
Csci 4061 - Meeting 1

� Administrative

* Introductions

* Syllabus

* Waiting List Policy

� Goals:

* Understand concurrency

* Overview of the course

� Topics:

* 1.1 Multiprogramming and Multitasking

* 1.2 Concurrency at the Application Level

* 1.3 Unix Standards

* 1.4 Programming in UNIX

* 1.5 Making functions safe

� Readings: Chapter 1 (Robbins, pp.76-137)

� Readings: Appendix A.1-3 (Robbins, pp.577-589)

� Recommended Exercises:

− 2 −

Administrative

� Introductions

* Instructor

* TAs

* Peers

� Syllabus

* Schedules: lectures, homeworks, exams, recitations

* Textbooks, Reference material

* Topics

� Policies

* Late homeworks

* Cheating

* Waiting List - Attendance*, estimates

− 3 −

Course Goals

	 Concepts: Understand concurrency

* Why concurrency?

* Sources of Concurrency

- I/O, signals, processes, threads, client-server

* Effects of concurrency

 Focus

* Server - software concurrently shared by many

* User level - commands, shell

* Power Users - system calls, C programs

� Out of Scope

* Operating System Theory - e.g. CPU scheduling

* Vendor specific features - e.g. Win32

− 4 −

1. What is Concurrency?

� Concurrency:

* Sharing of resource in the same time-frame

* Ex. two program executing concurrently

* Q? Which resources are they sharing?

 Trends leading to Concurrency

* Computer speed >> Human typing speed

* CPU speed >> I/O (e.g. disk drives)

- See Table 1.1 (pp. 5)

* Multiprocessors

* Distributed Systems

* Graphical User Interfaces

- Animation of multiple objects

� What is hard about Concurrency?

* Non-deterministic behaviour

* Bugs do not show up on a regular basis

− 5 −

1.1 Multiprogramming and Multitasking

� Multiprogramming

* Process: instance of a program in execution

* More than one processes can be ready to execute

* OS chooses one to execute

* Context switch to another process when

- this process needs I/O

� Q? What if a program has an infinite loop?

� Timesharing

* Context switch to another process when

- when quantum is over

* Pros: Reduce waiting time for small jobs

* Cons: overhead of context switch

� Multitasking - Similar to multiprogramming

* finer granualarity (e.g. threads within a process)

* Sharing even user resource, e.g. global variables

� Why do I care about these? I am not writing an O.S.!

* Web servers: search engines, databases, e-commerce

− 6 −

1.2 Concurrency at the Application Level

� Concurrency Levels

* Hardware

- CPU controlling peripherals, multi-processors

* Software - OS

- signal handling

- overlap of I/O and processing

- communication

- resource sharing among processes and threads

� Outline

* 1.2.1 Interrupts (Recall assembly language course)

* 1.2.2 Signals

* 1.2.3 Input and Output

* 1.2.4 Threads and Resource Sharing

* 1.2.5 Network as the Computer

� Q? Map these to chapters in the book.

− 7 −

1.2.1 Interrupts

* Peripheral generates an electrical signal

* Sets a flag in CPU

* CPU checks flag in each instruction cycle

* Interrupt service routine called

� Example: Timesharing implemented with

* alarm interrupts

� Concurrency: CPU and peripheral device

* Shared resource - bus

� Event types by time of occurrence

* Asynchrounous - time not determined by receiver

* Synchronous - time determined by receiver

− 8 −

1.2.2 Signals

� Motivation

* Q? How do you stop a program in an infinite loop?

* Other usage: timers, job control, aynch. I/O, ...

� Signal = software notification of an event

* Ex. hardware events, e.g. ctrl-c, I/O complete

* Q? Provide examples of synchronous signals.

� Life cycle of a Signal

* Event of interest occurs

* Signal is generated

* OS sets a flag for the relevant process

* Signal is caught by the process

* Process invokes a handler subroutine

* Analogy - "You have mail" flag

� Concurrency: main program, signal handler subroutine

* Implication: restriction on signal handler

* Sharing a global variable => special protection

− 9 −

1.2.3 Input and Output

� Motivation

* Coordinate resources with varying speed

* But isn’t that the job of O.S.?

* Why should an application developer learn this?

* You may develop performance critical applications

- Ex. real-time - Pacemaker

- Ex. Web servers, transaction processors - ebay, amazon, ...

� Ex. asynchronous I/O

* A process itseld can do other things

* while waiting for an I/O, i.e. synchronous read()

* instead of getting swapped out by OS

 Ex. monitoring multiple input source on network

* Standard blocking I/O is not suitable!

! Concurrency

* Subprogram handling file/network I/O

* Subprograms computing during wait for I/O

− 10 −

1.2.4 Threads and Resource Sharing

" Motivation - What is the unit of concurrency?

* Traditional unit = process

* Emerging finer unit = thread

Processes - Generated via fork() call

* Coordinate termination via wait()

* Communicate via pipes (common ancestors),

- or signals, messages, shared memory, etc.

* Pros: stronger security boundaries

* Cons: high overhead

$ Threads - provide concurrency within a process

* threads of execution = program counter value streams

* Finer level of concurrency

* Low overhead in creating and context switching

* standards are emerging now!

% Concurrency

* Multiple processes or Multiple threads within a process

− 11 −

1.2.5 Network as the Computer

& Motivation - internet!, intranet, networks, ...

* Multiple services: ftp, email, ...

* Million of clients accessing Web services

' Client-Server = A model of distributed computing

* Client = caller of a service

* Server = provider of a service

* Analogy with procedure call, caller, callee

(Details

* Clients and Servers may be on different machines

* Communication via messages or remote procedure calls

* Signals, Pipes, shared memory are not common

) Concurrency

* Server and client are concurrent

* Multiple Servers and multiple clients

− 12 −

1.3 Unix Standards

* Why Standards?

* Multiple flavours of Unix: HPUX, Solaris, Linux, ...

- Two distinct lineage - BSD and System V

* Non-Unix OS: NT, Windows 3.1/95/98/..., MacOS, ...

* System calls are often OS specific!

* Overhead of porting across OS.

+ Which Standards?

* ANSI C

* POSIX - IEEE Portable Operatig System Interface

- Table 1.3 provide POSIX standards

* if not covered by POSIX

- Spec 1170

- System V Release 4

, How do I check POSIX support in my OS?

* unistd.h header file

* Table 1.4 shows the compile time options

− 13 −

1.4 (Concurrency) Programming in UNIX

- Concurrency programming

* Language constructs, e.g. Java

* OS Libraries, e.g. Unix system call

. System call - a procedure provided by OS

* An entry into the kernel (heart) of OS

* To get access to system resources

/ Standard C Library

* e.g. string handling, memory management

* Some subroutine contain system calls

* Hard to tell the difference from system call!

0 Resources - Unix man pages (Appendix A.1)

* header files needed by system call

* prototype of system call- name, parameters

1 Apendix A.1-3commands: man, cc, make

− 14 −

1.4 Programming in UNIX

2 Conventions- error situation

* system call returns -1 or NULL

- Sets global variable "errno" to error code

* Application programmer should check for these

- perror() - Example 1.2 (pp. 15)

- strerror() - Example 1.5 (pp.16)

3 Newer Style - use exception handling (C++, Java)

- new system calls return error code as result

- avoid global variables, e.g. "errorno"

4 Other conventions - (See bullets on pp. 16-17)

* Q? Identify 3 bullet related to concurrency?

* Q? Which bullet relates to memory leaks?

* Q? List problems with global variable "errno" .

− 15 −

1.4 Programming in UNIX

5 Extended example - argument arrays!

* Review pointers, argv[], argc, parameter passing

6 Ex. Review Program 1.1 and 1.2 to answer the following:

* What are argv[] and argc used for?

* What is the parameter passing mode in C?

* What are the data types of arguments to makeargv()?

* What does makeargv() return?

* List a few possible error situations for makeargv().

- How does makeargv() respond to those errors?

* Is it possible to rewrite makeargv() with following header?

- Headers from Example 1.8, Example 1.10

int makeargv(char *s, char *delimiters, char **argvp)

* What is maximum number of arguments allowed?

* Is there any memory leak? Justify your answer.

- Consider memory allocated to ’t’ and ’*argvp’

* What the following loop do?

for (i=1; i< numtokens + 1; i++)

*((*argvp) + i) = strtok(NULL, delimiters);

* Why is the above loop not followed by free(t)?

− 16 −

1.5 Making functions safe (for reentry)

7 Non-Reentrant functions

* Self modifying code

* functions using static/global variables

* Problems with multiple simultaneous invocations

8 Reentrant functions

* Allow multiple simultaneous invocations

* Needed for signal handler, server with many clients, ...

* Two aspects -

- Thread safe: can be called concurrently by 2 threads

- Async. Signal safe: can be called inside a signal handler

- without restriction

− 17 −

1.5 Making functions safe (for reentry)

9 Q? Which POSIX system calls thread safe?

* Not those using global variable "errno", e.g. read()

* reentrant functions provided for non-reentrant ones

* Ex. strtok_r() for strtok()

* Trend towards thread safe system calls!

: Q? Which POSIX system calls async signal safe?

* See Table 5.3, pp. 191

* Double check with man page on your system!

; Q? Is makeargv() (Program 1.2) a reentrant function?

* Is it signal safe? Is it thread safe? Why?

* How can you make it thread safe?

