Last revision on 9/13/99 at 12:30 a.m. by Grishkin

CSci 4061
Introduction to Operating Systems
Fall 1999

Syllabus

Day: Tu, Th 12:30 a.m. – 1:45 p.m.; EE/CS3-210, 4 cr

Evening: M 06:30 p.m. – 09:00 p.m.; Arch 40, 4 cr

PRIVATE
Role:
Name
Office & Hours
Phone
Email

Instructor:
Prof. S. Shekhar
EE/CS 5-203, Tu Th 1:45-2:45
624-8307
shekhar@cs.umn.edu

TA:
Weili Wu
EE/CS 2-209, M 1:30-3:30
626-7512
wuw@cs.umn.edu

TA:
Baek Young Choi
EE/CS 4-205, Tu 10-12
625-0330
choiby@cs.umn.edu

TA:
Vijaymohan Deshmukh
EE/CS 2-209, M 11-12, F 10-11
626-7512
deshmukh@cs.umn.edu

Copy Shop:
Copies on Campus, Coffman Union Basement.

Textbook:
K. A. Robbins, and S. Robbins, Practical Unix Programming: A Guide to Concurrency, Communication, and Multithreading, Prentice Hall, 1996, ISBN 0-13-443706-3.

Supplement:
Jerry peek, Grace Todino, and John Strang, Learning the UNIX Operating System, 4th Edition, O'Reilly, 1997, ISBN: 1-56592-390-1.

Topics:
User-level programming view of operating systems;

Shell Programming;

System calls for file systems, process management, input-output, signal handling, pipes and sockets.

Current topics (e.g. Threads).

Examinations and Assignments:
Submission of all assignments and scoring >= 50% on the final examination are the two necessary conditions for passing this class.

The weighting scheme used for grading is:

Mid-quarter exam - 25%,

Final exam - 40%,

Assignments - 35%.

Assignments are due at the beginning of the lecture on first meeting in the designated week. However, assignments put in the TA's office (EE/CS 5-202) by 5:00 p.m. will be counted as having been submitted that day. DO NOT submit assignments in EE/CS 5-203. All assignments must have your name, student ID and course name/ number. There would be five assignments, some of which may require programming.

Late submission policy:
Assignments submitted late will be penalized at the following rate, 1 day - 30%, and >= 2 days - 70%. Weekend days will be counted. For assignments, you are encouraged to type or typeset your answers. For programming assignments you are encouraged to use pretty printers to make your listings more readable.

Following is (roughly) the weight distribution for case-study/project problems:

Correctness - 60%,

Test Results Summary - 10%,

Style and Documentation - 15%,

Approach - 10%, and

Report - 5%.

Exams:
Students are responsible for all material covered in lectures, as well as that specifically mentioned as part of the supplementary reading assignments. Examinations will heavily emphasize conceptual understanding of the material.

Cheating/Collaboration:
Getting help from services like general debugging service (GDS), web-sites (e.g. cheaters.com), or copying someone else's assignment, or the common solution of written or programming assignments will be considered cheating. The purpose of assignments is to provide individual evaluation as well as a tool to get you thinking. Interaction for the purpose of understanding a problem is not considered cheating and will be encouraged. However, the actual solution to problems must be one's own.

Helpful Comments:
This class is Very Interesting (for your personal understanding of software development process) and useful. Practitioners may be invited as guest lecturer during discussion of topics such as system administration, Win32 etc. To get full benefit out of the class you have to work regularly. Read the textbook regularly and start working on the assignments soon after they are handed out. Plan to spend at least 10 hrs a week on this class doing assignments or reading.

Lecture, Homework and Examination Schedule

The schedule indicates the concepts and material to be uncovered in each week under the column labeled "Topics".

The chapters in the textbook are referred to by the chapter number or Appendix number.

Home Works will be due on Tuesdays.

Mid-term examination will take at least one half of the class-time. The other half may be used for discussions.

PRIVATE
Week
Day Dates
Evening
Lecture Topics
Due
Feedback

1
9/7, 9/9

What is Concurrency? (Ch1)

2
9/14, 9/16
9/13
Processes (Ch.2)

3
9/21, 9/23
9/20
Files System, I/O (Ch.3)
HW1

4
9/28, 9/30
9/27
Files System, I/O (Ch.3)

HW1

5
10/5, 7
10/4
C memory management (Ch. 1.5)
HW2

6
10/12, 14
10/11
Signals (Ch.5)

HW2

7
10/19, 21
10/18
Threads (Ch. 9)
HW 3

8
10/26, 28
10/25
Threads (Ch. 9)

HW 3

9
11/2, 4
11/1
Discussion
MQ

10
11/9, 11
11/8
Thread Synchronization (Ch.10)

MQ

11
11/16, 18
11/15
Thread Synchronization (Ch. 10)
HW4

12
11/23
11/22
Client Server (Ch.12)

HW4

13
11/30, 12/2
11/29
Client Server (Ch.12)

14
12/7, 9
12/6
Case Study: Cracking Shells (Ch.7)
HW5

15
12/14
12/13
Trends: Internet shells , Conclusions

HW5

16
12/21
12/20
10:30-12:30 (day section), class-time (eve.)
FINAL

This class will use small active group learning techniques for few minutes (say, 5 minutes) in several class meetings to enhance the learning environment of the class meetings. The performance of a student during these exercises will have no bearing on his/her grades. Students will work in a small group of two or three on an exercise or a discussion question provided in the class meeting. After this, a randomly chosen student will be invited to summarize the discussion in his/her group. Other students in the class may paraphrase and improve the presented material.

Recitation Schedule

PRIVATE
TA
Email
Recitation hours

Weili Wu
wuw@cs.umn.edu
Sec 2, MechE 108, W 12:20-1:10pm

Baek Young Choi
choiby@cs.umn.edu
Sec 3, LindH 203, W 11:15-12:05pm

Vijaymohan Deshmukh
deshmukh@cs.umn.edu
Sec 11, EE/CS 3-210, W 6:50-7:40pm
Sec 12, EE/CS 3-111, W 7:55-8:45pm

PRIVATE
Week
Topic
Details

1:
Appendix A.1 – A.3
A.1 Getting help: man (figure A.1), man -k (example A.2), command vs. functions (example A.6, exercise A.3), command syntax (exercise A.10)

A.2 Compiling C programs: cc, cc -o, cc -c (examples A.14, A.17)

A.3 Makefile target, components, dependency graph (examples a.19-20, figure A.2) and make command (example A, 22).

2:
Review HW1 w/ relevant manpage,
Ex. Process 1 – 3

3:
Files
Ex. Files 1 – 5

4:
Review HW2 and all relevant manpage

5:
Review Section 5.9, I/O using signals

6:
Review HW3 and relevant manpage

7:
Unix Shell commands (supplementary text)

8:
Review for Midterm

9:
MQ

10:
threads Ch.1-4

11:
Review HW4 and relevant Manpage

12:
Sockets, Ex. client-server Ch.1-5

13:
Review HW5 and relevant manpage

14:
Practice Final

Recitation 1 (9/8/99)

· Administrative

· Intro

· Self intro

· Peers (two students --> one team, sign the group list sheet). Please choose a partner within your recitation to form a team (2 students per team). Each group submits one copy of the homework and lab report. Be sure to write both of your names and IDs.

· Policies

· Late HW’s

· TA-announcement

· IT lab Account

EE/CS 4204 lab

username:
register

passworcd:

username:
liux1108

password:
xxxxx (General e-mail account)

· Problem Solving

UNIX Fundamentals (P577)

· A.1 Getting Help

· man page (online documentation)

· Table A.1 (P578)

· Figure A.1(P579) man command, man whatis

· Example A.2 (P580)

· -k, man summarizes all man page entries that contain a given name.

· -s, a particular section of the man pages.

· e.g. man -a write

(prints out all of the man pages related to "write")

· System calls/C library functions (P581)

· write(1) -- Unix user command

· write(2) -- system call (P581)

· who (P583) (list logged-in users)

· ls

· ls -l

· ls -a

· pwd

· A.2 Compilation of C program

· cc, the C compiler translates C source file into executable modules, which are ready to be loaded and executed.

· C compiler

· major tasks:

· analysis of the source program being compiled

· synthesis of a machine-language program

· The structure of a C compiler:

Source program (Character stream)

 |

 |

Scanner (lexical analyzer)

 | Tokens

 |

Parser (Syntax analyzer)

 | syntactic structure

 |

Semantic analyzer

 | IR

 |

- --- |

| Code optimizer

| |

|-----|

 |

Code generator

 |

 |

targer machine code

· cc mine.c

cc -c mine.c (object module named w a .o extension)

cc -o mine mine.o minelib.o

· A.3 Makefiles

recompile a collect of program modules

Description file:
The default description filename are Makefile or Makefile

Describe the dependency relationships between various program modules.

target:
components

rule

e.g.:

mine:
mine.o minelib.o

{tab}
cc -o mine mine.o minelib.o

Page 588 example

Home Works and Projects

Textbook exercises are denoted by (section number, page numbers).

The Case Study/Project problems will carry 50 percent weight in respective home works.

PRIVATE
HW #
Exercises (Following this table)
Labs (Textbook)

1
Survey, Tools 2, Process 4, Process 5, Process 6.
Lab 1

2
Files 6, 7, 8, 9, 10, Files 12(a-c), Files + Process 1
Lab 2

3
Signal 1.4, Signal 3.
Lab 3

4
Thread 5(1, 2), Thread 6, Thread 7, Thread 8
Lab 4

5
Sockets, Client-Server 6(1), Sockets, Client-Server 7, 8, Client-Server + Threads 1
Lab 5

Survey (Part of Homework 1):

1. What are your “itlabs” login-name and preferred email address?

2. Specify the category that describes you best:
MAJOR: Computer Science / Business / Electrical Eng. / Other;
STATUS: Graduate Student, Senior, Junior, Sophomore, Freshman, Other.

3. Courses completed: (a) Programming Languages, (b) C++ and Data Structures (c) Assembly Language (d) Scheme Programming

4. Size of the largest C program ever written: (a) < 100 lines, (b) 100 - 1000 lines, (c) 1000 - 10,000 lines, (d) > 10,000 lines

5. Size of the largest Shell script ever written: (a) < 10 lines, (b) 10 - 100 lines, (c) 100 - 1000 lines, (d) > 1000 lines

6. List 2 Unix commands each relating to the following topics: (a) process control, (b) directory, (c) program development, (d) text processing, (e) getting help, (f) Internet access.

7. Discuss your expectations from this course in the following areas: basic concepts, O. S. commands, shell programming, application programming with system call, system administration, and hands-on experience. Limit your answer to 100 words.

Tools (Part of Homework 1):

Files, Directories

1. Tools 1: Using vi can you read a file encrypted with crypt? What about decoding a file encrypted with vi -x?

2. Tools 2: What are the advantages and disadvantages of using "make" utility for program development?

3. Tools 3: Is IEEE POSIX (Portable Operating System Interface) standard relevant to non-Unix operating systems (e.g. NT)? Justify your answer.

4. Tools 4: What is difference between -c and -o option for C compiler?

5. Tools 5: Suppose a system call (e.g. write()) has same name as a Unix command (e.g. write). How will you pull up the "man" pages for each?

6. Tools 6: Suppose typing the command (e.g. cc, gcc) to invoke C compiler returns an error message stating that shell could not find it. How can "which" command be helpful? How will you modify the 'PATH' variable to avoid future problems?

7. Tools 7: List Unix commands to produce a listing of all system calls made a various processes in a program.

Processes (Part of Homework 1):

1. Processes 1: How do I launch a new separate and independent process from within an application?

2. Processes 2: How can I let two separate processes share data between one another? For example, I want to be able to run an application that controls a service, so the application needs to be able to talk to the service.

3. Processes 3: How can I create a new process that inherits handles from its parent?

4. Processes 4: Would these three command lines produce the same output in the file listab? How would they be similar or different? Explain.

a. ls | fgrep a | fgrep b > listab

b. ls > list; fgrep a < list > lista; fgrep b < lista > listab; rm list lista

c. ls > list & fgrep a < list > lista & fgrep < lista > listab & rm list lista

5. Processes 5: How many distinct processes are generated by the following code fragments? Briefly explain your answer.

void main() { fork(); fork(); fork(); }

6. Processes 6: What a background process? How does it differ from a foreground process?

Files, Directories (Homework 2):

1. Files 1: How do I read from and write to a file?

2. Files 2: How do I read and write a large quantity of data in a way that does not stall my user interface?

3. Files 3: How do I create a temporary file?

4. Files 4: Why is a hard link indistinguishable from the original file itself? What happens if you rm a hard link? Why is it not possible to have a hard link to a file in a different file system?

5. Files 5: Using vi can you read a file encrypted with crypt? What about decoding a file encrypted with vi -x?

6. Files 6: Peter wants to join the contents of two files "file1" and "file2" together, so he typed

cat file1 file2 > file1

What would happen as a result? How could you join these files together?

7. Files 7: Peter then wanted to print out a numbered listing of file "file1". He typed

cat -n file1 > lpr

but no printout appeared. Why? What happened here?

8. Files 8: How would you remove all files whose names start with #?

9. Files 9: How would you change all instances of multiple consecutive spaces to single spaces using a Unix editor, e.g. vi? Try to use as few commands as possible.

10. Files 10: Indicate the truthfulness of the following statements by marking them "True" or "False". Briefly justify your answers.

a. Hard links to a file can go across two file systems (i.e. two file servers with no shared i-nodelist or disk partition).

b. Typing name of an executable on shell command line will select the named file in the current directory before looking elsewhere.

c. Deleting a link will delete the datafiles pointed to.

11. Files 11: How many i-nodes and how many directory entries are created by each command in the following command sequence. Assume that myfile.txt exists before his command sequence.

ln hardlink1 myfile.txt

ln hardlink2 hardlink1

ln -s symbolicLink1 myfile.txt

ln -s symbolicLink2 symbolicLink1

12. Files 12 (a): Determine the size of disk space that can be addressed by 32-bit operating systems. Assume that each byte on disk is addressable and the address-pointer is 32-bit long. Provide brief explanation of your calculations and identify your assumptions.

13. Files 12 (b) Repeat the calculation for question for a 64-bit operating system, where address-pointers are 64-bit long.

14. Files 12 (c) Consider the data-block addressing scheme used by Unix with at most 3-level indirection. Does it need modification for 64-bit operating systems? Briefly justify your answer by computing the largest file size possible with 1 Kbyte block-size and 64-bit disk-block-pointers.

15. Files + Process 1 Review the program segment given below for this question. Consider an invocation of this program with one command line argument valued 10. Hints: argv[0] contains the name of the program.

a. Draw a process diagram and per process "file descriptor tables" for each process for the above invocation. Clearly show the parent-child relationships and shared file-descriptors.

b. Determine the output from the invocation. Clearly identify the contributing process for each output line.

c. Redraw the per process "file descriptor tables" a modified program where the "close(fd[0])" and "close(fd[1])" systems calls are not used in the program. Does this modification affect the output? Identify your assumptions.

d. What will happen if the dup2() calls flipped its parameters i.e. dup2(STDOUT_FILENO, fd[1]) was used in place of dup2(fd[1], STDOUT_FILENO) and dup2(STDIN_FILENO, fd[0]) was used in place of dup2(fd[0], STDIN_FILENO).

/* Invoke with a positive integer command line argument */

#include

#include

#include

#define NL "\\\\n"

void foo(int i, int p)

{ if (div(i,p).rem > 0) printf("%d %s", i, NL); }

 int main(int argc, char *argv[]) {

 int p, max, n, cpid, status, fd[2];

 if (argc >= 2) { max = atoi(argv[1]); }

 else {

printf("Usage: %s positiveInteger %s", argv[0], NL);

exit(0);

 }

 if (argv[2] == NULL) { p = 2; }

 else { scanf("%d", &p) ; }

 if (p <= max) {

 printf("%d %s", p, NL);

 pipe(fd);

 cpid = fork();

 if (cpid) { dup2(fd[1], STDOUT_FILENO); close(fd[1]); }

 else{

 dup2(fd[0], STDIN_FILENO);

close(fd[0]);

 execl(argv[0], argv[0], argv[1], "child", NULL);

 }

 if (p == 2) { n = 2; while(n < max) foo(n++,p) ; }

 else {

do {
scanf("%d", &n);

foo(n,p);

} while (n <= max);

 }

 printf("%d %s", max+1, NL); /* termination flag */

 while (wait(&status) != cpid);

 }

 exit(0);

}

16. Files + Process 2 Review the program segment given below for this question. Note that NL string represents newline and flushes buffers for screen (stdout). Note the presence of fork() call in each case. Assume "printf" to be atomic, i.e. synchronization issues are not relevant.

#include

void main (int argc, char* argv[])

{

 int flag; char NL[] = "\\\\n" ;

 if (argc != 2) { printf ("Usage %s case(0/1/2)", argv[0]); exit(0); }

 else { flag = atoi(argv[1]); }

 switch (flag) {

 case 0: { printf("Hello %s", NL) ; fork(); printf(" Bye %s", NL); break;}

 case 1: { printf("Hello"); fork(); printf("Bye %s", NL); break;}

 case 2: { printf("Hello %s", NL); fork (); printf(" Bye %s", NL); break;}

 }

}

A. What is the output of this program if 1st argument on command-line is 0? Briefly explain.

B. What is the output of this program if 1st argument on command-line is 1? Briefly explain.

C. What is the output of this program if 1st argument on command-line is 2? Briefly explain.

Processes (Homework 3):

1. Signal 1: Indicates the truthfulness of the following statements by marking them "True" or "False". Briefly justify your answers.

a. A system call or a library routine using global variable (e.g. errno in C programs) is not signal-safe.

b. C-library calls "printf" and "scanf" are signal-safe.

c. Shell command "kill pid" always terminates the designated process.

d. A "blocked" signal is lost at arrival, i.e. not buffered for later delivery.

2. Signal 2: A process can be in many different states, e.g. running, waiting for an OS service, ready to run, terminating. For each state of a process, list whether a signal should be queued for later delivery, delivered to the process or ignored by OS. Identify your assumptions.

3. Signal 3 Consider a C function foo to be called from a signal handler. Identify possible problems if "foo" uses a static local variable or a global variable without synchronization.

Threads (Homework 4):

1. Thread 1: How do I multithread an application? What does that mean? What is a thread?

2. Thread 2: How do I design an application so that it runs lengthy operations in the background rather than making the user wait? For example, my application has to recalculate an aerodynamic model and I don’t want the user interface to hang for half an hour during the computation.

3. Thread 3: How do I create separate threads that can handle high priority events successfully without monopolizing the system?

4. Thread 4: How does the scheduling and priority system work?

5. Thread 5: Indicate the truthfulness of the following statements by marking them "True" or "False". Briefly justify your answers.

a. A program with multiple user-level threads will block completely if one of the threads makes a blocking system call.

b. C-library calls "printf" and "scanf" are thread-safe.

c. A system call or a library routine using global variable (e.g. errno in C programs) is not thread-safe.

6. Thread 6: Unix shells (e.g. ksh, csh) fork a process to execute each user command. What are the dangers in using threads inside the shell process to execute user commands?

7. Thread 7: Which thread synchronization mechanism (e.g. locks, semaphores, condition variables) will you use for the following situations:

a. Only one thread should read/write a file at a time.

b. Implementing a "Pipe" mechanism using an ordinary file shared between a writer and a reader.

8. Thread 8: Review the program segment given below:

#include

#include

#include

int account1balance = 100;

int account2balance = 200;

int transferAmount = 20;

pthread_mutex_t pm = PTHREAD_MUTEX_INITIALIZER;

void L (pthread_mutex_t *tmp) { pthread_mutex_lock(tmp); }

void U (pthread_mutex_t *tmp) { pthread_mutex_unlock(tmp); }

void *first () { L(&pm); account1balance -= transferAmount; U(&pm); }

void *second () { L(&pm); account2balance += transferAmount; U(&pm); }

void main(int argc, char* argv[]){

 char NL[] = "\\\n" ;

 pthread_t t1, t2;

 pthread_create(&t1, NULL, first, NULL);

 pthread_create(&t2, NULL, second, NULL);

 L(pm);

 printf("PreJoin:%d and %d %s", account1balance, account2balance, NL);

 U(pm);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf("After:%d and %d %s", account1balance, account2balance, NL) ;

}

A. List the threads of execution in this program after all threads have been created.

B. List the possible interleavings of the threads of executions (after all threads have been created). (Hint: each thread is atomic.)

D. Determine the output from the "printf" statements for each interleaving.

Processes (Homework 5):

1. Sockets, Client - Server 1: How can I create an application that can talk with other copies of the same application, or different applications, on the network?

2. Sockets, Client - Server 2: How do I create client/server architectures? What code and techniques are necessary to create the server and the client?

3. Sockets, Client - Server 3: How do I communicate with UNIX and other TCP/IP machines using TCP and UDP packets?

4. Sockets, Client - Server 4: How do I use Remote procedure Calls? What is a Remote procedure Call?

5. Sockets, Client - Server 5: How do I appropriately design a program so that it effectively uses Remote Procedure Calls? How do I know when and when not to use RPCs?

6. Sockets, Client - Server 6: Indicate the truthfulness of the following statements by marking them "True" or "False". Briefly justify your answers.

7. UICI uses private channels to communicate to different clients, i.e. server create distinct ports for each client.

8. Sockets can not be used to communicate between processes on the same machine.

9. Sockets, Client - Server 7: List two client-server communication features supported by sockets but not by UICI.

10. Sockets , Client - Server 8: Consider the server program given below:

/* assume include files: */

void * handle_request (void * a)

{ int connection;

 time_t nticks;

 char buf [512];

 nticks = time (NULL);

 connection = *(int *)a;

 sprintf (buf, "%.24s", ctime (&nticks));

 write (connection, buf, strlen (buf) + 1);

 close (connection);

 pthread_exit (NULL);

}

int main (int argc, char * argv [])

{ int sockfd, newsockfd, clilen, childpid, STCP_PORT, threaded = 0;

 time_t ticks; char cmd [255], buf [512];

 struct sockaddr_in server1, client1;

 if (argc != 2) exit (1);

 threaded = atoi (argv [1]);

 STCP_PORT = 6300; /* port servers listens to */

 bzero ((char *)&server1, sizeof (server1));

 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)

perror ("Socket fails");

 server1.sin_family = AF_INET;

 server1.sin_addr.s_addr = htonl (INADDR_ANY);

 server1.sin_port = htons (STCP_PORT);

 if (bind (sockfd, (struct sockaddr *)& server1, sizeof (server1)) < 0)

{ perror("Server socket bind failed"); exit (1); }

 listen (sockfd, 1);

 for (;;)

 { int i, fd, len; time_t nticks; pthread_t servt;

 nticks = time (NULL); clilen = sizeof (client1); strcpy (cmd, "");

 newsockfd = accept (sockfd, (struct sockaddr *) & client1, &clilen);

 if (newsockfd < 0) {

close (sockfd);

fprintf (stderr, "%s\n", "Server accept failed");

 exit (1);

 }

 if (threaded == 0) {

 sprintf (buf, "%.24s", ctime (&nticks));

 write (newsockfd, buf, strlen (buf) + 1); close (newsockfd);

 } else {

 pthread_create (&servt, NULL, handle_request, (void *)&newsockfd);

 }

 }

}

A. Draw two client-server architecture diagrams for the communication channels used by this server assuming there are two clients and command line argument was 0. Clearly indicate ports common across two diagrams. Consider Fig. 12.2 and Fig. 12.3 (pp. 434) from the Textbook for notation.

B. Draw a client-server diagram assume that the command line argument is 1.

C. Discuss the pros and cons of threaded implementation of this "time" server.

11. Client - Server + Threads 1: How will one decide if a server should be serial or multi-threaded? Provide examples of applications which will benefit from multi-threaded servers.

Labs

Lab 1:

Process Chains (Sec. 2.12, pp.68-70).

Lab 2:

1. Write a program to change directory to a location specified ads input, then list the names of the files in alphabetical order after changing there. (Don't show a list if the directory change did not succeed: merely warn the user.)

2. Write a program to read in a list of filenames and then display which of the files are readable, writable, and/or executable, and which ones don't exist. (You can perform each test for each filename as you read them, or on the entire set of names when you've read them all. Don't forget to remove the newline at the end of each filename you read in.)

3. Write a program to read in a list of filenames and find the oldest file among them. Print out the name of file and the age of that file in days.

Lab 3:

Argument Arrays (Sec. 1.6, pp.25-26).

Lab 4:
Parallel File Copy (Sec 9.6, pp.363-364).

Lab 5:

Ping Server (Sec. 12.10, pp. 474-476).

Lecture Notes

1. What is Concurrency (Chapter 1)

2. Processes (Chapter 2)

3. Files (Chapter 3)

4. Signals (Chapter 5)

5. Threads (Chapter 9, 10)

6. Client Server (Chapter 12)

Other Resources

1. On-web man pages: Gnu C library , Gnu tools (e.g. make, gdb), Linux , FreeBSD
2. On-line tutorials: Unix Commands, C Language Basics
3. Operating Systems Concepts (Silberschatz):
Slides See chapters 4 (Process, Threads), 10 (Files), 21 (Unix), 23 (NT).

4. POSIX.: Wish POSIX man page were on-line! Till then use IEEE documents and following books:
POSIX.4, B. O. Gallmeister, O'Reilly & Associates (ISBN 1-56592-074-0).
POSIX Programmer's Guide, O'Reilly & Associates (ISBN 0937175-73-0).
POSIX.1 Standard: A Programmers Guide, Benjamin Cummins, (ISBN 0-8053-9605-5).

What is Concurrency (Chapter 1)

Lecture 1

Administrative

· Introductions

· Syllabus

· Waiting List Policy

Goals:

· Understand concurrency

· Overview of the course

Topics:

1.1 Multiprogramming and Multitasking

1.2 Concurrency at the Application Level

1.3 Unix Standards

1.4 Programming in UNIX

1.5 Making functions safe

Readings: Chapter 1 (Robbins, pp.76-137)

Readings: Appendix A.1-3 (Robbins, pp.577-589)

Recommended Exercises

Administrative

Introductions

· Instructor

· TAs

· Peers

Syllabus

· Schedules: lectures, homeworks, exams, recitations

· Textbooks, Reference material

· Topics

Policies

· Late homeworks

· Cheating

· Waiting List - attendance, estimates

Course Goals

Concepts: Understand concurrency

· Why concurrency

· Sources of Concurrency

· I/O, signals, processes, threads, client-server

· Effects of concurrency

Focus

· Server - software concurrently shared by many

· User level - commands, shell

· Power Users - system calls, C programs

Out of Scope

· Operating System Theory - e.g. CPU scheduling

· Vendor specific features - e.g. Win32

1. What is Concurrency?

Concurrency:

· Sharing of resource in the same time-frame

· Ex. two program executing concurrently

· Q: Which resources are they sharing?

Trends leading to Concurrency

· Computer speed >> Human typing speed

· CPU speed >> I/O (e.g. disk drives)

· See Table 1.1 (pp. 5)

· Multiprocessors

· Distributed Systems

· Graphical User Interfaces

· Animation of multiple objects

What is hard about Concurrency?

· Non-deterministic behavior

· Bugs do not show up on a regular basis

1.1 Multiprogramming and Multitasking

Multiprogramming

· Process: instance of a program in execution

· More than one processes can be ready to execute

· OS chooses one to execute

· Context switch to another process when

· this process needs I/O

Q: What if a program has an infinite loop?

Timesharing

· Context switch to another process when

· when quantum is over

· Pros: Reduce waiting time for small jobs

· Cons: overhead of context switch

Multitasking - Similar to multiprogramming

· finer granularity (e.g. threads within a process)

· Sharing even user resource, e.g. global variables

Why do I care about these? I am not writing an O.S.!

· Web servers: search engines, databases, e-commerce

1.2 Concurrency at the Application Level

Concurrency Levels

· Hardware

· CPU controlling peripherals, multi-processors

· Software - OS

· signal handling

· overlap of I/O and processing

· communication

· resource sharing among processes and threads

Outline

· 1.2.1 Interrupts (Recall assembly language course)

· 1.2.2 Signals

· 1.2.3 Input and Output

· 1.2.4 Threads and Resource Sharing

· 1.2.5 Network as the Computer

Q: Map these to chapters in the book.

1.2.1 Interrupts

· Peripheral generates an electrical signal

· Sets a flag in CPU

· CPU checks flag in each instruction cycle

· Interrupt service routine called

Example: Timesharing implemented with

· alarm interrupts

Concurrency: CPU and peripheral device

· Shared resource – bus
Event types by time of occurrence

· Asynchronous - time not determined by receiver

· Synchronous - time determined by receiver

1.2.2 Signals

Motivation

· Q: How do you stop a program in an infinite loop?

· Other usage: timers, job control, synch. I/O, ...

Signal = software notification of an event

· Ex. hardware events, e.g. ctrl-c, I/O complete

· Q: Provide examples of synchronous signals.

Life cycle of a Signal

· Event of interest occurs

· Signal is generated

· OS sets a flag for the relevant process

· Signal is caught by the process

· Process invokes a handler subroutine

· Analogy - "You have mail" flag

Concurrency: main program, signal handler subroutine

· Implication: restriction on signal handler

· Sharing a global variable => special protection

1.2.3 Input and Output

Motivation

· Coordinate resources with varying speed

· But isn’t that the job of O.S.

· Why should an application developer learn this?

· You may develop performance critical applications

· Ex. real-time – Pacemaker

· Ex. Web servers, transaction processors - ebay, amazon, ...

Ex. asynchronous I/O

· A process itself can do other things

· while waiting for an I/O, i.e. synchronous read()

· instead of getting swapped out by OS

Ex. monitoring multiple input sources on network

· Standard blocking I/O is not suitable!

Concurrency

· Subprogram handling file/network I/O

· Subprograms computing during wait for I/O

1.2.4 Threads and Resource Sharing

Motivation - What is the unit of concurrency

· Traditional unit = process

· Emerging finer unit = thread

Processes - Generated via fork() call

· Coordinate termination via wait()

· Communicate via pipes (common ancestors),

· Or signals, messages, shared memory, etc.

· Pros: stronger security boundaries

· Cons: high overhead

Threads - provide concurrency within a process

· threads of execution = program counter value streams

· Finer level of concurrency

· Low overhead in creating and context switching

· Standards are emerging now!

Concurrency

· Multiple processes or Multiple threads within a process

1.2.5 Network as the Computer

Motivation – Internet (!), Intranet, networks, ...

· Multiple services: ftp, email, ...

· Million of clients accessing Web services

Client-Server = A model of distributed computing

· Client = caller of a service

· Server = provider of a service

· Analogy with procedure call, caller, callee

Details

· Clients and Servers may be on different machines

· Communication via messages or remote procedure calls

· Signals, Pipes, shared memory are not common

Concurrency

· Server and client are concurrent

· Multiple Servers and multiple clients

1.3 Unix Standards

Why Standards

· Multiple flavors of Unix: HPUX, Solaris, Linux, ...

· Two distinct lineage - BSD and System V

· Non-Unix OS: NT, Windows 3.1/95/98/..., MacOS, ...

· System calls are often OS specific!

· Overhead of porting across OS.

Which Standards

· ANSI C

· POSIX - IEEE Portable Operating System Interface

· Table 1.3 provide POSIX standards

· if not covered by POSIX

· Spec 1170

· System V Release 4

How do I check POSIX support in my OS

· unistd.h header file

· Table 1.4 shows the compile time options

1.4 (Concurrency) Programming in UNIX

Concurrency programming

· Language constructs, e.g. Java

· OS Libraries, e.g. Unix system call

System call - a procedure provided by OS

· An entry into the kernel (heart) of OS

· To get access to system resources

Standard C Library

· e.g. string handling, memory management

· Some subroutine contain system calls

· Hard to tell the difference from system call!

Resources - Unix man pages (Appendix A.1)

· header files needed by system call

· prototype of system call- name, parameters

Appendix A.1-3commands: man, cc, make

Programming in UNIX

Conventions- error situation

· system call returns -1 or NULL

· Sets global variable "errno" to error code

· Application programmer should check for these

· perror() - Example 1.2 (pp. 15)

· strerror() - Example 1.5 (pp.16)

Newer Style - use exception handling (C++, Java)

· new system calls return error code as result

· avoid global variables, e.g. "errorno"

Other conventions - (See bullets on pp. 16-17)

· Q: Identify 3 bullet related to concurrency.

· Q: Which bullet relates to memory leaks?

· Q: List problems with global variable "errno".

Programming in UNIX

Extended example - argument arrays!

· Review pointers, argv[], argc, parameter passing

Ex. Review Program 1.1 and 1.2 to answer the following:

· What are argv[] and argc used for?

· What is the parameter-passing mode in C?

· What are the data types of arguments to makeargv()?

· What does makeargv() return?

· List a few possible error situations for makeargv().

· How does makeargv() respond to those errors

· Is it possible to rewrite makeargv() with following header?

· Headers from Example 1.8, Example 1.10

int makeargv(char *s, char *delimiters, char **argvp)

· What is maximum number of arguments allowed?

· Is there any memory leak? Justify your answer.

· Consider memory allocated to ’t’ and ’*argvp’

· What does the following loop do?

for (i=1; i < numtokens + 1; i++)

*((*argvp) + i) = strtok(NULL, delimiters);

· Why is the above loop not followed by free(t)?

1.5 Making functions safe (for reentry)

Non-Reentrant functions

· Self modifying code

· functions using static/global variables

· Problems with multiple simultaneous invocations

Reentrant functions

· Allow multiple simultaneous invocations

· Needed for signal handler, server with many clients, ...

· Two aspects:

Thread safe: can be called concurrently by 2 threads

· Async. Signal safe: can be called inside a signal handler

· without restriction

Making functions safe (for reentry)

Q: Which POSIX system calls thread safe?

· Not those using global variable "errno", e.g. read()

· reentrant functions provided for non-reentrant ones

· Ex. strtok_r() for strtok()

· Trend towards thread safe system calls!

Q: Which POSIX system calls async signal safe?

· See Table 5.3, pp. 191

· Double check with man page on your system!

Q: Is makeargv() (Program 1.2) a reentrant function?

· Is it signal-safe?

· Is it thread-safe?

· Why?

· How can you make it thread safe?

