
− 28 −

POSIX Condition Variables ADT

� One actual Attributes

* 1. CV-list = list ids of thread waiting on CV

- Domain: empty-list, list w/ 1 tid, ...

� Two logical Attributes

* 1. Boolean Condition C

- Condition variable used to wait for C becoming true

- C can be a complex condition

* 2. CV-mutex = a mutex associated with CV

- Domain: occupied, unoccupied

� Logical Operations

* t.wait(CV, mutex) -

- Add thread t to CV-list, unlock the mutex

- Typically while associated condition C is false

- Condition C is tested explicitly!

* t.signal(CV) -

- Wake up a thread from CV-list

- Woken up thread will test associated condition C

- and may t.wait(CV, mutex) if C is false



− 29 −

Condition Variables Operations- Syntax

� Synopsis: pp. 382

� CV.wait

int pthread_cond_wait(pthread_cond-t *cond,

pthread_mutex_t *mutex);

� CV.signal

int pthread_cond_signal(pthread_cond-t *cond);

� Initialization

* Static Initialization - macro

pthread_cond_t v = PTHREAD_COND_INITIALIZER;

* Run-time Initialization - system call

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

� Recycling

int pthread_cond_destroy(pthread_cond-t *cond);



− 30 −

Condition Variables (CV) : Purpose/Usage

� Main purpose

* wait on a complex condition

* Ex. C1 = (buffer is not full)

* Ex. C2 = (producer is done) and (buffer is empty)

	 Example: Program 10.6 (pp. 384-5)

* See function producer()

- code-fragment before/after put_item()

* See function consumer()

- code-fragment before/after get_item()



− 31 −

Condition Variables (CV) : Protocol


 Note: Protocol of usage for (CV + mutex)

* Steps on pp. 379

* Rules - bullets on pp. 383

� Rules:

* (1) Get mutex lock M before testing predicate

* (2) Retest predicate after returning from cond_wait()

- while (not predicate) cond_wait(&V, &M),

* (3) Get mutex before changing variables affecting condition

* (4) Get mutex before calling cond_signal(), cond_broadcast()

* (5) Hold mutex for only a short time

- Release mutex via mutex_unlock() or cond_wait()



− 32 −

Exercise on Condition Variables

� Consider Code fragment for thread 1.

lock_mutex(&m); /*A */

while (x !=y) /* B */

cond_wait(&v, &m); /* C */

/* do some stuff related to x and y */ /* D */

unlock_mutex(&m); /* E */

 Code fragment for Thread 2 code

lock_mutex(&m); /* F */

x++; /* G */

cond_signal(&v); /* H */

unlock_mutex(&m); /* I */

� Ex. Suppose x = 0 and y = 2 initially.

* Q? What happens after interleaving A, B, C, F, G, H, I ?

* Q? Which statement does thread 1 execute next?

� Q? Are the following interleaving possible?

* (i) A B C F G H B C I

* (ii) A B F G C H



− 33 −

Condition Variables (CV) : Exercises

� Compare Programs 10.6 (pp. 384-5) and 10.4 (pp. 376)

* How can CVs simulate semaphore operations?

* Which condition does producer wait on in each program?

* Which condition does consumer wait on in each program?

* How consumers are allowed in each program?

* How producers are allowed in each program?

� Compare CVs with semaphores:

- Let C1 = (buffer is not full)

- and C2 = (producer is done) and (buffer is empty)

* Can condition C1 be monitored by a Semaphore?

* Can condition C2 be monitored by a Semaphore?

* Does semaphore.wait() test for associated condition, e.g. C1?

* Does CV.wait() test for associated condition, e.g. C1?

* Does program using semaphore always need mutexes?



− 34 −

Condition Variables (CV) vs. Semaphores

� Why sempahores do not monitor complex conditions?

* Two semaphores to wait for:

- Buffer empty, Producer is done

* Recipe for indefinite wait

- since the events are not ordered!

� How do CVs differ from semaphores?

* Semaphores monitor simple conditions, e.g. C1

* Semaphore.wait() implicitly tests condition (count==0)

- and block the thread

* CV.wait() only blocks the thread

- condition testing is explicit in code

* CV is used with mutex

� Q? What is the associated mutex used for?

* Protect two critical sections

* (a) wait(CV, mutex); acquire resource

* (b) release resource; signal(CV);



− 35 −

Departing Note on CVs

� Honor system

* Each thread must follow protocol

� Complex protocol

* Use simpler mechanisms (e.g. mutex, semphore) if possible

* Hide shared data-structures and

- associated condition variables inside an ADT

� Note- CV is often generated by compiler

* monitors in high level language constructus

* Java synchronized classes, methods = critical sections



− 36 −

10.4 Threads and Rest of POSIX

� Threads interact with everything!

* There are many issues

* Let us review a few representative ones!

� Threads and Processes

* 1. Is a system calls at process level or thread level?

- exit, sleep, thread_exit, wait, thread_join, ...

* 2. fork() in a mutli-threaded program

- How many threads are in the child process?



− 37 −

10.4 Threads and Rest of POSIX

� Threads and Files

* 1. Is a system calls at process level or thread level?

- open, read, write, ioctl, close

* 2. Threads in a process shared files, file descriptors, FDTs

- Avoid conflicts in access to shared resources

- via synchronization (Ch. 10) or careful division (Ch. 9)

� Threads and Signals

* 1. Is a system calls at process level or thread level?

- kill, sigprocmask, sigaction, sigsuspend, pause, ...

* 2. Can each thread have diferent mask?

* 3. Can each thread have diferent handlers for a signal?

* 4. Which thread receives a signal to the process?

* 5. How threads affects signal handlers?



− 38 −

10.4 Signal Handling and Threads

� 1. Is a system calls at process level or thread level?

* Chapter 5; system calls were at process level!

- kill, sigprocmask, sigaction, sigsuspend, pause, ...

* Chapter 10.4: thread level system calls were for signals

- pthread_kill(), pthread_sigmask()

- See pp. 386 for synopsis

� 2. Can each thread have diferent mask?

* Signal masks can be thread specific

* A thread can block a signal while others can receive it!

* Parameter 1 (how) = SIG_BLOCK / SIG_UNBLOCK /

SIG_SETMASK

* Parameter 2 = new mask

* Parameter 3 = old mask

* Semantics similar to sigprocmask()

int pthread_sigmask(int how, const sigset_t *set,

sigset_t *oset)



− 39 −

10.4 Signal Handling and Threads

� 3. Can each thread have diferent handlers for a signal?

* NO, signal handlers are process wide

� 4. Which thread receives a signal ?

* Three cases (Table 10.1, pp. 386)

* Synchronous signal (SIGFPE) : the thread causing it

* Asynchronous signal (SIGINT) : Any thread not blocking it

* Designated thread if signal generated by

int pthread_kill(pthread_t thread, int sig)

 Signal handler for asynchronous signals - common designs

* 1. Block the signal in its handler via sigaction()

* 2. Designate a thread to handle asynchronous signals

- Other threads will block asynchronous signals

- Ex. Program 10.8 (pp 392-4)

- sigusr1_thread() handles all signals



− 40 −

10.4 Signal Handlers and Threads

! 5. How threads affects signal handlers?

* Consider Signal S caught by thread T1

* Signal S is blocked in its handler H for T1

* However S may not be blocked for threads T2, T3

* Thread T2 may enter the handler H as well

" Handler H should be reentrant function!

* Use only reentrant system calls, libraries

* Either avoid use of global variables

- Or use synchronization (critical section)

- Example: Program 10.7 (pp. 388-390)

- See catch_sigusr1() on pp. 388


