
Overview

� Administrative

* MQ solutions on the web

* Grades so far

� Topics:

* What is Client-Server Architecture?

* 12.1 Server Architecture - 5 design patterns

* 12.2 Universal Internet Comunication Interface (UICI)

* 12.3 Network Communications (ISO/OSI Layers)

* Sockets

* Revisit UICI

- 12.4 Socket implementation

- 12.8 Thread safety

� Readings: Chapter 12 (pp. 429-476)

� Exercises: client-server 1, 2, 3, 9, 10.

− 2 −

What is Client-Server Architecture?

� Motivation for Client-Server Architecture

* Distributed Computing, e.g. intranet, internet

* Simplifying life for user

- e.g. Get my email from yahoo, hotmail, cs.umn.edu

- e.g. Access my files on any file server

* Simplifying life for OS & businesses

- Multiple provider for a well defined service

� Concepts in Client-Server Architecture

* Server processes

* Client processes

* Communication mechanism

* Naming mechanism

− 3 −

What is Client-Server Architecture?

� Analogy with a common business model

* Servers: shops in a (virtual) mall!

* Clients: customers

* Communication:

- Connection based: in person, telephone, web (tcp, ftp)

- Connection less: snail mail, email, web (ip, http),

* Naming: store address/id, credit card, <bank, check#>, ...

� Protocol

* Client makes a request for a service to a server

* Server provides the service to client

* Server may be on same machine or a different machine

− 4 −

What is Client-Server Architecture?

� Server processes

* Provide services to client on a network

* Usually run in infinite loop as daemons

- waiting for requests from clients

* Ex. file server - manage disk, backup, file sharing

* Ex. mail server, file transfer servers, etc.

* Web: search engines, AOL, hotmail.com, realaudio, ...

	 Client processes

* Processes using services from servers

* Send requests to servers, monitor status, etc.

* May be short lived

* May interact with multiple servers

* Ex. shell, IE/NS browser, etc.

− 5 −

What is Client-Server Architecture?

 Communication mechanism

* OS support to convey requests, results

* Ex. pipes, signals, files, etc.

* Q? Will these work across internet of machines ?

* No, these assume a common operating system!

* New mechanism (Focus of Ch. 12)

- Ex. sockets, UICI, ... (network of OS)

� Communication mechanism

* Connection-less protocols

* Connection-oriented protocols

� Connection-oriented protocols are

* Robust - handle some network errors

* But slower due to error management

− 6 −

What is Client-Server Architecture?

 Connection-less Communication Protocols (e.g. email)

* Setup

- Server publishes its address and service

- Server waits for service requests

* Service requests

- Client sends a service request to server address

- Server performs service and returns a reply

� Connection-oriented Communication Protocols (e.g. telnet, ftp)

* Setup:

- Server waits for a connection request from client

- Client requests connection

- connection established b/w client and server

* Service requests

- via a handle (e.g. file descriptor)

- multiple requests are possible on the connection

- server address not needed after setup

− 7 −

What is Client-Server Architecture?

� Naming mechanism for processes

* Q? How did we uniquely identify processes so far?

* Q? Will it work across internet of computers?

* Problems of process-id

- not unique across different OS

- not unique across 2 invocations of same program

� New mechanism : <Host, Port>

* Ex. www.cs.umn.edu:80

* Host = unique name for the machine hosting server

- Ex. symbolic name, e.g. deca.cs.umn.edu

- or IP address, e.g. 160.94.120.47

* Port = integer name for a mailbox on a host

- Unique stable number assigned to each service

- Server listens to assigned port

- echo (7), daytime(13), ftp (21), telnet (23),

- See file /etc/inet/services for other ports

− 8 −

12.1 Server Architecture - 5 design patterns

� Server Design Options

* Options for Number of incoming ports

- only 1

- many 1 per client

* Options for Number of outgoing ports

- only 1

- many 1 per client

* Process structure Options

- One Process, One thread

- Many Processes (1 process per client)

- One Process, Many thread (1 thread per client)

� Comparison criteria

* Security/Privacy for messages to client

* Long request slowing down small requests

- port level

- server level

− 9 −

12.1 Server Architecture - Design 1, 2

� Server Design 1

* Number of incoming ports = 1

* Number of outgoing ports = 1

* Process structure = 1 process w/ 1 thread

* See Figure 12.1, pp. 433

� Server Design 2

* Number of incoming ports = 1

* Number of outgoing ports = many (1 per client)

* Process structure = 1 process w/ 1 thread

* See Figure 12.2, pp. 434

− 10 −

12.1 Server Architecture - Design 3

� Server Design 3

* incoming ports = 1 common + (1 per client)

* outgoing ports = many (1 per client)

* Process structure = 1 process w/ 1 thread

* See Figure 12.3, pp. 434

� Q? Compare the three designs for

* Security/Privacy for messages to client

* Long request slowing down small requests

- Assume server psuedocode like (Example 12.1, pp. 435)

− 11 −

12.1 Server Architecture - Design 4, 5

� Server Design 4

* incoming ports = 1 common + (1 per client)

* outgoing ports = many (1 per client)

* Process structure = many (1 process per client)

* See Figure 12.4, pp. 435

* See Psuedo-code in Example 12.2 (pp. 435)

� Server Design 5

* incoming ports = 1 common + (1 per client)

* outgoing ports = many (1 per client)

* Process structure = 1 process w/ many threads

- 1 thread per client

* See Figure 12.5, pp. 436

� Both provide

* Private channels to each client

* Long request won’t slow down small requests

* Design 5 has lower overhead

− 12 −

12.2 Universal Internet Comunication Interface (UICI)

� Focus: Client-Server Communication

� Semantics

* Supports connection-oriented communication

* Ex. design 3, 4 or 5

* A common port for connection request

* Private two-way channel to each client

- for subsequent read/write

� Convention

* Similar protocol as files (Chapter 3)

- open, close, read, write, + few new calls

* Return value convention:

- Most calls return -1 for error

- exception: u_error() returns void

− 13 −

12.2 UICI - system calls

� Summary of Syntax

* Table 12.1 (pp. 437)

� Open, close

int u_open(u_port port)

* Open file descriptor bound to "port"

* Returns listening file descriptor

int u_close(fd)

* Close the handle

� Read, Write

ssize_t u_read(int fd, char *buf, size_t nbyte)

ssize_t u_write(int fd, char *buf, size_t nbyte)

* read/write "nbyte" from "buf" to/from "fd"

* Return number of bytes actually read/written

 Q? Compare four system calls with those on files (Ch. 3).

− 14 −

12.2 UICI - system calls

! Connection Setup: new calls

int u_listen(int fd, char *hostn);

* Server listens to connection request on "fd"

* system call returns a new communication file descriptor

- Server will use this file descriptor to talk to client

int u_connect(u_port_t port, char *the_host);

* Client requests connection to server <the_host, port>

* System call returns a new communication file descriptor

- Client will use this file descriptor to talk to server

" Other calls

void u_error(char *errmsg)

* Outputs "errmsg" followed by a UICI error message

− 15 −

12.2.2 UICI - Client protocol

Client

* request connection to specific <host, port>

* connection request returns communication handle

* client reads/writes to handle

* client closes the handle

$ UICI System call usage protocol

comm_fd = u_connect(portnumber, hostname)

u_read/u_write(comm_fd, ...) /* request service */

u_close(comm_fd) /* service request */

% Program 12.4 (pp. 442-3)

* Notice protocol - UICI system call sequence

* Client reads file from stdin

- and transfers file to server

* Program 12.1 (pp. 438-9) for server is complementary

- reads file from network and write to stdout

− 16 −

12.2.1 UICI - Server protocol

& Server

* Listens to connection requests on a "port"

* Server may translate "port" to a file decriptor

* generates new handle for communication for each request

* server serve request

- by reads/writes to client comm. handle

' UICI System call usage protocol

listenfd = u_open(portnumber)

/* loop on requests */

comm_fd = u_listen(listenfd, client)

u_read/u_write(comm_fd, ...) /* service request */

u_close(comm_fd) /* service request */

− 17 −

12.2.1 UICI - Server protocol

(Serial server

* Program 12.2 (pp. 439-440)

* Refers to Program 12.1 (pp. 438-439)

* Check the protocol - sequence of system calls

) Q1. Analyze Programs 12.2 (pp. 439-440) to answer the following:

* Does small request wait for large request to finish?

* Does each client have a private channel?

* Identify Server architecture (1, 2, 3, 4 or 5)

* Identify communication (connection-less or connection-based)

* Does it have busy wait?

* Why does it close "listenfd" ?

* What happens if "portnumber" (argv[1]) is not available?

* What happens if we run out of file descriptors for u_listen ?

* Q? What happens if network is not reliable?

* Q? How will I run Programs 12.2 and 12.4 together?

− 18 −

12.2.1 UICI - Server protocol

+ Analysis of Programs 12.2 (pp. 439-440)

* Does small request wait for large request to finish? YES.

* Does each client have a private channel? YES.

* Server architecture : 3.

* Communication is connection-based

* Does it have busy wait? NO assuming u_listen blocks.

* Why does it not close "listenfd" ?

- Should u_close(listenfd) before exit(0);

- Assumes OS will recycle listenfd resources

* What happens if "portnumber" (argv[1]) is not available?

- server report error details and exits

* What happens if we run out of file descriptors for u_listen ?

- server exits without reporting error details

* Q? What happens if network is not reliable?

- No effect, connection oriented comm. recovers from error.

, Q? How will I run Programs 12.2 and 12.4 together?

* See Exercise 12.1 (pp. 444)

− 19 −

Exercises on UICI Servers

- Non-serial server

* Program 12.3 (pp. 440-442)

. Q1. Analyze Programs 12.3 to answer the following:

* Does small request wait for large request to finish?

* Does each client have a private channel?

* Identify Server architecture (1, 2, 3, 4 or 5)

* Identify communication (connection-less or connection-based)

* Does it have busy wait?

* Why does it close "listenfd" ?

* What happens if "portnumber" (argv[1]) is not available?

* What happens if we run out of file descriptors for u_listen ?

* What happens if we run out of processes on OS ?

* How many processes and threads are in the server?

* Can there be orphan processes?

− 20 −

12.2.3 UICI Implementations

/ Implementation Choices

* Many network protocols

* Examples: sockets, TLI, STREAMS

* Implementation sketched in Table 12.2 (pp. 444)

* Note UICI is simplest, i.e. fewest system calls

0 Implementation Mechanisms offer capabilities beyond UICI

* Connection-less communication

* non-blocking I/O, e.g. read()

1 Implementation Issues

* Q? What happens if network is not reliable?

* Q? What happens to client if server dies?

* Q? What happens to server resources if client dies?

