Math 8602: REAL ANALYSIS. Spring 2016

Homework #5. Problems and Solutions.

#1. Let f be a function in L'(R!). Show that

/f(x)sin(w:l:) dr — 0 as w — oo.

R1

Proof. This problem is very similar to Problem 3 on Final Exam in the previous semester. By Theorem 2.26,
every function f € L'(R!) can be approximated in L'(R!) by functions g € Co(R!) — continuous functions with
compact support. In turn, by the Dominated Convergence Theorem, every function g € Co(R!) can be approximated
in L'(R') by functions

z+h

1

m(o) =7 [ alw)dy € (€N,

x

i.e. the L'-norms ||gn — g|l1 — 0 as h \, 0. Therefore, Vf € L}(R!) and Ve > 0, g, € (C' N Cp)(R!) with
llgn — fll1 <e. We can write

I(w) = /f(x) sin(wz) de = I (w) + I2(w),
R]
where

L(w) = /[f(x) — gn(z)] sin(wz) dz,  |L(w)| < [lgn — fll1 <,

R1
I L . (by parts) 1 ’ 1 ’
2(w) = gn(x)sin(wx) dz, |[L(w)] = o gp(x) cos(wx) dr| < o llgnllh = 0 as w — oc.
R R

Then limsup|I(w)| < ¢, and since ¢ > 0 can be taken arbitrarily small, we get I(w) — 0 as w — oo.
w—r00

#2. Let f(x) € L} (R) and

loc

f(x—i-y)Sf(x)‘;f(y) for all xz,y € R.

2
Show that f is convex on R.

Proof. This statement is true under a more general assumption that |f| < co a.e. The convexity of f means that
a portion of the graph of y = f(z) between two arbitrary point z; and x2 in R lies below the segment connecting
the point (z1, f(z1)) and (xa, f(22) in R%. By a linear transform, the proof of this fact is reduced to the case
x1=—-1,2z2=1, and f(—1) = f(1) = 0; in this case we must have f(z) <0 on [—1,1].

Suppose otherwise, i.e. f(xp) > a = const > 0 for some zy € (—1,1). Take a small hy > 0, such that
[xo — ho,xo + ho] C [—1,1]. By our assumptions,

f(xo+h) + flzo — h)

0<a< f(x) < 5 ,

Vh € [—ho, ho).
For such h, either f(xg+h) > a or f(xzg—h) > a. In other words,
[7h0, ho] =AU (714), where A := {h € [7h0, h()] : f(l’() + h) 2 a}.

Then the set E(a) :=[-1,1] N {f > a > 0} contains z¢ + A, and its Lebesgue measure
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- (m(A) + m(=A)) > = -m(AU(=A)) = = - m([~ho, ho]) = ho > 0.
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On the other hand,
E(a) = E~ (a) UE'(a), where E~(a):= E(a)N[-1,0], E*(a):= E(a)N][0,1],

so that m(E~(a)) + m(E*(a)) = m(E(a)) > ho > 0. We can assume that m(E~(a)) > ho/2 (replacing f(z)
by f(—=x) if necessary). By our condition, we always have

2f(x) < f(-1)+ f(1 +2z) = f(1+ 2x).
Introducing a linear map T'(x) := 1 + 2x, we see that
T(E~(a)) C E(2a), and m(E(2a)) > m(T(E’(a))) =2-m(E(a)) > ho > 0.
Here the key observation is that from m(E(a)) > ho > 0 it follows m(E(2a)) > ho > 0. By iteration,
m(E(2a)) == m([-1,1]n{f >2%a}) > hg >0, Vk=1.2,....

Since 2¥a 7 400 as k — oo, and |f| < 0o a.e., we get a desired contradiction.

#3. Show that
2 2 (n)
Hy(z) = (~1)"€" (e )

are polynomials of degree n (the Hermite polynomials) satisfying

/ e_mszHn der =0 for k+#n.

Derive the equality
— o t" _ 2tz—t?
F(t,x) ._;ﬁ-ﬂn(x)_e :

Proof. It is easy to see that H] = 2xH, — H,+1, and by induction, H,, is a polynomial of degree n for every n.
Since H ,5") = 0 for n > k, integrating by parts implies

/67I2Hand$: /Hk'(—l)n<€712> dzx = /ngn)efﬁdxz().

By symmetry, this equality also holds true for n < k. Finally, using the Taylor expansion

flx+h)= i f(";'(x) -h"™ with  f(z) := e, hi=—t,
n=0 ’

we get
2 . 2 r—12
F(t,x) =% e~ (@) = 2a—t",
#4. Let {z,} be a sequence in a Hilbert space H such that ||z,|| < 1 for all n, and for each y € H, we have
(Zn,y) — 0 as n — oco. Show that there is a subsequence {xn]} such that

%'(.ﬁnl—I--"—Fl‘nk)—)O as k — oo.

Proof. Take n; =1, and then for j = 2,3,..., choose n; such that
1 o
|(@n, ;)| < 7 for all i < j.

Then yi := % . (a:m + ot xnk) satisfy
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