Math 8602. February 24, 2016. Midterm Exam 1. Problems and Solutions.

Problem 1. Let f, f1, f2, - be Lebesque integrable functions on R™, such that

/|fk—f|—>0 as k — oo. (1)
Show that
(a)
sup/ | fr] < C = const < oo;
k
(b)
sup / |fx| = 0 as N — oc.
k

{IfrI=N}
Proof. 1(a). From (1) it follows that for every € > 0, there exists a constant K, such that

/|fk—f|§5 for every k> K..

In particular, using this property with & = 1, we conclude that the sequence [ |fx — f| is bounded,
therefore,

sup 1< [171+ [ 15 f1 < € = const < o

1(b). Further, for each k = 1,2, ..., the Lebesgue measure of the set Ejy n := {|fx| > N},

m(EpN) = / 1S%‘ / ’fk|§%-

Ex N Ex N

By absolute continuity of the Lebesque integral,

sup/ |fl =0 as N — co.
k

Eg,~n
and for each k =1,2,...,

/\fk]—>0 as N — oo.

Ep N

Therefore, for each € > 0,
imsup swp [ [l <timsup swp ([ 5= s+ [ 1r1) e
N—o0 k N—oo k>K.
Ek,N Ek,N

Since £ > 0 is arbitrary, the property (b) follows.

Problem 2. Let f, fi, fa,--- be Lebesque integrable functions on a unit ball B C R", such that
fi = f a.e. as k — oco. In the previous problem, where all the integrals are taken over B, show that
from (a) and (b) it follows (1). Verify whether or not this is true with R™ in place of B.



Proof. For fixed N > 1,
f,gN) :==min {|fx], N} — F) =min {|f|, N} ae in B as k— oo.

By the dominated convergence theorem,
/]f,EN)—f(N)\%O as k— oo, and /]f(N)—f\—>0 as N — oo.

Note that we always have

= L < IEN = PO e 1 f ™ — g 1 £ =

From (b) it follows that

Sgp/lfk—flzsgp/Ifk—Nlésgp/lfkl — 0 as N — oo.
Ex,N Ep N

Therefore,

limsup/]fk—flgf\f(m—ﬂ—l—sup / |fu| = 0 as N — oc.
k

k—o0
Eg N

This brings us to (1). Note that the property (a) was not used in the proof. In fact, it follows
automatically from (b), because

|fe <|fel 1Ig,n + N

For R™ in place of B, the properties (a) and (b) do not imply (1): in the case n = 1,

1
fr 1:%'1(0,1:) — f=0 as k— o0, with / |fe — f|=1 forall k.
Problem 3. Let F be a real-valued absolutely continuous function on [0,1] and let its derivative
F' =0 a.e. on aset E C[0,1]. Show that the Lebesgue measure m(F(E)) = 0.

Proof. Since F is absolutely continuous on [0, 1], by Theorem 3.35, there exists f := F’ € L'([0,1])
a.e. By regularity of the Borel measure dv := |f|dm (Theorem 1.18 in the textbook, or Theorem I1-6
in lecture notes), for an arbitrary € > 0 there is an open set G O E such that v(G) < v(E) + . Here
we assume that f is extended as f =0 on R\ [0, 1].

Since f = 0 a.e. on E, we have v(E)=0, so that v(G) < . Moreover, an open set G is represented
as at most countable union of open intervals /;. Therefore,

m(F(E) Cm(F(@) < Ym(F() <3 [ 1flde= [17]ds = v(G) <=
J I G

and since € > 0 is arbitrary, we must have m(F(E)) = 0.

Problem 4. Let (X, 7T) be a topological space, and let A be dense in X, i.e. A = X. Then for
any open set U, we have U = U N A.

Proof. Note that theset V := U\U N 4 isopen, and VNA = ). ThenalsoV = VNX =VNA =),
which means U C U N A4, hence U C U N A. The opposite inclusion is trivial, because UN A C U.




