
Overview

� Administrative

* HW 4 - makefile available

* HW 4 - any questions

� Topics:

* Threads Synchronization

* 3 Mechanisms: mutex, semaphore, condition variable

* Motivating Example : Producer-Consumer

* Solution using 3 mechanims

* Effect of Threads on rest of POSIX

- Signal

� Readings: Ch. 10 (pp. 365-400), Ch. 8.3.1-2 (pp. 304-307)

� Exercises: 10.1 - 10.7

− 2 −

What Is synchronization?

� Sometime we use literal meaning-

* To take place at the same time instant

- 1. To cause events to appear to be synchronous

* Ex.: Synchronized swimming

* Ex.: termination, rendezvous (meeting by appointment)

� However, concurrency leads to many problems

* Race conditions, Non-determinism

* ...need to cooperate to avoid these problems!

* Ex. Avoid simultaneous access to shared resources

� Chapter 10. mostly mean following:

* Coordinate- bring into common action; harmonize

* Cooperate- act jointly w/ others for common benefit

− 3 −

Synchonization Problems: A Story

� Stories

* Car buying

* Hello World, Producer-Consumer

* Automatic Teller Machine story (Thread 8, HW4)

* O ’Henry, VCs visiting Johnson & Johnson

� A busy family’s car buying story

* Had an old car needing replacement

* Spouse1 visits a dealer and likes a car

- Signs paper to buy the car w/ financing

- and trade-in old car

* Spouse2 visits another dealer and likes a car

* Signs paper to buy the car w/ financing

- and trade-in old car

	 Q? How many car do they have now?

* 2

* 3 (trade-in not legal to either)

* an old car + legal problems

− 4 −

Hello World with 2 Threads

 Hello World Story: Why coordinate?

void print_message_function(void *ptr);

main()

{

pthread_t thread1, thread2;

char *message1 = "Hello"; char *message2 = "World";

pthread_create(&thread1, pthread_attr_default,

(void*)&print_message_function, (void*) message1);

pthread_create(&thread2, pthread_attr_default,

(void*)&print_message_function, (void*) message2);

exit(0);

}

void print_message_function(void *ptr)

{

char *message;

message = (char *) ptr;

printf("%s ", message);

}

− 5 −

Coordination Needs

� Coordination Needs

* Acess to shared resource (stdout)

- printf across 2 threads

* Thread rendezvous for process termination

- exit(0) in main thread if other threads are done

� Lack of Coordination

* => output is not deterministic!

* a.k.a Race Conditions

 Fix 1.

* add sleep(10) after each thread_create()

* ? Does it eliminate race conditions?

* ? Can it be used to remove all race conditions?

� Fix 2.

* add 2 pthread_join() in main() to wait

* for threads to finish

− 6 −

Hello World- coordinating w/ sleep()

void print_message_function(void *ptr);

main()

{ pthread_t thread1, thread2;

char *message1 = "Hello"; char *message2 = "World";

pthread_create(&thread1, pthread_attr_default,

(void *) &print_message_function, (void *) message1);

sleep(10);

pthread_create(&thread2, pthread_attr_default,

(void *) &print_message_function, (void *) message2);

sleep(10);

exit(0);

}

void print_message_function(void *ptr)

{ char *message; message = (char *) ptr;

printf("%s", message); pthread_exit(0);

}

− 7 −

Analyzing sleep() based fix

� Problem 1: Relying on timing delay for synchronization

* Not safe

* thread scheduling may not be predictable

* a thread may be blocked for a while

� Problem 2: Just like exit(),

* sleep() is a process level system call

* i.e. All threads in the process sleep

* Not useful for making main thread wait

� Footnote: Thread level wait (not portable)

struct timespec delay;

delay.tv_sec = 2;

delay.tv_nsec = 0;

pthread_delay_np(&delay);

− 8 −

Hello World Example - pthread_join()

void print_message_function(void *ptr);

main()

{ pthread_t thread1, thread2;

char *message1 = "Hello"; char *message2 = "World";

pthread_create(&thread1, pthread_attr_default,

(void *) &print_message_function, (void *) message1);

pthread_join(&thread1, NULL);

pthread_create(&thread2, pthread_attr_default,

(void *) &print_message_function, (void *) message2);

pthread_join(&thread2, NULL);

exit(0);

}

void print_message_function(void *ptr)

{ char *message; message = (char *) ptr;

printf("%s", message); pthread_exit(0);

}

− 9 −

Analyzing pthread_join() based solution

� Advantages

* remove race b/w exit(0) and printf()

* remove race b/w printf()s from 2 threads

� Disadvantages

* Sequential

* Little concurrency across threads

* Not useful for many situations

� Example: Producer-Consumer Problem

* Fig. 10.1 (pp. 366)

* Both producer and consumer work concurrently

* Shared resource = buffer

* Producer - adds items to buffer

- if there is an empty slot

* Consumer - removes items from buffer

- if there is a full slot

− 10 −

Threads Synchronization

� Threads share process-level resources

* Memory, e.g. global / static variables

- global data-structures, e.g. queues

* I/O channels (e.g. stdout) and associated buffers

* File descriptor tables, process signal mask, ...

� Coordination is needed to avoid problems

� Common Coordination needs

* A. Mutual exclusion

* B. Critical Sections (1 at a time)

* C. Fixed number of servers (N at a time)

* D. Wait for a general condition (or event)

− 11 −

Mutual Exclusion, Critical Section

� Mutual Exclusion:

* At most one process/thread uses the resource at a time

* Single server, e.g. use of 1 printer

� Critical Sections: a segment of code

* that must be executed in a mutually exclusive manner.

* Ex. Queue abstract data type

- Implementation state in flux during steps of insert()

- Operation insert() is a critical section!

� Critical Section mechanism properties

* Mutual Exclusion

* Progress: If no one is in the critical section, then

- A process/thread wishing to enter can get in.

* Bounded Waiting: No one is postpone indefinitely

* Avoid busy waiting if possible

− 12 −

Wait for a service, Conditional Wait

� Wait for a service

* fixed number of servers (N)

* Each server attends to 1 client at a time

* System can serve N clients at a time

* e.g. wait till a fixed size buffer is not empty,

� Conditional Wait:

* Waiting till an event happens!

* e.g. wait till queue is not empty,

* or wait till (producer is done) and (queue is empty)

− 13 −

Thread coordination in POSIX

� POSIX tools for thread coordination

* mutex (M)

* semaphore (S)

* condition variable + mutex (CV + M)

� Simple comparison

* complexity: M < S< (CV + M)

� Matching techniques to problems

* Mutual exclusion - any tool

* Critical Section - any tool

* Wait on simple condition

- semaphores or condition variables

- mutex will lead to busy wait!

* Wait on complex condition

* Condition variables with mutex

- mutex or semaphores will lead to busy wait!

− 14 −

POSIX Mutex

 Mutex:

* Chapter 10.1 (pp. 367-372)

* Synopsis (pp. 367)

! Mutex ADT

* One Attribute: state-of-lock

* Attribute type = Binary

- Domain = (occupied, unoccupied)

* Atomic Operations: lock(), unlock()

" Implementation

* Hardware support- atomic test-and-set instruction

− 15 −

POSIX Mutex - Usage

Purpose of Mutex locks

* Mutual Exclusion

* Some aspects of critical section problem

* Not for long waits due to busy wait problem.

$ Typical Usage

* Initialized to "unoccupied"

- via macro PTHREAD_MUTEX_INITIALIZER

- or system call pthread_mutex_init()

* Each thread follows common protocol:

- pthread_mutex_lock(&mutex_name) to acquire shared resource

- pthread_mutex_unlock(&mutex_name) to release shared

resource

* Example 10.3 (pp. 368)

− 16 −

POSIX Mutex & Hello World Story

% Recall two problems

* Shared resource (stdout) - use mutex

* Termination - main wait for others

/* include proper header files */

pthread_mutex_t mx = PTHREAD_MUTEX_INITIALIZER;

void print_message_function(void *ptr)

{ char *message; message = (char *) ptr;

pthread_mutex_lock(&mx);

printf("%s ", message);

pthread_mutex_unlock(&mx);

}

main()

{ pthread_t thread1, thread2;

char *message1 = "Hello"; char *message2 = "World";

pthread_create(&thread1, pthread_attr_default,

(void *) &print_message_function, (void *) message1);

pthread_create(&thread2, pthread_attr_default,

(void *) &print_message_function, (void *) message2);

pthread_join(&thread1, NULL); pthread_join(&thread2,

NULL);

exit(0);

}

− 17 −

POSIX Mutex - Semantics

& Analogy: lock with a single key

' lock - the door and keep the key!

* Blocking call, i.e. wait if key not there

if (mutex-state == "occupied")

then wait-for-mutex-to-be-unoccupied

else mutex-state = "occupied";

(unlock - the door and return the key!

if ((mutex-state == "occupied") and (it-was-locked-by-you))

then mutex-state = "unoccupied";

) pthread_mutex_trylock()

* Alternative to pthreath_mutex_lock()

* trylock() is non-blocking

* returns error (EBUSY) if mutex is "occupied"

* thread may something else instead of blocking

− 18 −

POSIX Mutex - Other operations

* Initialization Methods

* (A) Example 10.2 (pp. 367)

* macro PTHREAD_MUTEX_INITIALIZER

- safer, guaranteed to execut at most once!

- for "static" mutex, not for dynamic ones

+ Another Initialization Method

* (B) copy system call (Example 10.1, pp. 367)

- for dynamically allocated mutex !

- use before creating threads using the mutex!

pthread_mutex_init(&mutex_name, NULL)

, pthread_mutex_destroy()

* Destructor, inverse of pthread_mutex_init()

* assumes mutex-state = unoccupied

* and if no thread will lock it anymore

− 19 −

POSIX Mutex - Exercise

- Q? Justify the following advice on using mutex.

* 1. Do not unlock a mutex unless you locked it

* 2. Do not unlock a mutex twice in sequence

* 3. Do not lock a mutex twice in sequence i.e. EDEADLK

* 4. Unlock all mutexes before sleep()/sched_yield()

* 5. Hide lock/unlock calls within operation on an

- abstract data type!

. Consider "Hello World" solution w/ mutex

* Analyze the consequences of following changes:

* 1. program is run on a multi-processor hardware

* 2. mutex "mx" is local variable in print_message_function()

* 3. mutex "mx" is local to main()

* 4. lock() and unlock() statements swapped in code

/ Recitation: More detailed exercise (lock.c)

− 20 −

POSIX Mutex - Risks

0 Risks

* Protocol is voluntary, no enforcement!

* A uncooperative thread may violate the protocol

- putting everyone else in jeopardy

1 Suggestion: Combine with Abstract data types (ADTs)

- operation on ADT should use mutex properly

- threads access ADTs via operations

* Case Study: Producer-Consumer problem!

- Example: Program 10.1 (pp. 368-9)

2 We will revisit case study next week!

* Compare mutex, semaphores, condition variables

− 21 −

POSIX Sempahore

3 Chapter 8.3.1 - 8.3.2

* Synopsis (pp. 305-6)

4 Semaphores

* One Attribute: state-of-semaphore (a.k.a. count)

* Attribute type = positive integer

* Atomic Operations: sem_wait(), sem_post()

5 sem_wait()

if (count == 0) wait-till-count-is-positive;

count-- ;

* sem_post()

count++;

6 Implementation of sem_wait() and sem_post requires

* Software- mutex locks

* or Hardware test-and-set instruction

− 22 −

POSIX Sempahore

7 Purpose of Semaphore

* Wait for simple condition w/o busy waiting

- e.g. (count = 0), (count > 0), etc.

- e.g. queue full, buffer empty, etc.

* Also for critical section, mutual exclusion

* Not for waits on complex condition (busy wait problem)

8 Typical Usage

* Initialized to the max. number of resources

* Each thread:

- sem_wait(S1) to acquire shared resource

- sem_post(S2) to release shared resource

- wait & post may be on different semaphore

− 23 −

POSIX semaphores - Example

9 Example: Program 10.3 (pp. 373-4)

* 1. How many semaphores are used?

* 2. What are the initial values of each?

* 3. How many threads are there?

* 4. Does each thread follow the protocol?

* 5. What is the shared resource?

* 6. What are the conditions monitored?

* 7. What are the race conditions?

- Which conditions are handled by semaphores?

− 24 −

POSIX semaphores - Example

: Analysis

* 1. Two (items, slots)

* 2. items = 0, slots = BUFSIZE

* 3. Two (prodtdi/producer, constid/consumer)

* 4. Yes - wait ... post

* 5. buffer with BUFSIZE slots

- buffer[], bufin, bufout

* 6. changes to buffer[], bufin, bufout

- producer overwriting item if buffer is full

- consumer reads illegal item if buffer is empty

* 7. full_buffer halts producer

- empty_buffer halts consumer

− 25 −

POSIX semaphores - Risks

; Risks

* Protocol is voluntary, no enforcement!

* A uncooperative thread may violate the protocol

- putting everyone else in jeopardy

< Suggestion: Combine with Abstract data types (ADTs)

- operation on ADT should use semaphore properly

- threads access ADTs via operations

* Case Study: Producer-Consumer problem!

= Other Protocols are possible !

* See example semaphore.c in recitation!

− 26 −

POSIX Semaphores - Other Operations

> Initialization/copy operation (Synopsis (pp. 305))

int sem_init(sem_t *sem, intpshared, unsigned int value)

* Argument 1: pshared = 0 for threads in a process

- pshared != 0 for a process group

* Argument 2: (value >= 0)

- initializes the "count" of resources

* Dynamic memory allocation and initialization

* Usage Ex.: Program 8.2 (pp. 307)

? Recycling operation: int sem_destroy(sem_t *sem)

* destroy a previously initialized semaphore

* ensure no one is waiting on it

@ Non-blocking wait: int sem_trywait(sem_t *sem)

* Alternative to blocking sem_wait()

* Return -1 and (errno = EAGAIN) instead of blocking

A Getting value of semaphore

int sem_getvalue(sem_t *sem, int *sval)

* No gurantee on the time when sval is read!

− 27 −

POSIX Semaphores - Exercises

B Example. Program 8.2 (pp. 307)

* Q? How many semaphores are used?

* Q? What are the initial values of each?

* Q? What is the shared resource, race condition?

* Q? How many threads can "fputc()" at the same time?

C Mutex is a special case of semaphore.

* Q? What initial value for semaphore will

* sem_wait() behave like lock()

* and sem_post() behave like unlock()

D Rewrite Hello World using semaphores

pthread_mutex_t mx = PTHREAD_MUTEX_INITIALIZER;

void print_message_function(void *ptr)

{ char *message; message = (char *) ptr;

pthread_mutex_lock(&mx);

printf("%s ", message);

pthread_mutex_unlock(&mx);

}

