E, = ru'’ which is a member of £ since it satisfies
(3.27). The 2-norm of Ej is such that

HEOH% = a'mag;{ruHurH} = Umaw{rrH} = HTH%

As a result the minimum in the left hand side of (3.28)) is reached for £ = F and
the value of the minimum is equal to ||7||2. O

We now state a simple version of the Kahan-Parlett-Jiang theorem .

Theorem 3.10 (Kahan, Parlett, and Jiang) Let a square matrix A and two unit
vectors u,w with (u,w) # 0 be given. For any scalar vy define the residual
vectors,

r=Au—~yu s=A%w — Fw

andlet £ = {E: (A — E)u = yu; (A — E)?w = jw}. Then
min [| Bz = max {[[72, [ls[l2} - (3.29)
Proof. We proceed in the same way as for the proof of the simpler result of the

previous proposition. The two conditions that a matrix £ must satisfy in order to
belong to £ translate into

Eu=r and EPw=s. (3.30)
By the same argument used in the proof of Proposition 3.4]any such E satisfies
[Ell2 > [Irll2 and [|E]2 > [|s]l2. (3.31)

which proves the inequality

i > . .
win | Ell2 > max{r]2, 5]} (3.32)
We now define,
§ = stu=wr (3.33)
= r—J0w
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and consider the particular set of matrices of the form
EB) = ruf +ws — 6 wu — gy (3.34)

where (3 is a parameter. It is easy to verify that these matrices satisfy the con-
straints (3.3Q) for any 3.

We distinguish two different cases depending on whether ||s||2 is larger or
smaller than ||7||2. When ||s||2>]|7||2 we rewrite E(3) in the form

EB) = z(u—By)T +ws (3.35)
and select 3 in such a way that
sf(u—By)=0 (3.36)

which leads to

g8

Isl13 — [6]*°
We note that the above expression is not valid when ||s||2 = |6|,which occurs
only when 3 = 0. In this situation F(3) = ru'l for any 3, and the following
special treatment is necessary. As in the proof of the previous proposition E(3) =
[|7||2- On the other hand we have

Isll2 = [8] = Jw™r| < |72

which shows that max{||r||2, ||s|l2} = |||z and establishes the result that the
minimum in the theorem is reached for £(f) in this very special case.

Going back to the general case where ||s||2 # |d|, with the above choice of 8
the two vectors z and w in the range of F({3) as defined by (3.33)) are orthogonal
and similarly, the vectors u — By and s are also orthogonal. In this situation the
norm of F(3) is equal to [See problem P-2[I4]:

IE(B) |2 = max{|s]lz. |lz[|2 ]| — 5 yll2}.
Because of the orthogonality of x and w,we have
][5 = lI7]13 — 161> -

Similarly, exploiting the orthogonality of the pair u, y,and using the definition of
5 we get

1+ B2lyl3

1+ 321513 — 161°]
5113

sl = 1o]> -

lu— B yll3

The above results yield

E 2 2 2 ||T||% - ‘5|2 _ 2
IEB) |2 = max 4 lIsll2, lIsll2y=p—5m ¢ = llsll2.
[s]l5 — 1]
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This shows from (3.32) that the equality (3.29) is satisfied for the case when
[[sll2> 1|2

To prove the result for the case ||s||2<]|7||2,we proceed in the same manner,
writing this time E(3) as

EB) = rufl + (aw —p x)yH

and choosing 3 such that u’ (w — B ) = 0. A special treatment will also be
necessary for the case where ||7||a = |§| which only occurs when 2z = 0. O

The actual result proved by Kahan, Parlett and Jiang is essentially a block
version of the above theorem and includes results with other norms, such as the
Frobenius norm.

Example 3.5. Consider the matrix,

1.0 2.1
19 1.0 21
A= 19 1.0 21
1.9 1.0 21
1.9 1.0

which is obtained by perturbing the symmetric tridiagonal matrix of Example 3.3
Consider the pair
—0.5
—0.5
vy=30, wv= 0.0
0.5
0.5

Then we have
[rlla = [[(A — y1)ul|2 =~ 0.1414,

which tells us, using the one-sided result (Proposition[3:4)), that we need to perturb
A by a matrix £ of norm 0.1414 to make the pair 7, v an exact eigenpair of A.
Consider now v as defined above and

w=a (0.6,0.6,0.0,0.4,0.4)"

where « is chosen to normalize w to so that its 2-norm is unity. Then, still with
v = 3,we find
[7]l2 ~ 0.1414 ,  ||s]|2 ~ 0.5004 .

As aresult of the theorem, we now need a perturbation £ whose 2-norm is roughly
0.5004 to make the triplet v, v, w an exact eigentriplet of A,a much stricter re-
quirement than with the one-sided result. |

The outcome of the above example was to be expected. If one of the left of
right approximate eigen-pair, for example the left pair (v, v), is a poor approxima-
tion, then it will take a larger perturbation on A to make the triplet -, v, w exact,
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than it would to make the pair -y, u exact. Whether one needs to use the one-sided
or the two-sided result depends on whether one is interested in the left and right
eigenvectors simultaneously or in the right (or left) eigenvector only.

3.3 Conditioning of Eigen-problems

When solving a linear system Az = b,an important question that arises is how
sensitive is the solution x to small variations of the initial data, namely to the
matrix A and the right-hand side b. A measure of this sensitivity is called the
condition number of A defined by

Cond(4) = [lA[|] A7

relative to some norm.

For the eigenvalue problem we raise a similar question but we must now
define similar measures for the eigenvalues as well as for the eigenvectors and the
invariant subspaces.

3.3.1 Conditioning of Eigenvalues

Let us assume that \ is a simple eigenvalue and consider the family of matrices
A(t) = A+ tE. We know from the previous sections that there exists a branch
of eigenvalues \(t) of A(t) that is analytic with respect to ¢, when ¢ belongs to a
small enough disk centered at the origin. It is natural to call conditioning of the
eigenvalue A of A relative to the perturbation E the modulus of the derivative of
A(t) at the origin ¢ = 0. Let us write

A)u(t) = Mt)u(t) (3.37)

and take the inner product of both members with a left eigenvector w of A associ-
ated with X to get
(A + tEyult), w) = A(t) (u(t), w)

or,
A@) (u(t),w) = (Au(t),w)+ t(Eu(t),w)
= (u(t), AHw) + t(Fu(t),w)
= Au(t),w) + t(Bu(t), w).
Hence, \ \
A=A (1), w) = (Bu(t) w)

and therefore by taking the limit at ¢ = 0,

(Bu, w)

A0) = (u, w)
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Here we should recall that the left and right eigenvectors associated with a simple
eigenvalue cannot be orthogonal to each other. The actual conditioning of an
eigenvalue, given a perturbation “in the direction of £”’is the modulus of the above
quantity. In practical situations, one often does not know the actual perturbation
E but only its magnitude, e.g., as measured by some matrix norm || E||. Using the
Cauchy-Schwarz inequality and the 2-norm, we can derive the following upper
bound,
[ (u, w)] | (u, w)]

In other words the actual condition number of the eigenvalue \ is bounded from
above by the norm of F divided by the cosine of the acute angle between the left
and the right eigenvectors associated with A. Hence the following definition.

Definition 3.1 The condition number of a simple eigenvalue \ of an arbitrary
matrix A is defined by
1

Cond()\) = m

in which u and w are the right and left eigenvectors, respectively, associated with
A

Example 3.6. Consider the matrix

—149 —50 —154
A= 537 180 546
=27 -9 =25

The eigenvalues of A are {1, 2, 3}. The right and left eigenvectors of A associated
with the eigenvalue \; = 1 are approximately

0.3162 0.6810
u=| —0.9487 and w= | 0.2253 (3.38)
0.0 0.6967

and the corresponding condition number is approximately
Cond(A;) =~ 603.64

A perturbation of order 0.01 may cause perturbations of magnitude up to 6.
Perturbing a1; to —149.01 yields the spectrum:

{0.2287, 3.2878,2.4735}. 0O

For Hermitian, or more generally normal, matrices every simple eigenvalue
is well-conditioned, since Cond(\) = 1. On the other hand the condition number
of a non-normal matrix can be excessively high, in fact arbitrarily high.
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Example 3.7. As an example simply consider the matrix

M1
Ao —1
. (3.39)
1
An

with \y = 0and \; = 1/(i — 1) fori > 1. A right eigenvector associated with
the eigenvalue \; is the vector e;. A left eigenvector is the vector w whose i-th
component is equal to (i — 1)! fori = 1,. .., n. Alittle calculation shows that the
condition number of \; satisfies

(n—1)! < Cond(\) < (n—1)! Vn.

Thus, this example shows that the condition number can be quite large even for
modestly sized matrices. O

An important comment should be made concerning the above example. The
eigenvalues of A are explicitly known in terms of the diagonal entries of the ma-
trix, whenever the structure of A stays the same. One may wonder whether it is
sensible to discuss the concept of condition number in such cases. For example, if
we perturb the (1,1) entry by 0.1 we know exactly that the eigenvalue A\; will be
perturbed likewise. Is the notion of condition number useless in such situations?
The answer is no. First, the argument is only true if perturbations are applied in
specific positions of the matrix, namely its upper triangular part. If perturbations
take place elsewhere then some or all of the eigenvalues of the perturbed matrix
may not be explicitly known. Second, one can think of applying an orthogonal
similarity transformation to A. If () is orthogonal then the eigenvalues of the ma-
trix B = Q¥ AQ have the same condition number as those of the original matrix
A ,(see Problem P-3[T13). The resulting matrix B may be dense and the dependence
of its eigenvalues with respect to its entries is no longer explicit.

3.3.2 Conditioning of Eigenvectors

To properly define the condition number of an eigenvector we need to use the no-
tion of reduced resolvent. Although the resolvent operator R(z) has a singularity
at an eigenvalue ) it can still be defined on the restriction to the invariant subspace
Null(P). More precisely, consider the restriction of the mapping A — AI to the
subspace (I — P)C™ = Null(P),where P is the spectral projector associated with
the eigenvalue \. This mapping is invertible because if x is an element of Null(P)
then (A — AI)z = 0,i.e., z is in Null(A — AI) which is included in Ran(P) and
this is only possible when = = 0. We will call reduced resolvent at A the inverse
of this linear mapping and we will denote it by S()\) . Thus,

SO = [(A=AD) Nunp)| -
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The reduced resolvent satisfies the relation,
SNA-=XD)z=SNA-A)I-Plz=(I—-P)x YV (3.40)

which can be viewed as an alternative definition of S(\).
We now consider a simple eigenvalue \ of a matrix A with an associated
eigenvector u, and write that a pair \(¢), u(t) is an eigenpair of the matrix A+tFE,

(A4 tE)u(t) = Mt)u(t) . (3.41)
Subtracting Au = Au from both sides we have,
A(u(t) —u) + tEu(t) = Mt)u(t) — Au = Mu(t) — u) + (A () — Nu(t)

or,

(A — AD)(u(t) — u) + tBu(t) = (A1) — Nu(t) .
We then multiply both sides by the projector / — P to obtain
(I = P)Y(A=AD)(u(t) —u) + (I - P)Eu(t)
= () =N = P)u(t)
(A1) = N = P)(u(t) —u)

The last equality holds because (I — P)u = 0 since « is in Ran(P). Hence,

(A=A = P)(u(t) —u) =
(I = P)[=tEu(t) + (A(t) = M) (u(t) — w)].

We now multiply both sides by S(\) and use (34Q) to get

(I = P)(u(t) —u) =
SO — P)[tBu(t) + (\t) = N(u(t) —uw)]  (3.42)

In the above development we have not scaled u(t) in any way. We now do so by
requiring that its projection onto the eigenvector u be exactly u,i.e., Pu(t) = u
for all ¢. With this scaling, we have

(I —P)(u(t) —u) =u(t) —u.
As a result, equality (3.42) becomes
u(t) —u=S\) [—t(I — P)Eu(t) + (A(t) = M) (u(t) — u),]
from which we finally get, after dividing by ¢ and taking the limit,
' (0) = =S\)(I — P)Eu . (3.43)

Using the same argument as before, we arrive at the following general definition
of the condition number of an eigenvector.
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Definition 3.2 The condition number of an eigenvector u associated with an eigen-
value X\ of an arbitrary matrix A is defined by

Cond(u) = ||S(A)(I — P)||2. (3.44)
in which S(X) is the reduced resolvent of A at \.

In the case where the matrix A is Hermitian it is easy to verify that the condi-
tion number simplifies to the following

1

Cond(u) = oS A A —

(3.45)

In the general non-Hermitian case, it is difficult to assess the size of Cond(u).

To better understand the nature of the operator S(\)(I — P), consider its spec-
tral expansion in the particular case where A is diagonalizable and the eigenvalue
A; of interest is simple.

SN =P =3 1 L

<
LN

<

Since we can write each projector as a sum of outer product matrices P; =
W w,f where the left and right eigenvectors uj, and wy, are normalized such
that (u;,w;) = 1,the expression (2.9) can be rewritten as

n n H

1 I wi Bu;
j=1 "7 ! j=1 " ‘
JFi ji

which is the standard expression developed in Wilkinson’s book [223].

What the above expression reveals is that when eigenvalues get close to one
another then the eigenvectors are not too well defined. This is predictable since
a multiple eigenvalue has typically several independent eigenvectors associated
with it, and we can rotate the eigenvector arbitrarily in the eigenspace while keep-
ing it an eigenvector of A. As an eigenvalue gets close to being multiple, the
condition number for its associated eigenvector deteriorates. In fact one question
that follows naturally is whether or not one can define the notion of condition
number for eigenvectors associated with multiple eigenvalues. The above obser-
vation suggests that a more realistic alternative is to try to analyze the sensitivity
of the invariant subspace. This is taken up in the next section.

Example 3.8. Consider the matrix seen in example 3.6

—149 =50 —154
A= 537 180 546
=27 -9 =25
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The matrix is diagonalizable since it has three distinct eigenvalues and

1 0 0
A=x [0 2 0o | X .
00 3

One way to compute the reduced resolvent associated with A\; = 1 is to replace in
the above equality the diagonal matrix D by the ‘inverse’ of D — \; I obtained by
inverting the nonzero entries (2, 2) and (3, 3) and placing a zero in entry (1,1),i.e.,

00 0 —118.5 —39.5 —122.5
SA)=X|0 1 0| X! = 316.5 1055  325.5
0o 4 13.5 4.5 14.5

2

We find that the 2-norm of ||S(A1)[2 is ||S(A1)]2 = 498.27. Thus, a pertur-
bation of order 0.01 may cause changes of magnitude up to 4.98 on the eigen-
vector. This turns out to be a pessimistic overestimate. If we perturb a;; from
—149.00 to —149.01 the eigenvector u; associated with \; is perturbed from
up = (=1/3,1,0)T to @4, = (—0.3170,1,-0.0174)T. A clue as to why we
have a poor estimate is provided by looking at the norms of X and X ~.

[ X2 =1.709 and || X !> = 754.100,

which reveals that the eigenvectors are poorly conditioned. O

3.3.3 Conditioning of Invariant Subspaces

Often one is interested in the invariant subspace rather than the individual eigen-
vectors associated with a given eigenvalue. In these situations the condition num-
ber for eigenvectors as defined before is not sufficient. We would like to have an
idea on how the whole subspace behaves under a given perturbation.

We start with the simple case where the multiplicity of the eigenvalue under
consideration is one, and we define some notation. Referring to 3.41), let Q(¢)
be the orthogonal projector onto the invariant subspace associated with the sim-
ple eigenvalue A(t) and Q(0) = @ be the orthogonal projector onto the invariant
subspace of A associated with A\. The orthogonal projector ) onto the invari-
ant subspace associated with A has different properties from those of the spectral
projector. For example A and () do not commute. All we can say is that

AQ = QAQ or (I-Q)AQ =0,
leading to
I-QA=(I-QAI-Q) (3.46)
I-=QA-A) = -Q)(A-A)(-Q)

Note that the linear operator (A — AI) when restricted to the range of I — @ is
invertible. This is because if (A — AI)z = 0 then x belongs to Ran(Q) whose
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intersection with Ran(/ — Q) is reduced to {0}. We denote by ST () the inverse
of (A — M) restricted to Ran(/ — Q). Note that although both S(\) and ST ()\)
are inverses of (A — AI) restricted to complements of Null(A — AT),these inverses
are quite different.

Starting from (3.41), we subtract Au from each side to get,

(A= ADu(t) = —tEu(t) + (A(t) — Nu(t).
Now multiply both sides by the orthogonal projector I — @,

(I = Q)(A = Au(t) = —t(I — Q)Eu(t) + (A(t) — M) — Q)u(t).
to obtain from (3.46),

(I —Q)A— NI - Q)(I - Q)u(t)
= —t(I — Q)Eu(t) + (A(t) = M) (I — Q)u(?).

Therefore,

(I = Q)u(t) = ST(N) [-t(I — Q)Eu(t) + (A(t) = NI — Q)u(t)]-

We now write the vector u(t) as u(t) = Q(t)x for an arbitrary vector x,

(I-QRMx = ST\ [t - QEQ(t)z+
(A1) = NI = Q)Q(t)«].

The above equation yields an estimate of the norm of (I — Q)Q(t), which is the
sine of the angle between the invariant subspaces M = Ran(Q) and M(t) =

Ran(Q(t)).

Proposition 3.5 Assume that )\ is a simple eigenvalue of A. When the matrix A
is perturbed by the matrix tFE then the sine of the angle between the invariant
subspaces M and M (t) of A and A + tE associated with the eigenvalues A and
A(t) is approximately,

sin 0(M, M(t)) = [t]|ST(N)( — Q) EQ®)|
the approximation being of second order with respect to t.

Thus, we can define the condition number for invariant subspaces as being the
(spectral) norm of ST ().

The more interesting situation is when the invariant subspace is associated
with a multiple eigenvalue. What was just done for one-dimensional invariant
subspaces can be generalized to multiple-dimensional invariant subspaces. The
notion of condition numbers here will require some knowledge about generalized
solutions to Sylvester’s equations. A Sylvester equation is a matrix equation of
the form

AX — XR =B, (3.47)
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where Aisn x n,X and B are n x r and Ris r x r. The important observation
which we would like to exploit is that (3.47) is nothing but a linear system of
equations with n 7 unknowns. It can be shown that the mapping X — AX — X R
is invertible under the simple condition that the spectra of A and R have no point
in common.
We now proceed in a similar manner as for simple eigenvalues and write,

AU =UR

(A+tEYU(t) = U(t)R(t),
in which U and U (t) are n x r unitary matrices and R and R(t) are r X r upper
triangular. Subtracting U (¢) R from the second equation we obtain

AU(t) —U({)R = —tEU(t) + U(t)(R(t) — R).

Multiplying both sides by I — Q and using again the relation (3.44)),

(I -QAI-QU(t) - (I -QUR
= (I = Q)-tEU(t) + U(t)(R(t) — R)].
Observe that the operator
X—>{IT-QAI-Q)X — XR,

is invertible because the eigenvalues of (I — Q)A(I — Q) and those of R form
disjoint sets. Therefore, we can define its inverse which we call ST()), and we
have

(I-Q)U(t) =S\ (I - QEU(t) + (I - QUt)(R(t) — R)] .

As a result, up to lower order terms, the sine of the angle between the two sub-
spaces is |t][|ST(N) (I — Q) EU(t)||,a result that constitutes a direct generalization
of the previous theorem.

3.4 Localization Theorems

In some situations one wishes to have a rough idea of where the eigenvalues lie
in the complex plane, by directly exploiting some knowledge on the entries of the
matrix A. We already know a simple localization result that uses any matrix norm,
since we have

il < [|All
i.e., any eigenvalue belongs to the disc centered at the origin and of radius || A]|.
A more precise localization result is provided by Gerschgorin’s theorem.

Theorem 3.11 (Gerschgorin [73]]) Any eigenvalue \ of a matrix A is located in
one of the closed discs of the complex plane centered at a;; and having the radius

ji=n
> laij] -
j=1

J#i
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In other words,

j=n
VA €A(A), Fi suchthat [A—ail <Y lay|. (3.48)

Jj=1
J#i

Proof. The proof is by contradiction. Assume that (3.48)) does not hold. Then

there is an eigenvalue A such that forz = 1,2,...,n we have
Jj=n
N—aul > D il (3.49)
J=Lj#i

We can write A — A\ = D — A\ + H,where D = diag {a;;} and H is the
matrix obtained from A by replacing its diagonal elements by zeros. Since D — A
is invertible we have

A= XN =(D-X)(I+(D-X)"H). (3.50)

The elements in row i of the matrix C = (D — M)~ H are ¢;; = a;;/(a; — \)
for j # ¢ and ¢;; = 0, and so the sum of their moduli are less than unity by (3.49).
Hence

p((D = \I)""H) < |(D = AI) "' H]| o < 1

and as a result the matrix [ +C = (I + (D — AI)~! H) is nonsingular. Therefore,
from (3.30) (A — AI) would also be nonsingular which is a contradiction. O

Since the result also holds for the transpose of A,we can formulate a version
of the theorem based on column sums instead of row sums,

i=n
VA€ A(4), 3Fj suchthat [X—ay] <D layl. (3.51)
i
The discs defined in the theorem are called Gerschgorin discs. There are n Ger-
schgorin discs and their union contains the spectrum of A. The above results
can be especially useful when the matrix is almost diagonal, as is often the case
when an algorithm is used to diagonalize a matrix and the process is nearing con-
vergence. However, in order to better exploit the theorem, we need to show the
following additional result.

Theorem 3.12 . Suppose that there are m Gerschgorin discs whose union S is
disjoint from all other discs. Then S contains exactly m eigenvalues, (counted
with their multiplicities).
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Proof. Let A(t) = D + tH where 0 < t < 1, and D, H are defined in the proof
of Gerschgorin’s theorem. Initially when ¢ = 0 all eigenvalues of A(t) are at
the discs of radius O,centered at a;;. By a continuity argument, as ¢ increases to
1, the branches of eigenvalues \;(¢) will stay in their respective discs as long as
these discs stay disjoint. This is because the image of the connected interval [0,1]
by A;(t) must be connected. More generally, if the union of m of the discs are
disjoint from the other discs, the union S(¢) of the corresponding discs as ¢ varies,
will contain m eigenvalues. O

An important particular case is that when one disc is disjoint from the others then
it must contain exactly one eigenvalue.

There are other ways of estimating the error of a;; regarded as an eigenvalue
of A. For example, if we take as approximate eigenvector the i-th column of
the identity matrix we get the following result from a direct application of Kato-
Temple’s theorem in the Hermitian case.

Proposition 3.6 Let i be any integer between 1 and n and let X be the eigenvalue
of A closest to a;;,and i the next closest eigenvalue to a;;. Then if we call €; the
2-norm of the (n — 1)-vector obtained from the i — th column of A by deleting the

entry a;; we have

€2

A —ai| < 7——.
1 — ail

Proof. The proof is a direct application of Kato-Temple’s theorem. |

Thus, in the Hermitian case, the Gerschgorin bounds are not tight in general
since the error is of the order of the square of the vector of the off-diagonal el-
ements in a row (or column), whereas Gerschgorin’s result will provide an error
estimate of the same order as the 1-norm of the same vector (in the ideal situation
when the discs are disjoint). However, we note that the isolated application of
the above proposition in practice may not be too useful since we may not have an
estimate of |y — a;;|. A simpler, though less powerful, bound is |\ — a;| < ;.
These types of results are quite different in nature from those of Gerschgorin’s
theorem. They simply tell us how accurate an approximation a diagonal element
can be when regarded as an approximate eigenvalue. It is an isolated result and
does not tell us anything on the other eigenvalues. Gerschgorin’s result on the
other hand is a global result, in that it tells where all the eigenvalues are located,
as a group. This distinction between the two types of results, namely the (local)
a-posteriori error bounds on the one hand, and the global localizations results such
as Gerschgorin’s theorem on the other, is often misunderstood.

3.5 Pseudo-eigenvalues

As was seen in earlier sections, eigenvalues can be very sensitive to perturbations
for non-normal matrices. Roughly speeking pseudo-eigenvalues are sets of eigen-
values of all perturbed matrices within a radius of the original matrix. These sets
can be very large when the eigenvalue is ill-conditioned.
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One can define the spectrum of a matrix A as the set of values z for which the
resolvent R(z) has infinite 2-norm. The formal definition of the pseudo-spectrum
is derived from this by using a parameter e.

Definition 3.3 Ler A € C™"*". For € > 0 the e-pseudospectrum of A is the set
Ac(A) = {z € C||R(z)ll2 > ¢ '} (3.52)

Note that one can also say A.(A) = {z € C| [||R(2)]2] " < €}. Therefore, re-
calling that for a given matrix B, we have (||[B~}|2) ™! = 0yin(B), the smallest
singular value of B, we can restate the above definition as

A(A) ={z€C|omin(A—2zI) <e}. (3.53)

There is an interesting connection with perturbation theory via Proposition 3.4
First, it is easy to see that

z€A(A) iff Jv e C|[(A—zI)"tv|a > e tand |jv]s =1. (3.54)
If we define the vector t = (A — zI)~1v then clearly,

A—zI)t
IA =Dt _ Jolle _,
el Ik

Setting w = t/||t||2, we arrive at this characterization of the pseudo-spectrum:
z€A(A) iff Jw e C" ||[(A—zl)wl|z < eand ||w]2 = 1. (3.55)
The following proposition summarizes the above equivalences and adds one more.
Proposition 3.7 The following five properties are equivalent:
(i) z€ Ac(A).
(ii) Omin(A —2I) <e.
(iii) There exist a unit vector v such that ||(A — zI) " v|y > €L
(iv) There exist a unit vector w such that ||(A — zIw||s < e
(v) There exist a matrix E, with | E||o < € such that z is an eigenvalue of A—FE.
Proof. For the equivalences of (i), (ii), (iii), and (iv) see equations (3.33H3.33). To
show that (iv) <+ (v) we invoke Proposition B4 with r = (A — 21 )w. If (iv) holds
then the proposition implies that there is a matrix £ with [|E|l2 = ||r|| < € and
z € A(A—E). If (v) holds then there is a unit vector w such that (A—E)w = zw.

Hence, (A — zI)w = Ew and ||(A — zl)wl||2 = [[Ew|2 < [|E2|lw]2 < €
showing that (iv) holds. [
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Pseudo-spectra are useful to analyze transient behavior of operators when the
usual asymptotic analysis fails. Consider for example the powers of a given non-
normal matrix GG. Sequences of the form wy, = GFuwy are commonly studied when
considering so-called stationary iterative methods for solving linear systems. As
is well-known these methods amount to an iteration of the form

Tpp1 = Gy + f, (3.56)

starting with some initial guess xy. The above is a fixed point iteration which
attempts to reach the fixed point for which x,, = Gz, + f. The error ||z}, — x.||2
at the k-th step, satisfies:

ok - @.ll2 = [G*(@x — 20)ll2 < [GFllalle — wollz.  (3.57)

As a result the scheme will converge when p(G) < 1. We have seen in Chapter
1 (Corollary [ that for any matrix norm ||G*||*/* tends to p(G), so we may
infer that asymptotically, the above error behaves like ||z1, — .||z = p(G)*||zx —
Zoll2. While this a reasonable assumption, what is often observed in practice is
a long stage of big increases of the norm of the error before it finally reaches an
‘asymptotic’ phase where it declines steadily to zero. Such a behavior is only
characteristic of non-normal matrices. For normal matrices ||G* || cannot stray
too far away from its approximation p(G)*.

In other words, while the spectral radius gives a good idea of the asymptotic
behavior of G*, the spectrum of G does not help analyze its transient behavior.

This can be understood if one considers the power of G using the Taylor-
Dunford integral:

1<
GF=_— R(z)z*d 3.58
22/ ()2"d: (3:58)
where the Jordan curves around each distinct eigenvalue Ay, - - - , Ap,, were defined

at the end of Section3.1.3l In the normal case, R(z) can be expanded into a sum
of terms of the form

P p.
R(z) = !
@=3 1
Jj=1
and the above expression will simply integrate to G* = )\?Pj. In the non-
normal case, the situation is more complicated because the expansion of G will
now involve a nilpotent, see Theorem[[3lin Chapter 1. Writing G—zI = Y (\; —
zI)P; + D, itis possible to expand R(z):
p k l
_ P; (-1)
G-z = ! D) . 3.59
( Z) ;)\j—z<z(/\j—z)l J ( )

=0

Due to the nilpotence of the operators D; each inner sum is limited to the power
l; — 1 where [; is the index of A;. Substituting (3.59) into the integral (3.38)), and
writing
"k
F = oA = 3 ()M

m
m=0
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one arrives at the following expression:

min(k,l;—1) k!

ko k=l p. l
G _Z; l m)\j P;D!. (3.60)
j= =0

If the dominant eigenvalue is A\; then clearly the dominating term will be the one
corresponding to [ = 0 in the sum associated with j = 1. This term is \¥P;.
In other words, asymptotically, the sum will behave like \¥ P;. However, it is
clear that the intermediate terms, i.e., those of the first few powers, can grow to
become very large, due to binomial coefficient, as well as the nilpotent Dé. This
behavior is typically indicated by large pseudo-spectra. Indeed, the expansion
(B39) suggests that || R(z)||2 can be large when z is in a big region surrounding
A1 in the highly non-normal case.

PROBLEMS

P-3.1 If P is a projector onto M along S then P is a projector onto S* along M™.
[Hint: see proof of Proposition B.1].

P-3.2 Show that for two orthogonal bases Vi, V> of the same subspace M of C™ we have
Vil = VaVile V.

P-3.3 What are the eigenvalues of a projector? What about its eigenvectors?

P-3.4 Let P be a projector and V' = [v1,v2, - - - , U] a basis of Ran(P). Why does there
always exist a basis W = [w1, w2, - - - ,wm] of L = Null(P)~ such that the two sets form
a biorthogonal basis? In general given two subspaces M and S of the same dimension m,
is there always a biorthogonal pair V, W such that V' is a basis of M and W a basis of S?

P-3.5 Let P be a projector, V = [v1,v2, -+ , U] a basis of Ran(P), and U a matrix the
columns of which form a basis of Null(P). Show that the system U, V' forms a basis of
C". What is the matrix representation of P with respect to this basis?

P-3.6 Show that if two projectors P71 and P> commute then their product P = P P is a
projector. What are the range and null space of P?

P-3.7 Consider the matrix seen in Examplelm We perturb the term ass to —25.01. Give
an estimate in the changes of the eigenvalues of the matrix. Use any FORTRAN library or
interactive tool to compute the eigenvectors/ eigenvalues of the perturbed matrix.

P-3.8 Let

0(X,Y)=  max dist(u,Y).
z € X, [lz]l2=1

Show that
w(Ml,Mg) = max{&(Ml,Mg),é(Mg,Ml)} .

P-3.9 Given two subspaces M and S with two orthogonal bases V' and W show that
the singular values of V7TV are between zero and one. The canonical angles between
M and S are defined as the acutes angles whose cosines are the singular values o;,i.e.,
cosb; = o (VH W). The angles are labeled in descending order. Show that this definition
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does not depend on the order of the pair M, .S (in other words that the singular values of
WHV are identical with those of V7).

P-3.10 Show that the largest canonical angle between two subspaces (see previous prob-
lem) is 7 /2 iff the intersection of M and the orthogonal of S is not reduced to {0}.

P-3.11 Let P, P> be two orthogonal projectors with ranges M7 and Mo respectively of
the same dimension m < n/2 and let V;, 7 = 1, 2 be an orthogonal basis of M;,i = 1,2.
Assuming at first that the the columns of the system [V1, V2] are linearly independent what
is the matrix representation of the projector P; — P» with respect to the basis obtained
by completing Vi, V5> into a basis of C"? Deduce that the eigenvalues of P; — P are
=+ sin 0;,where the 6;’s are the canonical angles between M7 and M» as defined in the
previous problems. How can one generalize this result to the case where the columns of
[V1, V] are not linearly independent?

P-3.12 Use the previous result to show that
w(M1, MQ) = sin emaac

where 0,4, is the largest canonical angle between the two subspaces.
P-3.13 Prove the second equality in equation (3.33) of the proof of Theorem .10l

P-3.14 Let E = 2p™ + yg*™ where z Ly and p L ¢. What is the 2-norm of E? [Hint:
Compute E E and then find the singular values of E.]

P-3.15 Show that the condition number of a simple eigenvalue A of a matrix A does not
change if A is transformed by an orthogonal similarity transformation. Is this true for any
similarity transformation? What can be said of the condition number of the corresponding
eigenvector?

P-3.16 Consider the matrix obtained from that of example[3.7]in which the elements —1
above the diagonal are replaced by —ca, where « is a constant. Find bounds similar to those
in Example 3.7 for the condition number of the eigenvalue A\; of this matrix.

P-3.17 Under the same assumptions as those of Theorem[3.6] establish the improved error

e [lIrll5 — €
Slng(u7 U) S ﬁ

in which e = |\ — X|. [Hint: Follow proof of theorem[3.6]]

NOTES AND REFERENCES. Some of the material in this chapter is based on and [22]]. A broader
and more detailed view of perturbation analysis for matrix problems is the recent book by Stewart
and Sun [206]. The treatment of the equivalence between the projectors as defined from the Jordan
canonical form and the one defined from the Dunford integral does not seem to have been discussed
earlier in the literature. The results of Section [3.2.3] are simpler versions of those found in [TO1],
which should be consulted for more detail. The notion of condition number for eigenvalue problems
is discussed in detail in Wilkinson who seems to be at the origin of the notion of condition
numbers for eigenvalues and eigenvectors. The notion of pseudo-spectra and pseudo-eigenvalues has
been known for some time in the Russian literature, see for example, references in the book by S.
Godunov [76]], where they are termed spectral portraits. They were promoted as a tool to replace
the common spectra in practical applications in a number of papers by Trefethen au co-workers, see
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e.g., [2121 2131 213]. Kato in his seminal treatise [103]], also refers to pseudo-eigenvalues and pseudo-
eigenvectors but these are defined only in the context of sequences of operators, Ay: The pair wy, 2k
such that (A — zl)ukll2 = e, with lime,, = 0 is termed a sequence of pseudo-eigenvalue /
pseudo-eigenvector pair. |



Chapter 4

THE TOOLS OF SPECTRAL
APPROXIMATION

Many of the algorithms used to approximate spectra of large matrices consist of a
blend of a few basic mathematical or algorithmic tools, such as projection methods,
Chebyshev acceleration, deflation, shift-and-invert strategies, to name just a few. We
have grouped together these tools and techniques in this chapter. We start with some
background on well-known procedures based on single vector iterations. These have
historically provided the starting point of many of the more powerful methods. Once
an eigenvalue-eigenvector pair is computed by one of the single vector iterations, it
is often desired to extract another pair. This is done with the help of a standard
technique known as deflation which we discuss in some detail. Finally, we will present
the common projection techniques which constitute perhaps the most important of
the basic techniques used in approximating eigenvalues and eigenvectors.

4.1 Single Vector lterations

One of the oldest techniques for solving eigenvalue problems is the so-called
power method. Simply described this method consists of generating the sequence
of vectors AFvy where vy is some nonzero initial vector. A few variants of the
power method have been developed which consist of iterating with a few sim-
ple functions of A. These methods involve a single sequence of vectors and we
describe some of them in this section.

4.1.1 The Power Method

The simplest of the single vector iteration techniques consists of generating the
sequence of vectors AFuy where vy is some nonzero initial vector. This se-
quence of vectors when normalized appropriately, and under reasonably mild con-
ditions, converges to a dominant eigenvector, i.e., an eigenvector associated with
the eigenvalue of largest modulus. The most commonly used normalization is to
ensure that the largest component of the current iterate is equal to one. This yields
the following algorithm.

85
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ALGORITHM 4.1 (The Power Method.)

e ]. Start: Choose a nonzero initial vector vy.

e 2. [terate: for k = 1,2, ... until convergence, compute
1
v = —Avp_1
ag

where «y, is a component of the vector Avy_1 which has the maximum
modulus.

The following theorem establishes a convergence result for the above algo-
rithm.

Theorem 4.1 Assume that there is one and only one eigenvalue \1 of A of largest
modulus and that \1 is semi-simple. Then either the initial vector vy has no com-
ponent in the invariant subspace associated with A1 or the sequence of vectors
generated by Algorithm {1l converges to an eigenvector associated with \1 and
Q. converges to \i.

Proof. Clearly, v, is nothing but the vector A*vy normalized by a certain scalar
&y, in such a way that its largest component is unity. Let us decompose the initial
vector vy as

P
Vo = Z PiUO (41)

where the P;’s are the spectral projectors associated with the distinct eigenvalues
Xi,i = 1,...,p. Recall from (T.23) of Chapter 1, that AP, = P;(\;P; + D;)
where D; is a nilpotent of index [;, and more generally, by induction we have

AP, = P;(\;P; + D;)*. As aresult we obtain,

P 12
k k _ (N AL

= a—kA E Pivy = E A¥ Py = o E P;(M\I + D;) o

i=1 i=1 i=1

Hence, noting that D; = 0 because \; is semi-simple,

1 p
v = A Z (NP + D; )
1
= ( 100+ZP \iP; + D;) UO>
)\k
= Al Pivg + Z 7()\1]32 + Di)kpﬂ)o . “4.2)
Qap o )\1

The spectral radius of each operator (\; P;+D;) /A1 is less than one since |\; /1| <
1 and therefore, its k-th power will converge to zero. If P;vy = 0 the theorem is
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true. Assume that Pjvg # 0. Then it follows immediately from ([&.2)) that v, con-
verges to Py vy normalized so that its largest component is one. That o, converges
to the eigenvalue \; is an immediate consequence of the relation Avg_1 = avg
and the fact the sequence of vectors v converges. |

The proof suggests that the convergence factor of the method is given by

where Ao is the second largest eigenvalue in modulus. This ratio represents the
spectral radius of the linear operator )\%A restricted to the subspace that excludes
the invariant subspace associated with the dominant eigenvalue. It is a common
situation that the eigenvalues A; and Ao are very close from one another. As a
result convergence may be extremely slow.

Example 4.1. Consider the Markov Chain matrix Mark(10) which has been
described in Chapter 2. This is a matrix of size n = 55 which has two dominant
eigenvalues of equal modulus namely A = 1 and A = —1. As s to be expected the
power method applied directly to A does not converge. To obtain convergence we
can for example consider the matrix /+ A whose eigenvalues are those of A shifted
to the right by one. The eigenvalue A = 1 is then transformed into the eigenvalue
A = 2 which now becomes the (only) dominant eigenvalue. The algorithm then
converges and the convergence history is shown in Table d1l In the first column
of the table we show the iteration number. The results are shown only every 20
steps and at the very last step when convergence has taken place. The second
column shows the 2-norm of the difference between two successive iterates, i.e.,
||zi+1 —x;||2 at iteration ¢, while the third column shows the residual norm || Az —
p(x)z||2, in which p(x) is the Rayleigh quotient of 2 and « is normalized to have
a unit 2-norm. The algorithm is stopped as soon at the 2-norm of the difference
between two successive iterates becomes less than ¢ = 1077, Finally, the last
column shows the corresponding eigenvalue estimates. Note that what is shown is
simply the coefficient v, shifted by —1 to get an approximation to the eigenvalue
of Mark(10) instead of Mark(10) + I. The initial vector in the iteration is the
vector g = (1,1,...,1)7. O

If the eigenvalue is multiple, but semi-simple, then the algorithm provides
only one eigenvalue and a corresponding eigenvector. A more serious difficulty
is that the algorithm will not converge if the dominant eigenvalue is complex and
the original matrix as well as the initial vector are real. This is because for real
matrices the complex eigenvalues come in complex pairs and as result there will
be (at least) two distinct eigenvalues that will have the largest modulus in the
spectrum. Then the theorem will not guarantee convergence. There are remedies
to all these difficulties and some of these will be examined later.



88 Chapter 4

Iteration | Norm of diff. | Res. norm | Eigenvalue

20 0.639D-01 | 0.276D-01 | 1.02591636
40 0.129D-01 | 0.513D-02 | 1.00680780
60 0.192D-02 | 0.808D-03 | 1.00102145
80 0.280D-03 | 0.121D-03 | 1.00014720
100 0.400D-04 | 0.174D-04 | 1.00002078
120 0.562D-05 | 0.247D-05 | 1.00000289
140 0.781D-06 | 0.344D-06 | 1.00000040
161 0.973D-07 | 0.430D-07 | 1.00000005

Table 4.1: Power iteration with A = Mark(10) + 1.

4.1.2 The Shifted Power Method

In Example .1l we have been lead to use the power method not on the original
matrix but on the shiffed matrix A + I. One observation is that we could also
have iterated with a matrix of the form B(c) = A + o1 for any positive o and the
choice o = 1 is a rather arbitrary choice. There are better choices of the shift as
is suggested by the following example.

Example 4.2. Consider the same matrix as in the previous example, in which
the shift o is replaced by ¢ = 0.1. The new convergence history is shown in
Table[d.1] and indicates a much faster convergence than before. O

Iteration | Norm of diff. | Res. Norm | Eigenvalue

20 0.273D-01 | 0.794D-02 | 1.00524001
40 0.729D-03 | 0.210D-03 | 1.00016755
60 0.183D-04 | 0.509D-05 | 1.00000446
80 0.437D-06 | 0.118D-06 | 1.00000011
88 0.971D-07 | 0.261D-07 | 1.00000002

Table 4.1 Power iteration on A = Mark(10) + 0.1 x I.

More generally, when the eigenvalues are real it is not too difficult to find
the optimal value of o, i.e., the shift that maximizes the asymptotic convergence
rate, see Problem P-4[3] The scalars o are called shifts of origin. The important
property that is used is that shifting does not alter the eigenvectors and that it does
change the eigenvalues in a simple known way, it shifts them by o.

4.1.3 Inverse lteration

The inverse power method, or inverse iteration, consists simply of iterating with
the matrix A~! instead of the original matrix A. In other words, the general iterate
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vy, 1s defined by

v = iA—lvH . (4.3)
&3

Fortunately it is not necessary to compute the matrix A~! explicitly as this could
be rather expensive for large problems. Instead, all that is needed is to carry out
the LU factorization of A prior to starting the vector iteration itself. Subsequently,
one must solve an upper and lower triangular system at each step. The vector vy,
will now converge to the eigenvector associated with the dominant eigenvalue of
A~1. Since the eigenvalues of A and A~' are the inverses of each other while
their eigenvectors are identical, the iterates will converges to the eigenvector of
A associated with the eigenvalue of smallest modulus. This may or may not be
what is desired but in practice the method is often combined with shifts of origin.
Indeed, a more common problem in practice is to compute the eigenvalue of A
that is closest to a certain scalar o and the corresponding eigenvector. This is
achieved by iterating with the matrix (A — o 1)~!. Often, o is referred to as the
shift. The corresponding algorithm is as follows.

ALGORITHM 4.2 : Inverse Power Method

1. Start: Compute the LU decomposition A — ol = LU and choose an initial
vector vy.

2. Iterate: for k = 1,2,.. ., until convergence compute

1 1
vy = —(A—ol)toy_ 1 = —U 'Ly 4.4)
(a3 af
where o, is a component of the vector (A — 0’])711}]@_1 which has the
maximum modulus.

Note that each of the computations of y = L~ 'v;_; and then v = U 'y can
be performed by a forward and a backward triangular system solve, each of which
costs only O(n?/2) operations when the matrix is dense. The factorization in step
1 is much more expensive whether the matrix is dense or sparse.

If )\ is the eigenvalue closest to o then the eigenvalue of largest modulus
of (A — oI)~1 will be 1/(A\; — o) and so oy, will converge to this value. An
important consideration that makes Algorithm[Z.2]quite attractive is its potentially
high convergence rate. If \; is the eigenvalue of A closest to the shift o and Ao is
the next closet one then the convergence factor is given by

o |)\1—0'|

= -7 4.5

PI
which indicates that the convergence can be very fast if o is much closer to the
desired eigenvalue \; than it is to Ao.

From the above observations, one can think of changing the shift o occasion-
ally into a value that is known to be a better approximation of \; than the previous
o. For example, one can replace occasionally o by the estimated eigenvalue of A
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that is derived from the information that oy, converges to 1/(\; — o), i.e., we can
take
1

Onew = Oold T 047
k

Strategies of this sort are often referred to as shift-and-invert techniques.

Another possibility, which may be very efficient in the Hermitian case, is to
take the new shift to be the Rayleigh quotient of the latest approximate eigenvector
v. One must remember however, that the LU factorization is expensive so it is
desirable to keep such shift changes to a minimum. At one extreme where the
shift is never changed, we obtain the simple inverse power method represented by
Algorithm 2] At the other extreme, one can also change the shift at every step.
The algorithm corresponding to this case is called Rayleigh Quotient Iteration
(RQI) and has been extensively studied for Hermitian matrices.

ALGORITHM 4.3 Rayleigh Quotient Iteration

1. Start: Choose an initial vector vy such that ||vo||2 = 1.

2. Tterate: for k = 1,2, ..., until convergence compute
o = (Avg_1,v6-1),
1 _
Vk = f(A*(TkI) 1vk_1,
Qg

where o, is chosen so that the 2-norm of the vector vy, is one.

It is known that this process is globally convergent for Hermitian matrices, in
the sense that oy, converges and the vector vy, either converges to an eigenvector
or alternates between two eigenvectors. Moreover, in the first case oy, converges
cubically towards an eigenvalue, see Parlett [148]]. In the case where vy, oscillates,
between two eigenvectors, then ay, converges towards the mid-point of the corre-
sponding eigenvalues. In the non-Hermitian case, the convergence can be at most
quadratic and there are no known global convergence results except in the normal
case. This algorithm is not much used in practice despite these nice properties,
because of the high cost of the frequent factorizations.

4.2 Deflation Techniques

Suppose that we have computed the eigenvalue A; of largest modulus and its cor-
responding eigenvector u; by some simple algorithm, say algorithm (A), which
always delivers the eigenvalue of largest modulus of the input matrix, along with
an eigenvector. For example, algorithm (A) can simply be one of the single vector
iterations described in the previous section. It is assumed that the vector u; is
normalized so that ||uy||s = 1. The problem is to compute the next eigenvalue o
of A. An old technique for achieving this is what is commonly called a deflation
procedure. Typically, a rank one modification is applied to the original matrix so
as to displace the eigenvalue A\, while keeping all other eigenvalues unchanged.
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The rank one modification is chosen so that the eigenvalue A\, becomes the one
with largest modulus of the modified matrix and therefore, algorithm (A) can now
be applied to the new matrix to extract the pair Ao, us.

4.2.1 Wielandt Deflation with One Vector

In the general procedure known as Wielandt’s deflation only the knowledge of the
right eigenvector is required. The deflated matrix is of the form

A1 = A-— aulvH (46)

where v is an arbitrary vector such that v7u; = 1, and o is an appropriate shift.
It can be shown that the eigenvalues of A; are the same as those of A except for
the eigenvalue A\; which is transformed into the eigenvalue A\; — o.

Theorem 4.2 (Wielandt) The spectrum of A as defined by (£.0) is given by

A(Al) = {)\1 — 0, )\2,)\3, .o .,)\p} .

Proof. For i # 1 the left eigenvectors of A satisfy
(AH - 5”“{{)% = Aiw;

because w; is orthogonal to u1. On the other hand for ¢ = 1, we have Aju; =
()\1 — J)ul. l:[

The above proof reveals that the left eigenvectors ws, ..., w), are preserved
by the deflation process. Similarly, the right eigenvector w; is preserved. It is also
important to see what becomes of the other right eigenvectors. For each ¢, we seek
a right eigenvector of A; in the form of 4; = u; — v;u1. We have,

Ay = (A= ocuv™)(u; — yiuy)
= )\zuz — [’}/Z>\1 + O"UH’U,,L' — a’yi]ul. (47)

Taking 1 = 0 shows, as is already indicated by the proposition, that any eigen-
vector associated with the eigenvalue \; remains an eigenvector of Ay, associated
with the eigenvalue A\; — 0. For i # 1, it is possible to select ~y; so that the vector
1; is an eigenvector of A; associated with the eigenvalue A;,

’UH’LLZ'

~i(v) = 1—()\1——>\i)/<7 . 4.8)

Observe that the above expression is not defined when the denominator vanishes.
However, it is known in this case that the eigenvalue \; = A\; — o is already an
eigenvalue of Ay, i.e., the eigenvalue A\; — o becomes multiple, and we only know
one eigenvector namely .

There are infinitely many different ways of choosing the vector v. One of the
most common choices is to take v = w; the left eigenvector. This is referred to as
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Hotelling’s deflation. It has the advantage of . preserving both the left and right
eigenvectors of A as is seen from the fact that ; = 0 in this situation. Another
simple choice is to take v = u;. In the next section we will consider these different
possibilities and try to make a rational choice between them.

Example 4.3. As a test we consider again the matrix Mark(10) seen is Exam-
ple .11 For u; we use the vector computed from the shifted power method with
shift 0.1. If we take v to be a random vector and x( to be a random vector, then
the algorithm converges in 135 steps and yields A\ ~ 0.93715016. The stopping
criterion is identical with the one used in Example 1l If we take v = u; or
v=(1,1,...,1)T, then the algorithm converges in 127 steps. O

4.2.2 Optimality in Wieldant’s Deflation

An interesting question that we wish to answer is: among all the possible choices
of v, which one is likely to yield the best possible condition number for the next
eigenvalue A, to be computed? This is certainly a desirable goal in practice. We
will distinguish the eigenvalues and eigenvectors associated with the matrix A
from those of A by denoting them with a tilde. The condition number of the next
eigenvalue Az to be computed is, by definition,

Coni(5 = Ll

where 1z, w; are the right and left eigenvectors of A; associated with the eigen-
value \o. From what we have seen before, we know that w0, = wsy while gy =
ug — y2(v)u; where y2(v) is given by (£8). Assuming that ||ws||2 = 1 we get,

Cond(}s) = w 4.9)

where we have used the fact that (uq,w2) = 0. It is then clear from (4.9) that the
condition number of Ay is minimized whenever

Y2 (v) = uuy = cos O(uy, us) . (4.10)

Substituting this result in (£8]) we obtain the equivalent condition

AL — A
vHuy = (1— ! 2) U{IUQ, 4.11)
o

to which we add the normalization condition,
vy, = 1. 4.12)

There are still infinitely many vectors v that satisfy the above two conditions.
However, we can seek a vector v which is spanned by two specific vectors. There
are two natural possibilities; we can either take v in the span of (uq,w;) or in the
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span of (uy,us). The second choice does not seem natural since the eigenvector
ug 1s not assumed to be known; it is precisely what we are trying to compute.
However, it will illustrate an interesting point, namely that the choice v = wuy
may be nearly optimal in realistic situations. Thus, we will now consider the case
v € span{uy, us}. The other interesting case, namely v € span{uy, w; }, is left
as an exercise, see Exercise P-4[3

We can write v as v = awug + Sz in which z is obtained by orthonormalizing
ug against uy, i.e., z = 2/||2|l2, 2 = uz — u uguy. From we immediately
get a = 1 and from (@.I1) we obtain

)\1 — )\2 ’LL{IUQ

B:_i

o 2Hays

which leads to the expression for the optimal v,

A — A
Vopt = U1 — 2L 22 cotan O(ur,u9)z . (4.13)
a

We also get that ~
Cond(A2) = Cond(A2) sin O(uy, uz) . (4.14)

Interestingly enough, when (A2 — A1) is small with respect to o or when @ is close
to m/2 , the choice v = u is nearly optimal.

This particular choice has an interesting additional property: it preserves the
Schur vectors.

Proposition 4.1 Let uy be an eigenvector of A of norm 1, associated with the
eigenvalue \y and let Ay = A — Uulufl. Then the eigenvalues of Ay are \y =
M —oand \j = \j,j =2,3...,n. Moreover, the Schur vectors associated with
S\j,j =1,2,3...,n are identical with those of A.

Proof. Let AU = U R be the Schur factorization of A, where R is upper triangular
and U is orthonormal. Then we have

AU = [A = cuguU = UR — ouel! = U[R — gejel’].

The result follows immediately. |

Example 4.4. We take again as a test example the matrix Mark(10) seen is
Example 1] and Example 23] We use the approximate eigenvectors u; and us
as computed from Example 43l We then compute the left eigenvector w0y using
again the power method on the deflated and transposed matrix A” — ouf v. This
is done fpur times: first with v = w; = (1,1,...,1)7, then v = uy,

U= (17 _1a la _17 17 LR} (_1)”)T7

and finally v = a random vector. The condition numbers obtained for the second
eigenvalue for each of these choices are shown in Table See Problem P-4[7]
for additional facts concerning this example.
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v ‘ Cond(A2)
w1 1.85153958
Uy 1.85153958

(1,—1,...)7 | 9.87049400
Random | 2.27251031

Table 4.2 Condition numbers of the second eigenvalue for dif-
ferent v’s.

As is observed here the best condition numbers are obtained for the first two
choices. Note that the vector (1,1,...,1) is a left eigenvector associated with
the eigenvalue \;. Surprisingly, these best two condition numbers are equal. In
fact computing the inner product of u; and u, we find that it is zero, a result that
is probably due to the symmetries in the physical problem. The relation (.14)
indicates that in this situation the two condition numbers are equal to the condition
number for the undeflated matrix. |

4.2.3 Deflation with Several Vectors.

Letq1, g2, . .. q; be aset of Schur vectors associated with the eigenvalues A1, Az, ... A;.
We denote by @, the matrix of column vectors g1, ¢2, . .. ¢;. Thus,

Q] = [Q1a(J27--~7q]‘]

is an orthonormal matrix whose columns form a basis of the eigenspace associ-
ated with the eigenvalues Ay, A2, ... \;. We do not assume here that these eigen-
values are real, so the matrix (); may be complex. An immediate generalization
of Proposition [ 1lis the following.

Proposition 4.2 Let 33; be the j x j diagonal matrix
Ej = dlag (0'1, T2, ... O'j),

and Q; an n X j orthogonal matrix consisting of the Schur vectors of A associated
with Ay, ..., \j. Then the eigenvalues of the matrix

Aj =A-— QJEJQJH,
are 5\1 =\ —o;fori < jand 5\2 = \; for i>3. Moreover, its associated Schur
vectors are identical with those of A.
Proof. Let AU = U R be the Schur factorization of A. We have
AU = [A-Q;5;QY U =UR - Q;%;EY,
where E; = [e1, e2,. .. e;]. Hence
H
AU = U[R—EjEjEj ]

and the result follows. |
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Clearly, it is not necessary that ¥; be a diagonal matrix. We can for example
select it to be a triangular matrix. However, it is not clear how to select the non-
diagonal entries in such a situation. An alternative technique for deflating with
several Schur vectors is described in Exercise P-4[6

4.2.4 Partial Schur Decomposition.

It is interesting to observe that the preservation of the Schur vectors is analogous
to the preservation of the eigenvectors under Hotelling’s deflation in the Hermitian
case. The previous proposition suggests a simple incremental deflation procedure
consisting of building the matrix ); one column at a time. Thus, at the j-th step,
once the eigenvector %41 of A; is computed by the appropriate algorithm (A) we
can orthonormalize it against all previous g;’s to get the next Schur vector g;11
which will be appended to g; to form the new deflation matrix @);4. Itis a simple
exercise to show that the vector ¢; 11 thus computed is a Schur vector associated
with the eigenvalue \;;; and therefore at every stage of the process we have the
desired decomposition

AQ; = Q;Ry, (4.15)

where R; is some j X j upper triangular matrix.
More precisely we may consider the following algorithm, in which the suc-
cessive shifts o; are chosen so that for example o; = ;.

ALGORITHM 4.4 Schur Wielandt Deflation
Fort=0,1,2,...,57 — 1 do:

1. Define A; = A;—1 — ai,lqi,lqﬁl (initially define Ay = A) and compute
the dominant eigenvalue \; of A; and the corresponding eigenvector ;.

2. Orthonormalize u; against q1, g2, . . . ,q;—1 to get the vector g;.

With the above implementation, we may have to perform most of the compu-
tation in complex arithmetic even when A is real. Fortunately, when the matrix A
is real, this can be avoided. In this case the Schur form is traditionally replaced
by the quasi-Schur form, in which one still seeks for the factorization (£.2) but
simply requires that the matrix I2;, be quasi-triangular, i.e. one allows for 2 x 2
diagonal blocks. In practice, if A; 1 is complex, most algorithms do not compute
the complex eigenvector y;41 directly but rather deliver its real and imaginary
parts yr, yr separately. Thus, the two eigenvectors yr & iy associated with the
complex pair of conjugate eigenvalues A; 1, Aj 12 = A;j41 are obtained at once.

Thinking in terms of bases of the invariant subspace instead of eigenvectors,
we observe that the real and imaginary parts of the eigenvector generate the same
subspace as the two conjugate eigenvectors and therefore we can work with these
two real vectors instead of the (complex) eigenvectors. Hence if a complex pair
occurs, all we have to do is orthogonalize the two vectors yg, yr against all previ-
ous ¢;’s and pursue the algorithm in the same way. The only difference is that the
size of (); increases by two instead of just one in these instances.
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4.2.5 Practical Deflation Procedures

To summarize, among all the possible deflation procedures we can use to compute
the next pair \g, ug, the following ones are the most useful in practice.

1. v = w; the left eigenvector. This has the disadvantage of requiring the left
and right eigenvector. On the other hand both right and left eigenvectors of
Ay are preserved.

2. v = wp which is often nearly optimal and preserves the Schur vectors.

3. Use a block of Schur vectors instead of a single vector.

From the point of view of the implementation an important consideration is
that we never need to form the matrix A; explicitly. This is important because in
general A; will be a full matrix. In many algorithms for eigenvalue calculations,
the only operation that is required is an operation of the form y := Aj;z. This
operation can be performed as follows:

1. Compute the vector y := Ax;

2. Compute the scalar t = o v/ x;

3. Compute y :=y — t uj.

The above procedure requires only that the vectors u;, and v be kept in memory
along with the matrix A. It is possible to deflate A; again into A5 , and then into
Aj etc. At each step of the process we have

H

i -

Ai = Ai—l — O'ﬂﬂ}

Here one only needs to save the vectors w; and v; along with the matrix A. How-
ever, one should be careful about the usage of deflation in general. It should not
be used to compute more than a few eigenvalues and eigenvectors. This is espe-
cially true in the non Hermitian case because of the fact that the matrix A; will
accumulate errors from all previous computations and this could be disastrous if
the currently computed eigenvalue is poorly conditioned.

4.3 General Projection Methods

Most eigenvalue algorithms employ in one way or another a projection technique.
The projection process can be the body of the method itself or it might simply
be used within a more complex algorithm to enhance its efficiency. A simple
illustration of the necessity of resorting to a projection technique is when one uses
the power method in the situation when the dominant eigenvalue is complex but
the matrix A is real. Although the usual sequence ;1 = «;Ax; where a; is a
normalizing factor, does not converge a simple analysis shows that the subspace
spanned by the last two iterates x4, x; will contain converging approximations
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to the complex pair of eigenvectors. A simple projection technique onto those
vectors will extract the desired eigenvalues and eigenvectors, see Exercise P-4
for details.

A projection method consists of approximating the exact eigenvector u, by
a vector % belonging to some subspace K referred to as the subspace of approx-
imants or the right subspace, by imposing the so-called Petrov-Galerkin method
that the residual vector of @ be orthogonal to some subspace L, referred to as
the left subspace. There are two broad classes of projection methods: orthogonal
projection methods and oblique projection methods. In an orthogonal projection
technique the subspace L is the same as K. In an oblique projection method L is
different from /C and can be totally unrelated to it.

Not surprisingly, if no vector of the subspace K comes close to the exact
eigenvector u, then it is impossible to get a good approximation @ to u from C
and therefore the approximation obtained by any projection process based on /C
will be poor. If, on the other hand, there is some vector in U which is at a small
distance € from u then the question is: what accuracy can we expect to obtain?
The purpose of this section is to try to answer this question.

4.3.1 Orthogonal Projection Methods

Let A be an nxn complex matrix and X be an m-dimensional subspace of C". As
a notational convention we will denote by the same symbol A the matrix and the
linear application in C™ that it represents. We consider the eigenvalue problem:
find u belonging to C™ and A belonging to C such that

Au = Au. (4.16)

An orthogonal projection technique onto the subspace K seeks an approxi-
mate eigenpair \, 4 to the above problem, with X in C and @ in K, such that the
following Galerkin condition is satisfied:

Ai— i LK, (4.17)

or, equivalently, ~
(Aa — Mu,v) = 0, VveK. (4.18)
Assume that some orthonormal basis {v1, va, ..., v, } of K is available and
denote by V' the matrix with column vectors v1,vs, ..., v,,. Then we can solve

the approximate problem numerically by translating it into this basis. Letting
= Vy, (4.19)
equation becomes
(AVy—S\Vy,vj) =0, j=1,....m
Therefore, y and A must satisfy

By = My (4.20)
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with

B,, = VHAV.
If we denote by A, the linear transformation of rank m defined by A4,, = P AP,
then we observe that the restriction of this operator to the subspace K is repre-
sented by the matrix B,, with respect to the basis V. The following is a pro-

cedure for computing numerically the Galerkin approximations to the eigenval-
ues/eigenvectors of A known as the Rayleigh-Ritz procedure.

ALGORITHM 4.5 Rayleigh-Ritz Procedure:

ceey

[U1,V2, ..., Un)].
2. Compute B,, = VHEAV;

3. Compute the eigenvalues of B,, and select the k desired ones S\i,i =
1,2,...,k, where k < m.

4. Compute the eigenvectors y;,i = 1,...,k, of By, associated with ;\i,i =
1,...,k, and the corresponding approximate eigenvectors of A, u; = Vy;,
1=1,...,k.

The above process only requires basic linear algebra computations. The numeri-
cal solution of the m x m eigenvalue problem in steps 3 and 4 can be treated by
standard library subroutines such as those in EISPACK. Another important note
is that in step 4 one can replace eigenvectors by Schur vectors to get approximate
Schur vectors u; instead of approximate eigenvectors. Schur vectors y; can be ob-
tained in a numerically stable way and, in general, eigenvectors are more sensitive
to rounding errors than are Schur vectors.

We can reformulate orthogonal projection methods in terms of projection op-
erators as follows. Defining P,. to be the orthogonal projector onto the subspace
IC, then the Galerkin condition (@.17)) can be rewritten as

Po(Ai— i) =0, €C,ack

or, ~ ~
P Au=X i, AeC,uek. 4.21)

Note that we have replaced the original problem (4.16)) by an eigenvalue problem
for the linear transformation P, A | which is from K to K. Another formulation
of the above equation is

P AP G=Mi, AeC, aeC" (4.22)
which involves the natural extension

Ay, =P AP,
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of the linear operator A}, = P, A/ to the whole space. In addition to the eigen-
values and eigenvectors of A/ , A,, has zero as a trivial eigenvalue with every
vector of the orthogonal complement of X, being an eigenvector. Equation (21)
will be referred to as the Galerkin approximate problem.

The following proposition examines what happens in the particular case when
the subspace KC is invariant under A.

Proposition 4.3 If IC is invariant under A then every approximate eigenvalue /
(right) eigenvector pair obtained from the orthogonal projection method onto KC
is exact.

Proof. An approximate eigenpair A\, @ is defined by
P (Al — i) =0

where @ is a nonzero vector in K and A € C. If K is invariant under A then A
belongs to K and therefore P At = At. Then the above equation becomes

Ai—Xi=0,
showing that the pair \, @ is exact. O

An important quantity for the convergence properties of projection methods
is the distance ||(I — P, )ul|2 of the exact eigenvector u, supposed of norm I,
from the subspace /C. This quantity plays a key role in the analysis of projection
methods. First, it is clear that the eigenvector u cannot be well approximated from
K if ||(I — P, )ul|2 is not small because we have

[ —ullz > [|[(I = Pe)ul2-

The fundamental quantity ||(I — P, )ul|2 can also be interpreted as the sine of
the acute angle between the eigenvector v and the subspace K. It is also the gap
between the space K and the linear span of u. The following theorem establishes
an upper bound for the residual norm of the exact eigenpair with respect to the
approximate operator A,,, using this angle.

Theorem 4.3 Let v = ||P.A(I — P, )||2. Then the residual norms of the pairs
A, Pu and A, u for the linear operator A,, satisfy respectively

[(Am = A Peull2 < I =Py )ull (4.23)
(A — ADullz < VA2 +22 (T =P )uls - (4.24)

Proof. For the first inequality we use the definition of A4,, to get

[(Am = ADPeulls = [[Pe(A = A (u—= (I =Pclu)l
= [Pc(A=ADI = P)ulls
= [P(A=ADT = Pe)(I = Pe)ulle
MT =Pe)ul2 -

IN
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As for the second inequality we simply notice that
(A = Au = (A = ADPeu+ (A — A —Plu
= (An—A)P.u— NI —Pu.

Using the previous inequality and the fact that the two vectors on the right hand
side are orthogonal to each other we get

1(Am = ADull3 = [I(Am = ADPull3 + AP = Pe)ull3
(7 + AP = P )ull3

IN

which completes the proof. |

Note that y is bounded from above by [|A|2. A good approximation can
therefore be achieved by the projection method in case the distance ||(1 — P, )ul|2
is small, provided the approximate eigenproblem is well conditioned. Unfortu-
nately, in contrast with the Hermitian case the fact that the residual norm is small
does not in any way guarantee that the eigenpair is accurate, because of potential
difficulties related to the conditioning of the eigenvalue.

If we translate the inequality (£.23)) into matrix form by expressing everything
in an orthonormal basis V of K, we would write P,. = VV* and immediately
obtain

I(VHAV = ANV ullz < A[I(1 = VVT)ulz,
which shows that A can be considered as an approximate eigenvalue for B,, =
VH AV with residual of the order of (I — P, )u. If we scale the vector VHu to
make it of 2-norm unity, and denote the result by y,, we can rewrite the above
equality as

17— P )ulls
I(VEAV = Al < 71U =Pe)ullz
( Joullz <7

The above inequality gives a more explicit relation between the residual norm and
the angle between u and the subspace K.

= vy tanf(u, K).

4.3.2 The Hermitian Case

The approximate eigenvalues computed from orthogonal projection methods in
the particular case where the matrix A is Hermitian, satisfy strong optimality prop-
erties which follow from the Min-Max principle and the Courant characterization
seen in Chapter 1. These properties follow by observing that (A,,z,x) is the
same as (Ax, z) when z runs in the subspace K. Thus, if we label the eigenvalues
decreasingly, i.e., A\ > Ao > ... > \,, we have

A = max 7(7?’6 APz, 2) = max 7(P’CAJU’ Pr)
€K, z#£0 (I’, IL‘) €K, z#0 (lE, I)
(Az, )

4.25
ek a0 (z,x) (423)
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This is because P,.x = « for any element in K. Similarly, we can show that

A\p = min (Az,2)
wek,a#0 (2, )

More generally, we have the following result.

Proposition 4.4 The i—th largest approximate eigenvalue of a Hermitian matrix
A, obtained from an orthogonal projection
method onto a subspace K, satisfies,

~ A
A= max  min A% (4.26)
SCK  ze€S.a#0 (z,7)
dim(S)=1
As an immediate consequence we obtain the following corollary.
Corollary 4.1 Fori = 1,2,...,m the following inequality holds
N>\ (4.27)
Proof. This is because,
- A A
A= max  min (42, 7) < max min (A2, z) =\ .
SCK  wz€Saz#0 (x,) Scc*  zeSa#0 (x,x)
dim(S)=1 dim(S)=1
|

A similar argument based on the Courant characterization results in the fol-
lowing theorem.

Theorem 4.4 The approximate eigenvalue \; and the corresponding eigenvector
u; are such that

A= 7(/{“1’}“) = max (Az,7) .
(U1,1)  z€Ka#0 (z,x)
and fori > 1:
5, = Q) max (4, 2) (4.28)
(U, @;) 2€K,x7#0, (z,2)
ale=..=al! | z=0

One may suspect that the general bounds seen earlier for non-Hermitian ma-
trices may be improved for the Hermitian case. This is indeed the case. We begin
by proving the following lemma.

Lemma 4.1 Let A be a Hermitian matrix and u an eigenvector of A associated
with the eigenvalue \. Then the Rayleigh quotient 1 = pa(P.u) satisfies the
inequality

(1= Pojuli

|
A—pl < A= (4.29)
| 1A =M1 s
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Proof. From the equality
(A= XDPu=A=-XN)u—(IT—-P)u)=—(A=X)IT—-P.)u
and the fact that A is Hermitian we get,

(A= A)Pou,Pou)
PruPou) |

(A- A —Pyu, (I - Po)u)
(PICU7 ,P)Cu)

A—pl = |

The result follows from a direct application of the Cauchy-Schwarz inequality

O

Assuming as usual that the eigenvalues are labeled decreasingly, and letting
w1 = pa(Peui), we can get from (#.23) that

I =Py Jua 3

0< A =X A - <A - Nl = m—s
K 2

A similar result can be shown for the smallest eigenvalue. We can extend this
inequality to the other eigenvalues at the price of a little complication in the equa-
tions. In what follows we will denote by Qz the sum of the spectral projectors
associated with the approximate eigenvalues \1, Ao, ..., \;_1. For any given vec-
tor z, (I — Qt)x will be the vector obtained by orthogonalizing = against the
first 7 — 1 approximate eigenvectors. We consider a candidate vector of the form
(I- Qi)P,C u; in an attempt to use an argument similar to the one for the largest
eigenvalue. This is a vector obtained by projecting u; onto the subspace K and
then stripping it off its components in the first 7 — 1 approximate eigenvectors.

Lemma 4.2 Let Ql be the sum of the spectral projectors associated with the ap-
proximate eigenvalues A1, \a, . .., N\i_1 and define j1; = pa(x;), where

_ (I — ?Z)P}cul
H(I = Qi)Pruill2

%

Then

1Qiwill3 + (T — P )uall3 .

INi — il <A =Nl -
(I — Qi)Pruill3

(4.30)

Proof. To simplify notation we set @ = 1/||(I — Q;)P,.u;||2. Then we write,
and proceed as in the previous case to get,

INi = gl = [((A = NiD)zi, :))| = [((A = NI) (i — aug), (25 — auy))]
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Applying the Cauchy-Schwarz inequality to the above equation, we get
i = il = 1A = N2l — aull3 -
We can rewrite ||z; — au;||3 as
i = ausll3 = P = Qi)Peus — will3 i
a?|(1 = Qi) (Peui — ui) — Qauill3 -

Using the orthogonality of the two vectors inside the norm bars, this equality
becomes

s = awill3 = o (I = Q) (Pews — o)l + 1Qiusll3)
< a? (I = Pousld + 1 Quuil3) -
This establishes the desired result. O

The vector z; has been constructed in such a way that it is orthogonal to all previ-
ous approximate eigenvectors uy, . . . , 4;—1. We can therefore exploit the Courant
characterization ([.28)) to prove the following result.

Theorem 4.5 Let Q; be the sum of the spectral projectors associated with the
approximate eigenvalues A1, Az, ..., \i—1. Then the error between the i-th exact
and approximate eigenvalues \; and \; is such that

1Qiuill3 + (7 = PeJuill
(7 = Qi)Peuill3

Proof. By @28) and the fact that z; belongs to K and is orthogonal to the first
1 — 1 approximate eigenvectors we immediately get

0<X\i— X <[ A= NIz (4.31)

0<Ai— A <N — e
The result follows from the previous lemma. |

We point out that the above result is valid for ¢ = 1, provided we define Q1 =0.
The quantities || Q;u;||2 represent the cosines of the acute angle between u; and the
span of the previous approximate eigenvectors. In the ideal situation this should
be zero. In addition, we should mention that the error bound is semi-a-priori, since
it will require the knowledge of previous eigenvectors in order to get an idea of
the quantity || Q|2

We now turn our attention to the eigenvectors.

Theorem 4.6 Let v = ||P.A(I — P, )l2, and consider any eigenvalue \ of A
with associated eigenvector u. Let \ be the approximate eigenvalue closest to \
and § the distance between )\ and the set of approximate eigenvalues other than
\. Then there exists an approximate eigenvector u associated with \ such that

sin [0(u, @)] < /1 + g—j sin [0(u, K)] (4.32)
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Proof.

w sin ¢

v COS @

Figure 4.1: Projections of the eigenvector « onto K and then onto 4.

Let us define the two vectors
I—
v= Pyu and w = I=PJu_
[Peull2 (I =Py )ull2
and denote by ¢ the angle between u and P u, as defined by cos ¢ = ||Pul|2.
Then, clearly

(4.33)

U = v Ccos ¢ + wsin ¢,
which, upon multiplying both sides by (A — AI) leads to
(A= X)v cosp+ (A —A)w sing =0.

We now project both sides onto /C, and take the norms of the resulting vector to
obtain

[P (A—Av|ls cos¢ = ||Pe(A— A)w||s sing . (4.34)
For the-right-hand side note that
[Pe(A=Awl2 = [[P(A= AT = Pcwl
= |P.AI - Pw|2a < 7. (4.35)

For the left-hand-side, we decompose v further as
V=1 coSw + z sinw,

in which % is a unit vector from the eigenspace associated with 5\, z 1s a unit vector
in K that is orthogonal to u, and w is the acute angle between v and %. We then
obtain,
P(A—Xv = P.(A—N)[coswi + sinwz]
(A — A) cosw + P (A — M) zsinw. (4.36)
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The eigenvalues of the restriction of P,. (A—AT) to the orthogonal of 7 are S\j -,
for j =1,2,...m,and \; # \. Therefore, since z is orthogonal to %, we have

[P (A= AD)z||s > 60 (4.37)
The two vectors in the right hand side of (#38)) are orthogonal and by (#37),

|P(A— M)vl|2 |5\ — M2 cos? w + sinZwH”P,C (A= XD)z||3

> 62 sinw (4.38)

To complete the proof we refer to Figure 1l The projection of u onto  is
the projection onto u of the projection of u onto K. Its length is cos ¢ cos w and
as a result the sine of the angle 6 between w and @ is given by

sin?0 = 1—cos?¢ cos’w
= 1—cos’¢ (1—sin®w)
= sin?¢+sin’w cos? . (4.39)

Combining (@34), [@33), [@.38) we obtain that
. v
sinw cos ¢ < 5 sin ¢

which together with (4.39)) yields the desired result. |

This is a rather remarkable result given that it is so general. It tells us among
other things that the only condition we need in order to guarantee that a projection
method will deliver a good approximation in the Hermitian case is that the angle
between the exact eigenvector and the subspace K be sufficiently small.

As a consequence of the above result we can establish bounds on eigenval-
ues that are somewhat simpler than those of Theorem 4.3l This results from the
following proposition.

Proposition 4.5 The eigenvalues ) and X in Theorem B0 are such that

A=A < [|A — |2 sin 0(u, @) . (4.40)

Proof. We start with the simple observation that A — \ = ((A — A )@, @). Letting
a = (u,u) = cos(u, 1) we can write

A=A=((A=M)(a—au),u) =((A—=A)(u—aou),a— au)

The result follows immediately by taking absolute values, exploiting the Cauchy-
Schwarz inequality, and observing that ||& — aul|2 = sin 0(u, @). O
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4.3.3 Oblique Projection Methods

In an oblique projection method we are given two subspaces £ and K and seek
an approximation w € K and an element A\ of C that satisfy the Petrov-Galerkin
condition, ~

(A= X)a,v) =0 YvecL. (4.41)

The subspace K will be referred to as the right subspace and L as the left subspace.
A procedure similar to the Rayleigh-Ritz procedure can be devised by again trans-
lating in matrix form the approximate eigenvector « in some basis and expressing
the Petrov-Galerkin condition (#.41)). This time we will need two bases, one which
we denote by V for the subspace K and the other, denoted by W, for the subspace
L. We assume that these two bases are biorthogonal, i.e., that (v;, wj) = 0;j, Or

Wiy =1

where [ is the identity matrix. Then, writing u = V'y as before, the above Petrov-
Galerkin condition yields the same approximate problem as (#.20) except that the
matrix B,, is now defined by

B, = WHAV.

We should however emphasize that in order for a biorthogonal pair V, W to exist
the following additional assumption for £ and K must hold.

For any two bases V- and W of KC and L respectively,
det(WHV) £0 . (4.42)

In order to interpret the above condition in terms of operators we will define
the oblique projector Qé onto X and orthogonal to £. For any given vector x in
C", the vector Q€ is defined by

QéIEIC
x—QﬁxLE.

Note that the vector Qﬁx is uniquely defined under the assumption that no vector
of the subspace L is orthogonal to /C. This fundamental assumption can be seen
to be equivalent to assumption 42)). When it holds the Petrov-Galerin condition
(#18) can be rewritten as

QL (Al — Ait) = 0 (4.43)

or
L ~ I ~
Q . At = M\u .
Thus, the eigenvalues of the matrix A are approximated by those of A" = Q£A| K-

We can define an extension A4,, of A/ analogous to the one defined in the pre-
vious section, in many different ways. For example introducing Qﬁ before the
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occurrences of @ in the above equation would lead to A,,, = QéAQé. In order to
be able to utilize the distance ||(I — P, )u||2 in a-priori error bounds a more useful
extension is

= QFAP,

With this notation, it is trivial to extend the proof of Proposition 3] to the
oblique projection case. In other words, when /C is invariant, then no matter which
left subspace £ we choose, the oblique projection method will always extract exact
eigenpairs.

We can establish the following theorem which generalizes Theorem .3 seen
for the orthogonal projection case.

Theorem 4.7 Let v = || Q5 (A—XI)(I—P,)|2. Then the following two inequal-
ities hold:
[(Am = ADPeullz < v = Pe)ull (4.44)

|(Am, — AD)ull2 < VA2 +92 |(I = P)ull2 - (4.45)

Proof. For the first inequality, since the vector P,y belongs to IC we have Qﬁ P. =
P, and therefore

(A — X)Pu Q5 (A= A)Pu
Q5 (A= N)(Peu —u)

= —QY(A- (I -Po)u

Since (I — P,.) is a projector we now have
(A = M)Pou=—Q5(A— AI)(I —P.)(I — P, )u.

Taking Euclidean norms of both sides and using the Cauchy-Schwarz inequality
we immediately obtain the first result.
For the second inequality, we write

(A = ADu = (A — M) [Peu+ (I =Py
= (A~ ADPeu+ (A — AT —Pe)u

Noticing that A,,,(I — P,.) = 0 this becomes
(A, = MN)u = (A, = AN)Peu— NI — P )u

Using the orthogonality of the two terms in the right hand side, and taking the
Euclidean norms we get the second result. O

In the particular case of orthogonal projection methods, Qﬁ is identical with
P,., and we have || Q5|2 = 1. Moreover, the term 7 can then be bounded from
above by ||A||2. It may seem that since we obtain very similar error bounds for
both the orthogonal and the oblique projection methods, we are likely to obtain
similar errors when we use the same subspace. This is not the case in general.
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One reason is that the scalar  can no longer be bounded by || A||2 since we have
| Q]2 > 1 and || Q~||2 is unknown in general. In fact the constant  can be quite
large. Another reason which was pointed out earlier is that residual norm does not
provide enough information. The approximate problem can have a much worse
condition number if non-orthogonal transformations are used, which may lead to
poorer results. This however is only based on intuition as there are no rigorous
results in this direction.

The question arises as to whether there is any need for oblique projection
methods since dealing with oblique projectors may be numerically unsafe. Meth-
ods based on oblique projectors can offer some advantages. In particular they
may allow to compute approximations to left as well as right eigenvectors simul-
taneously. There are methods based on oblique projection techniques that require
also far less storage than similar orthogonal projections methods. This will be
illustrated in Chapter 4.

4.4 Chebyshev Polynomials

Chebyshev polynomials are crucial in the study of the Lanczos algorithm and
more generally of iterative methods in numerical linear algebra, such as the conju-
gate gradient method. They are useful both in theory, when studying convergence,
and in practice, as a means of accelerating single vector iterations or projection
processes.

4.4.1 Real Chebyshev Polynomials
The Chebyshev polynomial of the first kind of degree k is defined by
Cr(t) = cos[k cos™(t)] for —1<t<1. (4.46)

That this is a polynomial with respect to ¢ can be easily shown by induction from
the trigonometric relation

cos[(k + 1)0] + cos[(k — 1)8] = 2 cos § cos k0,

and the fact that C (¢) = ¢, Co(t) = 1. Incidentally, this also shows the important
three-term recurrence relation

Crpr(t) = 2tCH(t) — Cr_y (1) .

It is important to extend the definition (@.46) to cases where [¢| > 1 which is done
with the following formula,

Cr(t) = cosh[kcosh ' (t)], [t|>1. (4.47)

This is readily seen by passing to complex variables and using the definition
cosf = (e 4 e7%9) /2. As a result of @.47) we can derive the expression,

Cult) = % {(t Ve 1)k n (t Ve 1)’1 , (4.48)
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which is valid for |¢| > 1 but can also be extended to the case |t|<1. As a result,
one may use the following approximation for large values of k

1 k
G Z 3 (t+ N 1) for |t >1. (4.49)

In what follows we denote by P, the set of all polynomials of degree k. An
important result from approximation theory, which we state without proof, is the
following theorem.

Theorem 4.8 Let [, 3] be a non-empty interval in R and let v be any real scalar
such with vy > 3. Then the minimum

min max_|p(t)]
PEP,p(7)=1 t€[e,B]

is reached by the polynomial

Ck (1 + 22:—@)
Cp(t) = ——— L.
Cy (1 + 2}:—5)

For a proof see [26]. The maximum of Cj, for ¢ in [—1,1] is 1 and as a
corollary we have

1 1
min max t) = = .
PEPk, p(7)=1 t€la,p] p(t) |Cru(1+ Qg:—gﬂ 1Ck(255)I

in which p = (a + 5)/2 is the middle of the interval. Clearly, the results can be
slightly modified to hold for the case where v < «, i.e., when 7 is to the left of
the interval.

4.4.2 Complex Chebyshev Polynomials

The standard definition given in the previous section for Chebyshev polynomi-
als of the first kind, see equation (£44)), extends without difficulty to complex
variables. First, as was seen before, when ¢ is real and [t| > 1 we can use the al-
ternative definition, Cy(t) = cosh[k cosh™(#)], 1 < |t| . More generally, one
can unify these definitions by switching to complex variables and writing

Cr(2z) = cosh(k(¢), where cosh(() ==z.

Defining the variable w = €S, the above formula is equivalent to
Lok —k 1 -1
C’k(z):§[w +w™"] where z:ﬁ[uH—w ] (4.50)
We will use the above definition for Chebyshev polynomials in C. Note that the

equation 5 L(w 4+ w™') = 2 has two solutions w which are inverses of each other,
and as a result the value of C(z) does not depend on which of these solutions is
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chosen. It can be verified directly that the C;’s defined by the above equations are
indeed polynomials in the z variable and that they satisfy the three term recurrence

Ci11(2) =22CK(2) — Cr-1(2), (4.51)

with Cy(2) =1 and C1(2) = 2.

As is now explained, Chebyshev polynomials are intimately related to ellipses
in the complex plane. Let C, be the circle of center the origin and radius p. Then
the so-called Joukowski mapping

Tw) = Flw+

transforms C), into an ellipse of center the origin, foci —1, 1 and major semi-axis
1[p + p~*] and minor semi-axis 1|p — p~1|. This is illustrated in Figure @2

J(w)

w = pei®

2= wtw
LN
> Re(w) K > Re(z)

Figure 4.2: The Joukowski mapping transforms a circle into an ellipse in the com-
plex plane.

There are two circles which have the same image by the mapping J(w), one
with the radius p and the other with the radius p~*. So it suffices to consider those
circles with p > 1. Note that the case p = 1 is a degenerate case in which the
ellipse F(0, 1, —1) reduces the interval [—1, 1] traveled through twice.

One important question we now ask is whether or not a min-max result similar
to the one of Theorem@.8lholds for the complex case. Here the maximum of |p(z)]
is taken over the ellipse boundary and +y is some point not enclosed by the ellipse.
A 1963 paper by Clayton was generally believed for quite some time to have
established the result, at least for the special case where the ellipse has real foci
and vy is real. It was recently shown by Fischer and Freund that in fact Clayton’s
result was incorrect in general [60]. On the other hand, Chebyshev polynomials
are asymptotically optimal and in practice that is all that is needed.

To show the asymptotic optimality, we start by stating a lemma due to Zaran-
tonello, which deals with the particular case where the ellipse reduces to a circle.
This particular case is important in itself.
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Lemma 4.3 (Zarantonello) Let C(0, p) be a circle of center the origin and ra-
dius p and let v a point of C not enclosed by C(0, p). Then,

k
: p
min max 2) = | — , 4.52
PePk, p(v)=1 =z € C(0,p) Ip(=) <7|) “22
the minimum being achieved for the polynomial (z/v)*.
Proof. See reference [162] for a proof. O

Note that by changing variables, shifting and rescaling the polynomial, we
also get for any circle centered at ¢ and for any scalar « such that || > p,

k
min max )|p(z)| = < P )

pEPr p(v)=1 2z € C(cp Iy — ¢

We now consider the general case of an ellipse centered at the origin, with
foci 1, —1 and semi-major axis a, which can be considered as mapped by J from
the circle C(0, p), with the convention that p > 1. We denote by F, such an
ellipse.

Theorem 4.9 Consider the ellipse E, mapped from C(0,p) by the mapping J
and let v any point in the complex plane not enclosed by it. Then

k & _
P % < min max [p(z)] < Lp_k
|w7| pEPL p(v)=1 2z € E, |w’§ + w3y k|

k

(4.53)
in which w., is the dominant root of the equation J(w) = 7.

Proof. We start by showing the second inequality. Any polynomial p of degree &k
satisfying the constraint p(+y) = 1 can be written as,

& .
> =067
k .
20§V
A point z on the ellipse is transformed by .J from a certain w in C'(0, p). Similarly,

let w., be one of the two inverse transforms of + by the mapping, namely the one
with largest modulus. Then, p can be rewritten as

S0 &i(wi +w )
S & (wh +wy?)

Consider the particular polynomial obtained by setting £ = 1 and §; = 0 for

Jj 7k,

p(z) =

p(z) = (4.54)

‘o) wk 4wk
)= ——"
P w’,§+w§k
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which is a scaled Chebyshev polynomial of the first kind of degree k in the variable
z. It is not too difficult to see that the maximum modulus of this polynomial is
reached in particular when w = pew is real, i.e., when w = p. Thus,

ko o~k
prtp
max ()] = 2 TP
z€E, [wk + 1wy

which proves the second inequality.
To prove the left inequality, we rewrite (£.34) as

% k [ -
Wy 22j=0 & (wy™ +wy™)

and take the modulus of p(z),

k . 4
o Gt +wh )

k [
2j-o & (wy™ +wy™)

The polynomial of degree 2k in w inside the large modulus bars in the right-
hand-side is such that its value at w., is one. By Lemma 3] the modulus of
this polynomial over the circle C(0, p) is not less than (p/|w,|)?*, i.e., for any
polynomial, satisfying the constraint p(y) = 1 we have,

p
|

P =

—k 2k k

14 14 p
max [p(z)| > — = .
z€ B, |w- |~k ‘w7|2k |- ¥

This proves that the minimum over all such polynomials of the maximum modulus
on the ellipse E, is > (p/|w,|)*. O

The difference between the left and right bounds in (#:33) tends to zero as k
increases to infinity. Thus, the important point made by the theorem is that, for
large k, the Chebyshev polynomial

wh +wF w+w !
p*(Z) = T where z = ———
wh 4wy 2
is close to the optimal polynomial. In other words these polynomials are asymp-
totically optimal.

For a more general ellipse centered at ¢, and with focal distance d, a simple

change of variables shows that the near-best polynomial is given by

c%(Z;C>.

We should point out that an alternative result, which is more complete, has
been proven by Fischer and Freund in [59].
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PROBLEMS

P-4.1 What are the eigenvalues and eigenvectors of (A — 1)~ . What are all the shifts
o that will lead to a convergence towards a given eigenvalue \?

P-4.2 Consider a real nonsymmetric matrix A. The purpose of this exercise is to develop a
generalization of the power method that can handle the case where the dominant eigenvalue
is complex (i.e., we have a complex conjugate pair of dominant eigenvalues). Show that
by a projection process onto two successive iterates of the power method one can achieve
convergence towards the dominant pair of eigenvalues [Consider the diagonalizable case
only]. Without giving a proof, state what the rate of convergence toward the pair of complex
conjugate eigenvectors should be. Develop a simple version of a corresponding algorithm
and then a variation of the algorithm that orthonormalizes two successive iterates at every
step, i.e., starting with a vector x of 2-norm unity, the iterates are as follows,

&
112

Tnew 1= where & := Axoia — (AZold, Told)Told -

Does the orthogonalization have to be done at every step?

P-4.3 By following a development similar to that subsection 4.2, find the v vector for
Wielandt deflation, which minimizes the condition number for A;, among all vectors in
the span of u;, w;. Show again that the choice v = w; is nearly optimal when A1 — A2 is
small relative to o.

P-4.4 Consider the generalized eigenvalue problem Az = ABx. How can one generalize
the power method? The shifted power method? and the shift-and-invert power method?

P-4.5 Assume that all the eigenvalues of a matrix A are real and that one uses the shifted
power method for computing the largest, i.e., the rightmost eigenvalue of a given matrix.
What are all the admissible shifts, i.e., those that will lead to convergence toward the right-
most eigenvalue? Among all the admissible choices which one leads to the best conver-
gence rate?

P-4.6 Consider a deflation technique which would compute the eigenvalues of the matrix
A =(I-Q;Q)A

in which Q; = [q1,q2, ..., q;] are previously computed Schur vectors. What are the
eigenvalues of the deflated matrix A;? Show that an eigenvector of A; is a Schur vector
for A. The advantage of this technique is that there is no need to select shifts o;. What are
the disadvantages if any?

P-4.7 Show that in example .4 any linear combination of the vectors «; and w; is in fact
optimal.

P-4.8 Nothing was said about the left eigenvector @, of the deflated matrix A; in Sec-
tion 4.2. Assuming that the matrix A is diagonalizable find an eigenvector w; of A; asso-
ciated with the eigenvalue A\; — o. [Hint: Express the eigenvector in the basis of the left
eigenvectors of A.] How can this be generalized to the situation where A is not diagonal-
izable?

P-4.9 Assume that the basis V' of the subspace K used in an orthogonal projection pro-
cess is not orthogonal. What matrix problem do we obtain if we translate the Galerkin
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conditions using this basis. Same question for the oblique projection technique, i.e., as-
suming that V, W does not form a bi-orthogonal pair. Ignoring the cost of the small m-
dimensional problems, how do the computational costs compare? What if we include the
cost of the orthonormalization (by modified Gram-Schmidt) for the approach which uses
orthogonal bases (Assuming that the basis V' is obtained from orthonormalizing a set of m
basis vectors).

P-4.10 Let A be Hermitian and let @;, @; two Ritz eigenvectors associated with two dif-
ferent eigenvalues \;, A; respectively. Show that (A, 4;) = A;0s;.

P-4.11 Prove from the definition (4.50) that the C},’s are indeed polynomials in 2z and that
they satisfy the three-term recurrence {31).

NOTES AND REFERENCES. Much of the material on projection methods presented in this chapter is
based on the papers and the section on deflation procedures is from and some well-
known results in Wilkinson [223]]. Suggested additional reading on projection methods are Chatelin
[22] and Krasnoselskii et al. [I10]. A good discussion of Chebyshev polynomials in the complex
plane is given in the book by Rivlin [T62]. Deflation for non Hermitian eigenvalue problems is not
that much used in the literature. I found Schur-Wielandt and related deflation procedures (based on
Schur vectors rather than eigenvectors) to be essential in the design of robust eigenvalue algorithms.
Theorem (.6} has been extended to the nonsymmetric case by Stewart [204]. |



Chapter 5

SUBSPACE ITERATION

Among the best known methods for solving large sparse eigenvalue problems, the
subspace iteration algorithm is undoubtedly the simplest. This method can be viewed
as a block generalization of the power method. Although the method is not com-
petitive with other projections methods to be covered in later chapters, it still is one
of the most important methods used in structural engineering. It also constitutes a
good illustration of the material covered in the previous chapter.

5.1 Simple Subspace lteration

The original version of subspace iteration was introduced by Bauer under the
name of Treppeniteration (staircase iteration). Bauer’s method consists of starting
with an initial system of m vectors forming an n x m matrix Xo = [z1, ..., 2]
and computing the matrix

X, = AFX,. (5.1)

for a certain power k. If we normalized the column vectors separately in the
same manner as for the power method, then in typical cases each of these vectors
will converge to the same eigenvector associated with the dominant eigenvalue.
Thus the system X, will progressively loose its linear independence. The idea of
Bauer’s method is to reestablish linear independence for these vectors by a process
such as the LR or the QR factorization. Thus, if we use the more common QR
option, we get the following algorithm.

ALGORITHM 5.1 Simple Subspace Iteration
1. Start: Choose an initial system of vectors Xog = [x1, ..., Tp].
2. Tterate: Until convergence do,
(a) Compute X, :== AXj_1

(b) Compute X}, = QR the QR factorization of Xy, and set X}, := Q.

115



116 Chapter 5

This algorithm can be viewed as a direct generalization of the power method
seen in the previous Chapter. Step 2-(b) is a normalization process that is much
similar to the normalization used in the power method, and just as for the power
method there are many possible normalizations that can be used. An important
observation is that the subspace spanned by the vectors X, is the same as that
spanned by A*X,. Since the cost of 2-(b) can be high, it is natural to orthonor-
malize as infrequently as possible, i.e. to perform several steps at once before
performing an orthogonalization. This leads to the following modification.

ALGORITHM 5.2 Multiple Step Subspace Iteration

1. Start: Choose an initial system of vectors X = [x1,...,%;,]. Choose an
iteration parameter iter.

2. Tterate: Until convergence do:

(a) Compute Z := A'¢r X
(b) Orthonormalize Z. Copy resulting matrix onto X .

(c) Select a new iter.

We would like to make a few comments concerning the choice of the param-
eter iter. The best iter will depend on the convergence rate. If iter is too large
then the vectors of Z in 2-(a) may become nearly linear dependent and the orthog-
onalization in 2-(b) may cause some difficulties. Typically an estimation on the
speed of convergence is used to determine iter. Then iter is defined in such a way
that, for example, the fastest converging vector, which is the first one, will have
converged to within a certain factor, e.g., the square root of the machine epsilon,
i.e., the largest number e that causes rounding to yield 1 + ¢ == 1 on a given
computer.

Under a few assumptions the column vectors of X}, will converge “in direc-
tion” to the Schur vectors associated with the m dominant eigenvalues A1, ..., A,.
To formalize this peculiar notion of convergence, a form of which was seen in the
context of the power method, we will say that a sequence of vectors x; converges
essentially to a vector x if there exists a sequence of signs e’’* such that the se-
quence €%z, converges to .

Theorem 5.1 Let A1, ..., \,, be the m dominant eigenvalues of A labeled in de-
creasing order of magnitude and assume that |X\;| > |Nit1|,1 < i < m. Let
Q = [q1,92, - - -, @m]| be the Schur vectors associated with \;,j = 1,...,m and
P; be the spectral projector associated with the eigenvalues \1, ..., \;. Assume
that

rank (P;[zy, 22, ..., x;]) =4, for i=1,2,...,m.

Then the i-th column of X}, converges essentially to q;, fori =1,2,--- ;m.
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Proof. Let the initial system X be decomposed as
Xo=PnXo+ (I—Pn)Xo=QG1 + WG,y (5.2)

where W is an n X (n — m) matrix whose column vectors form some basis of the
invariant basis (I — P,,)C™ and G is a certain (n — m) x m matrix. We know
that there exists an m x m upper triangular matrix R; and an (n —m) X (n —m)
matrix R> such that

AQ =QR,, AW =WR,. (5.3)

The column vectors of X, are obtained by orthonormalizing the system Z;, =
Ak X,. By assumption, the system of column vectors P, X is nonsingular and
therefore (i1 is nonsingular. Applying (3.3) we get

AFX, = AM[QG, + WGy
= QRYG,+WRLEG,
[Q + WREGLGy Ry R Gy

The term By = WR5GoG7'R™* tends to zero because the spectral radius of
Ry ' isequal to 1/|\,,| while that of Ry is |\, 1]. Hence,

AP XoGTt = [Q + Ei]RY
with limy_, o, E, = 0. Using the QR decomposition of the matrix @ + E¥,
Q+ Ep = QWRW,

we obtain
ARXoGrt = QW R RE,

Since E}, converges to zero, it is clear that R(*) converges to the identity matrix
while Q®) converges to @, and because the QR decomposition of a matrix is
unique up to scaling constants, we have established that the Q matrix in the QR
decomposition of the matrix AkXoGl_1 converges essentially to ). Notice that
the span of A’“X()Gl_1 is identical with that of Xj. As a result the orthogonal
projector Py(,f ) onto span{ X} } will converge to the orthogonal projector P, onto
span{Q}.

In what follows we denote by [X]; the matrix of the first j vector columns
of X. To complete the proof, we need to show that each column converges to
the corresponding column vector of ). To this end we observe that the above
proof extends to the case where we consider only the first 7 columns of Xy, i.e.,
the j first columns of X} converge to a matrix that spans the same subspace as
[Q],. In other words, if we let P; be the orthogonal projector on span{[Q];}
and P](k) the orthogonal projector on span{[X}];} then we have P](k) — P; for
7 = 1,2,...,m. The proof is now by induction. When j = 1, we have the

) )

obvious result that the first column of X} converges essentially to ¢;. Assume
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that the columns 1 through 1 of X}, converge essentially to ¢y, ..., q;. Consider
the last column a: 1 of [Xk]i+1, which we express as

k k k k k k k
o5y = PBiallh = P, 4 (PLE PO,

7 (2

The first term in the right hand side is equal to zero because by construction xz(f_)l

is orthogonal to the first ¢ columns of [X];;1. Hence,

(0 _ (pF) _ pk), ()

Tivas = i i JTita

and by the above convergence results on the projectors P](k) we see that Pl(_]ﬁ)l -

P}k) converges to the orthogonal projector onto the span of the single vector g; 1.

This is because
Pisr1— Pi = Qi1Qly 1 — QiQ)" = qijaalty -

. k k
Therefore we may write acg +)1 = qiﬂqﬁrlxg +)1 + €}, where ¢;, converges to zero.

Since the vector x( ) is of norm unity, its orthogonal projection onto ¢;41 will
essentially converge to Giv1- O

The proof indicates that the convergence of each column vector to the cor-
responding Schur vector is governed by the convergence factor |\;+1/\;|. In ad-
dition, we have also proved that each orthogonal projector Pi(k) onto the first ¢
c