
Math 8602: REAL ANALYSIS. Spring 2016

Homework #5. Problems and Solutions.

#1. Let f be a function in L1(R1). Show that∫
R1

f(x) sin(ωx) dx → 0 as ω → ∞.

Proof. This problem is very similar to Problem 3 on Final Exam in the previous semester. By Theorem 2.26,
every function f ∈ L1(R1) can be approximated in L1(R1) by functions g ∈ C0(R1) – continuous functions with
compact support. In turn, by the Dominated Convergence Theorem, every function g ∈ C0(R1) can be approximated
in L1(R1) by functions

gh(x) :=
1

h

x+h∫
x

g(y) dy ∈ (C1 ∩ C0)(R1),

i.e. the L1-norms ||gh − g||1 → 0 as h ↘ 0. Therefore, ∀f ∈ L1(R1) and ∀ε > 0, ∃gh ∈ (C1 ∩ C0)(R1) with
||gh − f ||1 ≤ ε. We can write

I(ω) :=

∫
R1

f(x) sin(ωx) dx = I1(ω) + I2(ω),

where

I1(ω) :=

∫
R1

[
f(x)− gh(x)

]
sin(ωx) dx, |I1(ω)| ≤ ||gh − f ||1 ≤ ε,

I2(ω) :=

∫
R1

gh(x) sin(ωx) dx, |I2(ω)|
(by parts)

=
1

ω
·

∣∣∣∣∣
∫
R1

g′h(x) cos(ωx) dx

∣∣∣∣∣ ≤ 1

ω
· ||g′h||1 → 0 as ω → ∞.

Then lim sup
ω→∞

|I(ω)| ≤ ε, and since ε > 0 can be taken arbitrarily small, we get I(ω) → 0 as ω → ∞.

#2. Let f(x) ∈ L1
loc(R) and

f
(x+ y

2

)
≤ f(x) + f(y)

2
for all x, y ∈ R.

Show that f is convex on R.

Proof. This statement is true under a more general assumption that |f | < ∞ a.e. The convexity of f means that
a portion of the graph of y = f(x) between two arbitrary point x1 and x2 in R lies below the segment connecting
the point (x1, f(x1)) and (x2, f(x2) in R2. By a linear transform, the proof of this fact is reduced to the case
x1 = −1, x2 = 1, and f(−1) = f(1) = 0; in this case we must have f(x) ≤ 0 on [−1, 1].

Suppose otherwise, i.e. f(x0) ≥ a = const > 0 for some x0 ∈ (−1, 1). Take a small h0 > 0, such that
[x0 − h0, x0 + h0] ⊆ [−1, 1]. By our assumptions,

0 < a ≤ f(x0) ≤
f(x0 + h) + f(x0 − h)

2
, ∀h ∈ [−h0, h0].

For such h, either f(x0 + h) ≥ a or f(x0 − h) ≥ a. In other words,

[−h0, h0] = A ∪ (−A), where A := {h ∈ [−h0, h0] : f(x0 + h) ≥ a}.

Then the set E(a) := [−1, 1] ∩ {f ≥ a > 0} contains x0 +A, and its Lebesgue measure

m
(
E(a)

)
≥ m(A) =

1

2
·
(
m(A) +m(−A)

)
≥ 1

2
·m

(
A ∪ (−A)

)
=

1

2
·m

(
[−h0, h0]

)
= h0 > 0.

1



On the other hand,

E(a) = E−(a) ∪ E+(a), where E−(a) := E(a) ∩ [−1, 0], E+(a) := E(a) ∩ [0, 1],

so that m
(
E−(a)

)
+m

(
E+(a)

)
= m

(
E(a)

)
≥ h0 > 0. We can assume that m

(
E−(a)

)
≥ h0/2 (replacing f(x)

by f(−x) if necessary). By our condition, we always have

2f(x) ≤ f(−1) + f(1 + 2x) = f(1 + 2x).

Introducing a linear map T (x) := 1 + 2x, we see that

T
(
E−(a)

)
⊆ E(2a), and m

(
E(2a)

)
≥ m

(
T
(
E−(a)

))
= 2 ·m

(
E−(a)

)
≥ h0 > 0.

Here the key observation is that from m
(
E(a)

)
≥ h0 > 0 it follows m

(
E(2a)

)
≥ h0 > 0. By iteration,

m
(
E(2ka)

)
:= m

(
[−1, 1] ∩ {f ≥ 2ka}

)
≥ h0 > 0, ∀k = 1, 2, . . . .

Since 2ka ↗ +∞ as k → ∞, and |f | < ∞ a.e., we get a desired contradiction.

#3. Show that

Hn(x) := (−1)nex
2
(
e−x2

)(n)

are polynomials of degree n (the Hermite polynomials) satisfying

∞∫
−∞

e−x2

HkHn dx = 0 for k ̸= n.

Derive the equality

F (t, x) :=

∞∑
n=0

tn

n!
·Hn(x) = e2tx−t2 .

Proof. It is easy to see that H ′
n = 2xHn −Hn+1, and by induction, Hn is a polynomial of degree n for every n.

Since H
(n)
k = 0 for n > k, integrating by parts implies

∞∫
−∞

e−x2

HkHn dx =

∞∫
−∞

Hk · (−1)n
(
e−x2

)(n)

dx =

∞∫
−∞

H
(n)
k e−x2

dx = 0.

By symmetry, this equality also holds true for n < k. Finally, using the Taylor expansion

f(x+ h) =
∞∑

n=0

f (n)(x)

n!
· hn with f(x) := e−x2

, h := −t,

we get

F (t, x) = ex
2

e−(x−t)2 = e2tx−t2 .

#4. Let {xn} be a sequence in a Hilbert space H such that ||xn|| ≤ 1 for all n, and for each y ∈ H, we have
(xn, y) → 0 as n → ∞. Show that there is a subsequence

{
xnj

}
such that

1

k
·
(
xn1 + · · ·+ xnk

)
→ 0 as k → ∞.

Proof. Take n1 = 1, and then for j = 2, 3, . . ., choose nj such that

|(xni , xnj )| ≤
1

j2
for all i < j.

Then yk := 1
k ·

(
xn1 + · · ·+ xnk

)
satisfy

||yk||2 = (yk, yk) =
1

k2

k∑
i=1

||xnj ||2 +
2

k2

∑
1≤i<j≤k

(xni , xnj ) ≤
1

k
+

2

k2

k∑
j=1

1

j
≤ 3

k
→ 0 as k → ∞.
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