Appendix A. Compactness in Metric Spaces.

In the textbook by Walter Rudin, Principles of Mathematical Analysis, 3rd edition, 1976,
the compactness is defined by the following Heine-Borel property: A subset K in a metric space
X is compact, if

K C UGO‘ with open G, = K C U Gq; for some finite subfamily of {G.}.
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Theorem A1l. The Heine-Borel property is equivalent to the following Weierstrass property:
every infinite subset £ C K has a limit point in K.

Proof. The Weierstrass property follows from the Heine-Borel property by Theorem 2.37 in the
textbook. It suffices to show that if the Heine-Borel property fails, then the Weierstrass property
fails as well. Therefore, suppose that

K C U G, with open G, without a finite subcover.
«

Since (), are open,
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Vpe K, 3dr(p) € {1,

Pick p; € K with the maximal possible r(p;), and then by induction, for k = 2,3, ...,

pe € K\ (Uﬁ@ﬁ(%))
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with the maximal possible r(pg). The subset E := {p1,pa,...,Pn,... } C K is infinite, because
otherwise {Br(pj)(pj) C Gaj} would be a finite subcover of K, and correspondingly, {Gaj} would
also be a finite subcover of K.

We claim that the set £ has no limit point. Suppose otherwise: let py € K be a limit point of
E. Consider two possible cases.

(i) po € By(py)(pr) for some k. Since all these balls are open, we have py € Be(po) C By, (k)
for some € > 0. By constructions, all the point p; with j > k + 1 lie outside of B, ,)(px) , hence
B.(py) can only contain a finite number of point p;, and by Theorem 2.20, py cannot be a limit
point of F.

(ii) po & Br(p,)(pr) for all k. Once again by construction, we must have 0 < r(py) < r(py) for
all k. Then d(po,pr) > r(pr) > r(po) > 0, ie. pip & Brpy)(po) for all k, and py is not a limit
point of F.

In any case, the Weierstrass property fails for the infinite set E, which completes the proof. O

This theorem can be re-formulated in the following form. In one direction, this statement is
contained in Theorem 3.6(a) in the textbook.

Theorem A2. A subset K of a metric space (X,d) is compact if and only if every sequence
{pn} C K contains a convergent subsequence in K.
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We give one more convenient criterion of compactness.

Definition A3. A subset E of a metric space (X,d) is totally bounded if Ve > 0, there
exists a finite subset {p1,p2,...,pn} C E such that

E C | B:(p))

j=1

Theorem A4. A subset K of a metric space (X,d) is compact if and only if it is (i) complete
and (i) totally bounded.

Proof. Let K be a compact subset of X. The completeness of K is contained in Theorem
3.11(b) in the textbook. Alternatively, one can use the above Theorem Al in the following way.
Let {p,} be a Cauchy sequence in K. If the set E := {p,} C K is finite, then we obviously have
P = Pn, = Pn, = -+ for some sequence of natural indices n; < ny < ---. In this case trivially
Pn; — p as j — oo. If the set F is infinite, then by Theorem Al it has a limit point p € K. By
Theorem 3.2(d), the set £ contains a convergent subsequence p,, — p € K as j — oo, so that this
property holds true in any case. Next, since {p,} is a Cauchy sequence, Ve > 0, AN = N(g) > 0
such that d(pp,pm) <e forall m,n > N. Then

d(pn,p) < d(pp,Pn;) + d(pn,,p) < €+ d(pn,,p), Vn, n; > N.

By taking limit as j — oo, we get d(p,,p) < e, Yn > N. This implies that {p,} converges to p,
so that K is complete.

Compact sets K must be totally bounded, because otherwise we get infinite set F := {p,} C K
with d(pj,pr) > € >0, Vj # k. Then E’ is empty, in contradiction to Theorem Al.

Now suppose that K is complete and totally bounded, and let E be an infinite subset of K.
Starting from Ej := F and using total boundedness, we can define a decreasing sequence of infinite
sets

E, = E,_ 1N Bym(pn) for some distinct points p, € K, n=12,....

By this construction, we have

1
d(Pm,pn) < —, ¥Ym >n.
n

This implies that {p, } is a Cauchy sequence. By completeness, p, — p € E’, so that E’ is nonempty.
By Theorem A1, the subset K is compact in (X, d). O



